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ABSTRACT 

This work is concerned with the mesoscopic lattice Boltzmann computation 
of heat conduction problems on uniform and non-uniform lattice sizes. It also 
focuses to solve heat conduction problems in one- and two-dimensional Cartesian 
geometries. It is known that, the lattice Boltzmann method is a relatively new 
method and application to heat conduction problems is scarce. In the present 
work, heat transfer formulations of lattice Boltzmann method to solve heat transfer 
problems are presented and implementation of non-uniform lattices is described. 
To show the accuracy and stability of the present lattice Boltzmann method, 
number of iterations and CPU time are reported. In order to study the effect of 
lattice structure, uniform and non-uniform lattice sizes are performed. To lend 
credibility to the lattice Boltzmann results they are further compared with those 
obtained from a finite difference method. It is concluded that the present study 
in heat conduction produces results that are in excellent contribution of lattice 
Boltzmann method in the area of computational fluid dynamics. 

Keywords: Lattice Boltzmann method, uniform lattice, non-uniform lattice, 
finite difference method 
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Introduction 

The lattice Boltzmann method (LBM) receives more and more attention in recent 
years as an alternative numerical approach in Computational Fluid Dynamics 
(CFD) [1]. The LBM received a tremendous impetus with their spectacular use 
in viscous fluid flow and heat transfer problems [2]. The application of LBM to 
pure heat conduction problems received less attention than the field of fluid flow 
problems [3]. Nowadays heat transfer research using LBM is getting momentum. 
It is known that, numerical schemes for the heat conduction are based mostly 
on continuum-based methods such as finite difference method (FDM), finite 
element method (FEM) and finite volume method (FVM). It is known that, the 
LBM is second-order accurate in time and space, which is sufficient for most 
engineering applications [4]. The main concept of LBM is to bridge the gap 
between micro-scale and macro-scale approach by not considering each particle 
behaviour alone but behaviour of a collection of particles as a unit [5]. The 
property of the collection of particles is represented by a particle distribution 
function. The distribution function acts as a representative for collection of 
particles. This scale is known as mesoscopic approach. 

The present LBM can handle a problem in micro- and macro-scales with 
reliable accuracy. It also enjoys advantages of both macroscopic and microscopic 
approaches, with manageable computer resources. The lattice size used in 
the LBM, commonly used Lattice-Bhatnagar-Gross-Krook (LBGK) model is 
restricted to orthogonal grid with equal lattice spacing. It is known that, uniform 
grid is desirable in many practical applications. Recently, many studies have been 
dedicated to the extension of the LBM on non-uniform lattice size [6, 7]. 

Boundary and initial conditions play important role in LBM simulations. 
The majority of the LBM works so far dealt with uniform lattice size only. Mishra 
et al. [8] presented the transient heat conduction problems on uniform and non­
uniform lattice sizes using LBM. Ho et al. [9] extended the lattice Boltzmann 
scheme for hyperbolic heat conduction equation with a source term. Recently, 
Perumal and Dass [10] studied natural convection with heat transfer in a square 
cavity for a wide range of Rayleigh number using LBM. 

The primary objective of this work is to get acquainted with various 
aspects of the LBM and develop efficient codes that can numerically compute 
heat transfer involving various levels of complexities. Another objective of 
this work is to develop a ' C program to solve the 1-D and 2-D heat conduction 
problems using LBM in uniform and non-uniform lattice sizes. The LBM 
is a relatively novel technique of flow computation, there is some scope for 
speculation as to the accuracy of the present LBM computations. Therefore 
the existing LBM results always have been compared favorably with finite 
difference methods. 

This paper is organized as follows. In Section 2 numerical methods 
including LBGK model and finite difference method is described. Section 3 
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deals with heat conduction problems in one- and two-dimensional Cartesian 
geometries and the results are presented and validated. Section 4 concludes 
this paper. 

