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ABSTRACT 

This paper presents the development of an accelerated two-dimensional core 
spreading vortex method for simulating flows over a moving boundary. The 
complex geometry is treated as tracking particles, which are introduced within 
the extended fluid domain. The boundary conditions are enforced by generating 
wall vortex blobs at each time step based on representation of Nascent vortex 
elements. The viscous effect is modeled by core spreading method, with splitting 
and merging spatial adaptation scheme. The velocity field is calculated by using 
Biot-Savart formulation. In order to accelerate computation, the fast multipole 
method is also employed. The solver is validated by performing the simulations 
of flow around an impulsively moving cylinder at Reynolds number 550, and 
flow over a forced-oscillating flat plate at Reynolds number 10000. The results 
are found to be in good agreement with those reported in literatures. 

Keywords: Fluid structure interaction, vortex method, fast multipole method, 
splitting and merging, core spreading method 

Introduction 

Fluid Structure Interaction (FSI) occurs when fluid flow exerts forces and 
moments on solid structures, causing the structures to move/deform in such a way 
that it perturbs the initial flow. This type of interaction causes the deformation of 
an aircraft wing during flight, and the vibration of a civil engineering structure 
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due to airflow. FSI is a good example of complex flow problem over moving 
bodies, found in engineering. 

The prediction of this interaction using Computational Fluid Dynamic 
(CFD) is very challenging. This is mainly due to the requirement of generating 
different grid, at every time step, to adapt well with the moving geometry. 
It is, therefore, advantageous to use meshless CFD methods, like the well-
known vortex method, as a suitable tool to perform flow analysis over moving/ 
deforming boundaries. Vortex Methods is non-conservative numerical method 
that resolves the Navier-Stokes equation (NS) in terms of vorticity field. The 
velocity fields are obtained from the calculated vorticity field using the Biot-
Savart formulation. It is well-known that the Biot-Savart calculation requires 
long computation time. 

One variant of vortex method is the so-called Vortex-In-Cell method 
(VIC). This method has been used to analyze FSI [1]. In this hybrid method, the 
Biot-Savart calculation is replaced by resolving the vorticity on grid cells. The 
velocity is calculated by solving the Poisson's equation for the streamfunction 
on the grids. Then, properties on each cell are redistributed back to particles to 
perform the convection process. Although, the VIC solver can handle complex 
geometries, the scheme still requires grid generation. 

Another type of vortex method is the Particle Strength Exchange method, 
which has been employed to simulate the flow around complex bodies [2]. The 
difference between PSE and VIC is that the Laplacian is replaced by an integral 
operator, which is meshfree. The similarity of both methods is that they utilize the 
interpolation function to remesh the fluid domain. Nevertheless, the interpolation 
scheme is known to produce numerical dissipation error. 

Leonard [3] proposed a purely Lagrangian core spreading vortex 
method, in which the diffusion term of NS is modeled by increasing the core 
size at each time step. The method is fully meshfree and seems to be easy 
to perform. However, the continuously increasing particle's core causes the 
solver to track the particles with their average velocity, rather than their local 
velocity. Additionally, Greengard [4] has shown that the core spreading vortex 
method, which enlarges the core size only, is not convergent to resolve the full 
Navier-Stokes equation. To deal with this problem, Rossi [5] resurrected the 
core spreading method by imposing the splitting scheme to control the evolution 
of the core size. Accordingly, the evolution of core size is constrained with a 
certain threshold. When a particle's core is greater than the threshold value, 
the particle is split into children particles. By using the splitting scheme, flow 
simulation around complex bodies can be conducted. However, the number of 
particles increases out of control. Therefore, the number of particles introduced 
in flow field is increasingly more than enough to represent the statistics of the 
solutions. Consequently, the computer memory is overflowed. To cope with this 
issue, the merging scheme is developed by the same author Rossi to reduce the 
memory, and to maintain the overlapping among particles. In particular, similar 
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and nearby particles are merged into one satisfying the zero, the first, and the 
second multipole moments. 

In the present work, the fast mesh-free solver, based on the core spreading 
vortex method, is developed to simulate flow over a moving body. The Boundary 
Element Method and Nascent vortex elements are introduced to enforce the 
no-through boundary condition for general geometry and no-slip boundary 
conditions for dynamic motions, respectively. The Fast Multipole Method is 
employed in order to accelerate the velocity computation. The splitting and 
merging spatial adaptation scheme is utilized to resurrect the core spreading 
method. Finally, the solver is validated by performing simulations of two external 
flow problems: flow around an impulsively started cylinder at Re = 550 and a 
forced-oscillating flat plate at Re = 10000. 