Numerical Methods 

Lattice Boltzmann method 
The governing lattice Boltzmann equation with BGK approximation can be 
written as [9] 

tyx+cAtJ + At) =ft(x,t) - ^[ft{^t)-f^\x^ i = 0...b (1) 

Where^ (x, t) andf}eq) (x, t) are the particle and equilibrium distribution functions 
at (x, t), c. is the particle velocity along the ith direction and x is the relaxation 
time due to particle collision. In LBM, the solution domains need to be divided 
into lattice points. Figure 1 shows the D1Q2 and D1Q3 lattice models. 

f 2 1 f 

< ^ — • — e T ^ 

^ ^ 2 0 ^ i fi 

(a) (b) 

Figure 1: One-dimensional lattice models (a) D1Q2 and (b) D1Q3 

In Figure 1(a), Position 1 and 2 indicates the nearest neighbor lattice sites 
in the respective directions. In Figure 1(b), Position 0 indicates the stationary 
particle. The particle velocities measured in lattice units and their weights for 
different lattice models are shown in Table 1. 

Table 1: Lattice particle velocities and weights of different lattice models 

Model 

D1Q2 

D1Q3 

D1Q5 

D2Q9 

Particle velocity (c.) 

cl = C,c1 = -C 

Co = 0 ) C l = C,c2 = - C 

C0 = 0 ' C U = ± C ' C
3 , 4 = ± 2 C 

c0 = (0,0),c12 = (±l,0).C, 
c34 = (0,±l).C, 
c5;8 = (±l,±l).C 

Weights (w.) 

w, = 1/2, w2 = 1/2 

w0 = 1/2, w, = 1/4, w2 = 1/4 

wn = 6/12, w,, = 2/12, w,„ = 1/12 
0 ' 1 , 2 ' 3 , 4 

w0 = 4 /9 ,w u =l /9 , : 
w3 4=l/36 
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as [9] 
The equilibrium particle temperature distribution function can be written 

f}^(x,t) = wT(x,t) (2) 

The relaxation time x for the one-dimensional models can be written 
as [8] 

a At , _ 
I = ?+T <3) 

The relaxation time x for two-dimensional lattice model can be written 
as [8] 

3a At 
t = — + — (4) 

It is known that weights satisfy the relation ̂  u>, = 1. The macroscopic 
temperature is obtained as "' 

T = fjfi(x,t) = itfr(*,t) (5) 

It is known that, non-uniform grids are the lattice points which are un­
equally placed. Here we are considering non-uniform lattice points and the 
main advantage in this is that we can find the concentration of temperature in a 
particular area. Figure 2 shows the one-dimensional (1-D) non-uniform lattice 
points. The relaxation time is calculated based on smallest grid spacing. 

* * * * * * * * * * * * * * * * * * * * M M M M M M M M M M M M M M M 
« m u u y 1 

Figure 2: One-dimensional non-uniform lattice points 
for heat conduction 

The 2-D non-uniform lattices have a similar formulation which was 
applied for 1-D non-uniform lattices. Figure 3 shows the two-dimensional 
(2-D) non-uniform lattice points. In the present work, it is necessary to update 
the particle distribution functions using interpolations for fine lattice points 
which are adjacent to the coarse lattice points. The interpolation formula for 
non-uniform lattices can be written as [7]: 

/(*) = /(*o) /* Xf *> +/(*,) /* "f X>>+/(*,) (
(X Xf X\ (6) 

yx0 XJJ^XQ X2) {x^ x0j(Xj X2) \X0 X2)\X2 XX) 
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Implementation of boundary conditions in LBM requires careful effort, as 
the boundary conditions available at the macroscopic level need to be expressed 
in terms of particle distribution function [11]. For a node near a boundary, some 
of its neighboring nodes lie outside the flow domain. The unknown particle 
distribution function is determined from the known particle distribution function. 
Some boundary condition details of the heat transfer simulations by LBM 
can be found in Mishra et al. [8]. The solution procedure of the LBM at each 
time step comprise the streaming and collision steps, application of boundary 
conditions, calculation of particle distribution function followed by calculation 
of macroscopic variables. 

2D Non Uniform Lattice 

Figure 3: Two-dimensional non-uniform lattice points for 
heat conduction problems 

Finite difference method 
Finite difference method (FDM) for diffusion problem is discussed in this 
section. It is known that, this method is a conventional method for solving fluid 
flow and heat transfer problems [12]. Extension to two- and three-dimensional 
problems in FDM is a straightforward procedure. The main objectives of the 
approximation of the diffusion equation using the finite differences are two 
folds; first to show the difference and similarity between FDM and LBM; also, 
to compare the results of the two methods. An explicit finite difference approach 
can be used forward in time and central differences in space. Approximating 
the diffusion equation at a node /, yields, 
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nn+l rpft rpn "J rpn . rpn 

a 
At Ax2 

The above Equation (7) can be formulated as 

Tn+l = Tn ( 1 _ ^ + (Q5Tn^ + Q ^ ) ( g ) 

where CO = / \ 2 • For stability condition, the coefficients of the right-

hand side terms must be positive. Hence, the term (1 - co) must be greater 
Ax2 

than or equal to zero, which implies that At < . The last term in Equation 
2a 

(2) represents the equilibrium value of T. It is appropriate to write the term 
(0.57^ + 0.57^ ) as 1^\ To resemble LBM, Equation (8) can be rewritten 
as 

Tt
H+1 =Ti*(l-a>) + a)T<eq) (9) 

Results and Discussion 

Test Problem 1: One-dimensional Lattice Boltzmann models including the 
two-velocity model (D1Q2), the three-velocity model (D1Q3) and the five-
velocity model (D1Q5) are used in the present work to compute the flow of heat 
conduction in a rod. In the one-dimensional heat conduction problem, the left 
and right side temperatures are known. The left and right sides are maintained 
at 1.0 and 0. Figure 4 shows the temperature distributions by the LBM for 1-D 
geometry. It is seen that D1Q3 and D1Q5 models give highly accurate results 
that exactly matches each other. The result given by D1Q2 model, however, 
is seen to be deficient. To plot temperature distributions, the D1Q3 model is 
used in the present section as it consumes less memory and computational time 
compared with D1Q5. 

Test Problem 2: A1 -D planar geometry with uniform Lattice points having west 
boundary at specified temperature and east boundary at known temperature are 
solved using Lattice Boltzmann method. Boundary conditions: T.nitial = 0, Tw 

= 1.0, TE = 0.0. Figure 5 shows the temperature distributions by uniform and 
non-uniform lattices for 1-D geometry. It is seen that, in the case of 1-D steady 
state heat conduction problems, the results obtained using the LBM uniform 
and non-uniform lattices are almost the same. 

The CPU timing taken for processing as well as the number of iterations 
taken is compared for LBM uniform, non-uniform lattices as well as finite 
difference method and the results for 1-D problem are tabulated in Table 2. 
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D1Q2 model Present 
—• - • 01Q3 model Present -\ 
- • € > - D1Q5 model Present 

Figure 4: One-dimensional temperature distributions obtained 
by the LBM models 
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Figure 5: 1-D Temperature distribution obtained by LBM (a) uniform lattices 
and (b) non-uniform lattices 

The present LBM is an alternative technique of flow computation, there 
is some scope for speculation as to the accuracy of the uniform and non-uniform 
computations. Thus, favorable comparison of the present LBM results with these 
accurate FDM results will grant legitimacy to them. It is also observed from the 
table 2 that, the number of iterations taken as well as the CPU timing is almost 
same for 1-D LBM for uniform lattice sizes as well as for FDM method. But the 
1-D non-uniform lattice sizes using LBM gives accurate results, it takes more 
number of iterations and less CPU time. 
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Table 2: Comparison of number of iterations and CPU times of the 
1-DLBMandFDM 

Lattice 
points 

50 

75 

100 

LBM (uniform) 

Iterations 

2616 

5150 

8135 

CPU 
time 
(sec) 

0.103 

0.156 

0.218 

LBM (non-uniform) 

Iterations 

2843 

5529 

8759 

CPU 
time 
(sec) 

0.124 

0.134 

0.172 

FDM 

Iterations 

3696 

5450 

8643 

CPU 
time 
(sec) 

0.086 

0.125 

0.156 

Test Problem 3: A 2-D square geometry have the west wall at specified 
temperature and rest of the walls at known temperature. Boundary conditions are 
as follows: T,nm= 0, Tw= 1.0, TE=TN= Ts = 0.0. Figure 6 shows the temperature 
distributions by uniform and non-uniform lattices for 2-D square geometry. 
The 2-D heat conduction problem is more complicated than 1 -D problem. The 
number of parameters to be considered has increased. But the real advantage 
of LBM on comparison with uniform and non-uniform lattices can be seen in 
the case of 2-D steady state heat conduction problem. 