Fast Lagrangian Vortex Method 

The vortex methods are based on the momentuum equation and the continuity 
equation for incompressible flow which are written in vector form as follows: 

p\ i 

— + ("-V)w = V/? + vV2w (1) 
dt p 

V.u = 0 (2) 

Taking the Curl of both equations (1) and (2) it follows: 

— + ( « • V)© = (0}.V)w + vV2 (o (3) 

V2/? = -pV.(wVw) (4) 

where u is velocity vector, p the pressure, and p the density. The vorticity co is 
defined as: 

fi) = Vxw (5) 

The pressure p can be independently calculated by the Poisson equation 
(4) once needed. Lagrangian expression for the vorticity transport expressed in 
Eq. (3) is then given by: 

^ = (C0.V)u + vV2CQ (6) 
dt 

When a two-dimensional flow is dealt with, the first stretching term of 
the right hand side in Eq. (6) disappears and so the two-dimensional vorticity 
transport equation is simply reduced as diffusion equation: 
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d(D _2 (7) 
dt 

In order to solve this equation numerically there is a need to approve 
by means of a viscous splitting algorithm. The algorithm includes two steps. 
The first step, the so-called convection, is to track particle elements containing 
the certain vortices with their own local convective velocity by Biot-Savart 
formulation: 

u(x, t) = — \-y- > \ ~> dx' (8) 
An J \x-x'\ 

where x is vector of position. The term inside integral in Eq.(8) is integrated over 
all particles in the computational domain. The Biot-Savart relation is N-body 
problem that involves 0{N1) evaluations. The calculation that involves OiN2) 
evaluations is called 'direct computation'. It makes this method not practical 
because of high memory requirement. 

Fast multipole method 
In order to overcome the N-body problem mentioned above, the Fast Multipole 
Method (FMM) is employed in this work to accelerate the velocity computation 
[6]. The method reduces significantly the velocity computation time due to 
the fact that interactions among particles are not computed directly. In more 
details, the FMM, first, constructs the data of particles by tree structure of box 
in which particles are laid on. Second, the direct interactions of box's centers 
are evaluated by using multipole expansions of all these centers. Finally, the 
interaction of all direct particle pairs is translated from these centers to their 
own particles. Therefore, it reduces amount of computation process to the order 
of 0(N). Reducing amount of computation process affects computational speed 
that is major problem in analyzing FSI. 

Figure 1 shows the computational acceleration achieved by using FMM. 
In the figure, computational time using the direct Bio-Savart (Equation (8)) and 
FMM is plotted against the number of particle used during a simulation. As 
can be seen, the difference of computational time between the two methods is 
small up to around 200000 particles. However, the FMM acceleration increases 
significantly as the number of particle increases beyond 500000. Hence, the 
use of FMM allows for longer simulation time, since, in the developed vortex 
method, the number of particle increases with simulation time. 

Boundary element method to satisfy the no-through boundary 
condition 
Bounded flow problems require the enforcement of the no-through condition 
on boundaries. Vortex element method is a meshfree approach. Therefore, the 
enforcement of no-through boundary conditions is accomplished through the 
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Figure 1: Comparison between Direct Bio-Savart and FMM 
computational time vs. number of particles 

use of boundary element methods (BEM) [7]. The BEM calculates a vortex 
sheet's strength, which represents the slip velocity on the boundary necessary 
to satisfy no-through condition. In BEM, the boundary is discretized into panels 
and the vortex strength of each panel, T, is calculated. These vortex strengths 
or wall circulations represent initial vorticity vectors on the wall panels. The 
calculated vortex strength is a vector with two wall-tangent components and a 
normal component which satisfied the no-through condition. 

Introduction of nascent vortex element to satisfy the no-slip 
boundary condition 
In viscous flows, the no-slip and no-through boundary conditions on solid surface 
must be satisfied. Due to the introduction of Nascent vortex element [8], the no-
through and no-slip boundary conditions are already satisfied. Figure 2 shows 
the sketch of the production of a Nascent Vortex Element. 