The CPU timing taken for processing as well as the number of iterations 
taken is compared for LBM uniform, non-uniform lattices as well as finite 
difference method and the results for 2-D problem are tabulated in Table 3. It 
is observed that, the result obtained through lattice Boltzmann method is more 
accurate and values are converging quickly when compared with the same set 
of conditions for Finite Difference method. In the present work, we considered 
the different lattice sizes 30 x 30, 50 x 50 and 80 x 80 with the west boundary 
temperature given as 1.0. But, the LBM is much faster and accurate when 
compared with conventional FDM. 

To understand the effect of LBM non-uniform lattice size in the present 
work 2-D lattice of 25 x 25 is considered. Figure 7(a) and (b) shows the 
temperature distributions by LBM uniform and non-uniform lattices for 2-D 
square geometry. 

From Figure 7(a) and (b) it is seen that, near the west walls the non­
uniform LBM results is better than uniform lattice size. The compressibility 
effect of LBM is clearly visible in Figure 7. In the present work, 2-D problems 
of different combinations of wall temperatures are also tested. 

Test Problem 4: A 2-D square geometry having the south wall at specified 
temperature and rest of the walls at known temperature. Boundary conditions are 
as follows: T , = 1.0, T= 1.0, T = TK = Tw = 0.2 x T , . The flow pattern 

reference ' S ' E N W reference r 

for the LBM non-uniform lattice size simulation and conventional FDM of heat 
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Figure 6: 2-D temperature distribution obtained by»uniform and 
non-uniform lattice sizes of 50 x 50 

Table 3: Comparison of number of iterations and CPU times of the 
2-D LBM and FDM 

Lattice 
sizes 

30x30 

50x50 

80x80 

LBM (uniform) 

Iterations 

1173 

1813 

5890 

CPU 
time 
(sec) 

4.514 

12.075 

21.60 

r^ 
LBM (non-uniform) 
Iterations 

1483 

3585 

7716 

CPU 
time 
(sec) 

7.382 

14.81 

24.074 

FDM 

Iterations 

1315 

3370 

7537 

CPU 
time 
(sec) 

7.566 

14.537 

26.08 
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(a) (b) 

Figure 7: 2-D temperature distribution obtained by LBM on uniform and 
non-uniform lattice sizes of 25 x 25 

conduction problem is illustrated in Figure 8. It is seen that the present isotherms 
LBM non-uniform results agrees excellence with conventional FDM. 

Table 4 shows the comparison of CPU processing time and the number of 
iterations for LBM non-uniform lattices as well as FDM. It is also observed from 
the Table 4, the present LBM non-uniform lattice results are excellent agreement 
with conventional FDM. As the lattice size increases the CPU time and number 
of iterations also increases. The present LBM non-uniform lattice results are 
substantiate with conventional FDM results. It is seen that, the present LBM is 
second order accurate in space and time it converges faster than conventional 
FDM. The present non-uniform lattice gives accurate results near the walls on 
heat conduction problems. 
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Figure 8: 2-D temperature distribution plots (a) the LBM non-uniform 
lattices of 50 x 50 (b) FDM grid size of 50 x 50 

Table 4: Comparison of number of iterations and CPU times of LBM non­
uniform lattice sizes and FDM 

Lattice 
sizes 

30x30 

50x50 

80x80 

LBM (non-uniform) 

Iterations 

5013 

6615 

7516 

CPU time (sec) 

5.282 

13.11 

42.074 

FDM 

Iterations 

4815 

6370 

7137 

CPU time (sec) 

7.566 

13.537 

42.08 
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Conclusion 

In the present work, the LBM has been successfully implemented in solving 
heat conduction problems in 1 -D and 2-D uniform as well as non-uniform lattice 
sizes. The results obtained through mesoscopic LBM is validated by solving 
the same problems using conventional FDM. Results of the present LBM on 
uniform and non-uniform lattices were found very well. To check the accuracy 
of the LBM non-uniform lattices, problems were solved using the FDM. In all 
the cases, the non-uniform LBM was found to provide accurate results. When 
solving heat conduction problems in 1-D and 2-D lattice sizes, the LBM was 
found to take much lesser iterations and CPU time on comparison with FDM 
for converged solutions. The present work successfully demonstrates that non­
uniform LBM has come of age and is now an important alternative solution 
procedure in computational fluid dynamics. 
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