In Figure 2, s,, hp u. denote respectively length of an outer boundary 
element, vorticity layer thickness and tangential velocity at each node of the 
outer boundary. The sketch in the figure is used to show the process of satisfying 
the wall boundary conditions by diffusing vortex elements from the wall. The 
Nascent vortex element is convected and diffused by velocities: Vc and Vd, 
respectively, as follows: 

v,-x-
st 

hu, h^u. i+l"i+l 

i V 

( 9 ) 

y _ drdiffusion _ 1 . 1 3 6 V Q Q X 

" * diffusion 

where the height of boundary layer at certain panel i, h., is given by: 
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Nascent Vortex Element* A%^10^ ) t(A .CO ) M _ . . . 

r Source Panel Boundary Layer 

Figure 2: Production of Nascent Vortex Elements 

h. =r,.ff =1.136VvA^ 
i diffusion v 

(11) 

Also, the Nascent Vortex Element is replaced by an equivalent vortex 
blob with an area A and vorticity co as given by the following: 

hwr=(Vc+Vd)At (12) 

(13) 

A + Ao, 
(14) 

In Equation (14), T is the circulation originally involved in the element 
of vorticity layer [ABCD]. Actually, that is equal to the strength of vortex sheet 
calculated already by employing BEM, which satisfies no through boundary 
condition. Accordingly, the core size of the initial generated blob is also 
calculated by the formula 

SlSblob 
7Z(D„, 

(15) 

Once a Nascent vortex element is shed from wall, new vortex element, 
which is satisfied the no-slip boundary condition above, is redistributed along 
the wall panel for the next time step. 
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Core Spreading Diffusion Model 

In core spreading method, the core size magnitude is given by: 

<j(t) = yf4vAt (16) 

which exactly represents for viscous diffusion, a is the core radius of the vortex 
blob, and represents for the physical length scale of the vortex element. The rate 
of change of the core radius is: 

J o L = 2 v (17) 

dt Gt 

Equation (17) satisfies the diffusion equation (7). However, the total 
numerical truncation error, the so-called Lagrangian effect [4], increases 
proportional to the spreading rate of change of particle core size. Increasing 
core size of each particle / makes the particle advect with its average velocity 
rather than its local velocity [9]. Hence, there is a need of spatial adaptation 
to control core size of particle to be small enough to minimize the Lagrangian 
effect and maintain the spatial resolution. 

Barba [9] proposed a method, which based on the Radial Basis Function 
Interpolation to redistribute the vorticity strengths field, using the smaller core 
sizes. The method leads to the linear system c.F = &>., where c. is Gaussian 
function of two vortex elements / and j \ co. is the vorticity of the element i 
evaluated by heat kernel function. One of the advantages of this method is that 
the number of particles remains constant. And the overlapping among vortex 
elements is spatially adapted by reducing the core sizes into sufficiently small 
core sizes. 

In this paper, we use the work proposed by Rossi [5], the so-called a 
splitting scheme, to spatially adapt the flow field. In particular, if the core radius 
of the vortex blob is larger than a threshold, then the "parent" blob is split into 
the several smaller "children" blobs, and the vortex strength of the parent are 
divided by the number of the children. The children core radius is reset into the 
smaller core radius. Obviously, the children cores are overlapped. Otherwise, 
the outstanding issue of the splitting scheme is to introduce the large amount of 
vortex elements. In other words, the number of vortex elements is introduced 
larger than the required vortex elements to sufficiently resolve the flow. Thus, 
the merging scheme is also proposed for the particle population control and 
for the overlapping control. The detail of two schemes is mentioned in the 
following sections. 

Splitting scheme 
The splitting scheme is proved convergent if a threshold core size amax is given 
to control evolution of core size over time [5]. On the other hand, as long as 
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core size a. is larger than the threshold a , the particle with core size a would 
j ° max7 r j 

be split into a set of thinner core size particles where each particle inside the set 
has core size equal to aa.. This set has also to satisfy the zero, the first moments 
of vorticity as follow: 

r =YM r 
p JL~IC=\ c 

(18) 

p—p Luc=\ c—> 
(19) 

where T , Tc stand for vorticity strengths of parent particles (before splitting), 
and children (after splitting) particles. M is the number of child particles. M 
is observed to be equal to 5 during our simulation for the good results. It is 
depicted as follow: 

"pt 

r * 

T l 
< iu*«i 
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rf 
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j 

Figure 3: Spitting scheme around a parent particle 

Where the free parameter r is given by: 

r = a^2(\-a2) 

where a is overlapping parameter and set to be equal to 0.85. 

(20) 

Merging scheme 
The subsequent number of numerical particles increases proportional to 
computational time. The splitting scheme does not allow for the long time 
simulation although it resolves the flow correctly in high spatial resolution. 
Also, more particles require more memory storage. In order to deal with this 
circumstance, Huang etal [10] developed a merging spatial adaptation scheme. 
Accordingly, nearby particles are merged into one as shown in Figure 4. 
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Figure 4: Illustration of merging scheme in Lagrangian Vortex Method 

If (x, r., o.J = 1,... N) are the set of nearby particles, then those nearby 
particles are going to be replaced by one x0, T0, aQ such that: 

r =YN r 

ro^o =2*ij=r J-J 

V^N ( 2 I \ 2 \ 
roffo = L y =i r o (fo +|^o -Xj\ ) 

Meanwhile following thresholds should be satisfied: 

(21) 

(22) 

(23) 

(24) 

(25) 

where Y and 8 are the reference vorticity strength, and the error tolerance, 
respectively. In the case of impulsively started cylinder at Re = 550, 8 is set to 
be equal to 1, and Y = UD. 

Y0<Yrefeazaz
max 

Simulations 

Impulsively started cylinder at Re = 550 
In order to validate the performance of the vortex method solver, we performed 
the simulations of flow over an impulsively started circular cylinder at Reynolds 
number 550. The detail simulation parameters are listed in Table 1. 
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Table 1: Input parameters 

Re 

550 

At 
(time step) 

0.0 l(s) 

Panels 

200 

In this solver, the Reynolds number is the one of the primary input 
parameters for simulation. Another major parameter is the time step, which 
affects the accuracy of the solver in convection step, as well as to control the 
spatial adaptation error in merging event. Large time step At increases the 
number of merging events in the same time period of simulation. Accordingly, 
the error is spatially integrated within the simulation time. Additionally, the 
tolerance parameter s also plays an important role to constrain the existence 
of merging events. If the tolerance parameter is set to be large, the frequency 
of the merging events is high and vice versa. In order to control the particle's 
population, parameter rtrim is introduced. The smaller the value of Tt[im9 the 
larger memory requirement. Based on a number of tests, we set rtrim = v x 10-4, 
where v is kinematic viscosity of the flow. The last parameter, which is not 
the least important, is number of panels. The number of panels determines 
the initial vorticity surrounding the wall through the introduction of Nascent 
vortex element, as mentioned in Section 3. This vorticity layer apparently 
represents for the no-though boundary condition, which is the input for the 
no-slip boundary condition to introduce the Nascent element, as shown in 
Section 3. The accuracy and the stability of the vortex method solver obviously 
depend on this initial condition. In addition, moving boundary conditions can 
be enforced during this process in order to perform more complex viscous 
flow simulations [7]. 

The results of the simulation, which shows the vortex shedding process 
behind the cylinder, are depicted in Figure 5. The left hand side is the current 
results, and the right hand side is the same simulation conducted by Ploumhans 
and Winckelmans [2]. The figure shows small differences, between the current 
and the reference results, in the shedding patterns behind the cylinder. However, 
the location of the stagnation points are found to be at the same location as 
in the reference. Hence, it can be concluded that the viscous diffusion model 
effects the shedding structures considerably, while it has minor influence on 
boundary layer. 

Figure 6 shows the positions of vortex bubble's center at different 
simulation times (T = 1 (s), T = 3 (s), and T = 5 (s)). As depicted in the figure, 
initially (T = 1), there is a notable deviation between the position obtained in the 
present simulation and that of the reference. However, this deviation becomes 
smaller and smaller as time progresses. In fact, at later times (T = 5 (s)) the 
position of bubble's center calculated using the present method approaches that 
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(3* 

Figure 5: Comparison of the calculated vorticity contours with reference. 
Left hand sight: present simulation. Right hand sight: Ploumhans and 

Winckelmans [2] 

of the reference. The initial difference is probably due to the fact that different 
method is used to enforce the no-slip boundary conditions. 
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Figure 6: Comparison of the calculated position of vortex bubble's center. 
Present (dashed line), Ploumhans and Winckelmans (contiuous line) 

Figure 7 shows the time history of drag coefficients. The method to 
caltulate drag coefficient (Cd) is the linear impulse method, which is described in 
[2]. During the early stage of simulation, there is a slight deviation between the 
present drag coefficients and that obtained by Ploumhans and Winckelmans [2]. 
This is due to the fact that there are still many unnecessary splitting and merging 
events in this early stage of simulation. This is also the another probable source of 
error causing the difference in the earlier time vortex bubble's center, discussed 
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Figure 7: Drag coefficient. Dashed line is current result, continuous line is 
result of Ploumhans and Winckelmans 

in previous paragraph. However, as the simulation progresses, the present 
calculated Cd values are in very good agreement with that of the reference. 

Flutter speed of forced-vibrating flat plate at Re = 10000 
In engineering simulations, it is sometimes difficult to satisfy the exact boundary 
conditions, due to the combination of complex geometry and complex motion 
of the boundary. Here, the developed method has advantages over the more 
conventional methods in dealing with such problems. 

In order to show the capability of the developed solver for analyzing FSI 
problems, forced-translation and forced-rotation simulations for flat plate are 
performed using initial conditions listed in Table 2. The forced motion of the 
plate is defined as sinusoidal function for both translational (y = 0.25cos (cot)) 
and rotational (6 = 0.3cos (cot)) modes. The simulation is performed in a limited 
range of frequency of the vertical and rotational motions co = 0.5, 1, 2, 3. The 
configuration of the simulation is depicted in Figure 8. 

Table 2: Initial parameters 

Re 

10000 

t/B 
(Thickness ratio) 

0.1 

Panels 

500 

Accordingly, the current solver is then used to determine the unsteady 
aerodynamic forces [2] and moments [11] for every time step. The loads, 
displacement, and rate of displacement data are recorded, and used for 
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Figure 8: Configuration of the forced-vibrating flat plate simulation 

calculations of flutter derivatives. Based on these calculated flutter derivatives, 
the flutter speed of the flat plate can be predicted. The details of the method used 
to determine the flutter derivatives is the same as that described in [12]. 

Figure 9 depicts the calculated flutter derivatives (Hl*-H4* and Al*-
A4*) versus the reduced velocity. The figure shows that the current results are 
in good agreement with Theodorsen's analytical solution [7] for smaller values 
of reduced velocities. On the other hand, the results tend to deviate from the 
analytical solutions for higher reduced velocities. However, it is important to 
remember that the analytical solution is obtained by imposing the linearity 
assumption. 

The flutter speed calculation result is shown in the Figure 10, which 
depicts the plot of imaginary and real part ratio (KJKJ of reduced frequency 
versus reduced velocity of torsional mode, U0. The continuous line is interpolated 
by using the least square method based on the dashed line data. From the plot, 
it is estimated that the value of KJKa equals to zero when Ue is approximately 
equal to 6.46 (m/s). 

Robertson [13] analyzed the same case also using different numerical 
method (conventional mesh-based CFD). Table 3 shows the comparison between 
the current result and that found in reference [13]: 

The flutter speed calculated using the current solver differs about 4% 
from the reference. The relatively small 4% difference is probably caused by 
the difference in the exact geometry and detail of simulation parameters used 
in the two flutter speed calculations. 

Conclusions 

In conclusion, we have developed an accelerated two-dimensional core spreading 
vortex method for high resolution flow simulation. The computational time is 
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Figure 9: Flutter derivatives versus reduced velocity. Red line is current 
results, blue lines is Theodorsen's analytical result 

accelerated by using the FMM. The spatial resolution is maintained during 
the simulation by implementing the splitting and merging scheme. It has been 
demonstrated that the developed meshfree CFD method can accurately simulate 
flows over moving boundary. The solver is first validated by performing the 
simulation of flow around an impulsively accelerated cylinder at Reynolds 
number 550. The results are found to be in good agreement with those reported 
in literature. In order to show the capability of the solver in simulating moving 
boundary problem and investigate the possibility of using the method to conduct 
FSI analysis, we performed the simulation of flow over a forced-vibrating flat 

44 



Two-Dimensional Fast Lagrangian Vortex Method for Simulating Flows 

0.08 

0.06 • 

0.04 ] 

j» 0.02 j 

I? 0 i 
-ao2 f 
-ao4 ! 
-aoe J 

Figure 10: Plot of K/Ka versus Ue 

plate at Reynolds number 10000. The results of the simulation are then used 
to estimate the flutter speed of the plate. The results are found to be consistent 
with analytical solutions and available reference. 

Table 3: Error analysis 

u. 
Present 

6.46 (m/s) 

Robertson 

6.21 (m/s) 

error 

4% 
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