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ABSTRACT 

Thermal analysis of air-cooled Polymer Electrolyte Membrane (PEM) fuel 

cells for closed cathode designs are largely limited within first-order thermal 

analysis. Normally, closed cathode fuel cells apply the water cooling technique 

due to large cooling loads. Technical feasibility study in applying air cooling 

as an alternative for closed cathode stack designs is reported here using 

a down-scaled 3-cell stack assembly. A 242 cm2 active area, 3-cell closed 

cathode PEMfuel cell stack, was developed with 40 integrated straight path 

air cooling channels in order to investigate the internal thermal effects. The 

objective is to identify the bulk thermal effects of the stack under cooling 

for further design considerations using the second-order thermal analysis 

approach. Tests were conducted with airflows in the range between 200 and 400 

Reynolds number and load variations from 10A to 30A. Different fan settings 

are applied to analyze the response of the design to negative and positive 

pressure airflows. The temperature profiles are translated into stack cooling 

profiles with discussions on its polarization, cooling response behaviour and 

cooling effectiveness. Generally, the cooling effectiveness across all cooling 

modes was higher than 80% and the negative pressure fan setting provides a 

more consistent cooling profile but with a slower cooling response. 

Keywords : Fuel cells, air cooling, cooling effectiveness, thermal 
engineering. 
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Introduction 

Air cooling is applied in both open cathode and closed cathode Polymer 
Electrolyte Membrane (PEM) fuel cell designs. Open cathode PEM fuel 
cells concurrently utilizes the reactant air as a heat sink and cooling agent. 
It depends heavily on environmental conditions where the humidity of the 
surrounding air directly affects the stack performance [1]. Open cathode 
designs are currently limited to 1 kWe, and are mostly suitable for miniature 
PEM fuel cells application such as micro-aerial and demo-scale vehicles, 
robots, small power systems, and communication electronics [2]. On the other 
hand, closed cathode designs, which can now reach modular outputs beyond 
100 kW, appropriately require adequate active cooling assistance to maintain 
the cells at a suitable operating temperature. The current practice in PEM 
fuel cells thermal management is the application of air-cooled system for low 
output range, sub kW to 2 kW systems, and using water-cooled system for 
higher output ranges. However, Faghri and Guo [3] stated that cells operating 
between 2 kW and 10 kW may still apply air cooling through judicious decision 
makings, undoubtedly both in design and operation. 

Technically, thermal engineering is the application of suitable cooling 
techniques to control the stack temperature within its operating limit. 
Specifically, it serves to maintain a high uniformity of temperature profile 
in the porous gas diffusion layer [4]. It is an operational requirement and 
closely related to the water management aspect; however, individual studies 
are possible whenever the selected analytical domain is intentionally detached 
from the electrochemical reactions. One such domain is the design of cooling 
systems. As a rule, the application of active cooling systems is compulsory 
for fuel cells above the 100W power output. 

Commercialization and interest of fuel cells has just aggresively 
started at the turn of the century, and apart from full-scale car prototype 
developments, PEM fuel cell stacks with power outputs less than 3 kW are 
much in demand. The popular applications include backup power systems 
and small-scale or demonstration vehicles, mainly conducted by research 
institutions and academia. From this initial culture, there is a potential market 
for small-sized PEMFC stacks with power output ratings of up to 3 kW. The 
main advantage air cooling systems holds over water-cooled systems is that it 
is more compact, increasing the overall system size by usually less than 50%, 
whereas water-cooled systems generally increases the system size by more 
than 200%. Therefore, for portable and limited space applications, air-cooled 
fuel cells are very much desirable. 
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Thermal Engineering of Air-cooled PEM Fuel Cells 

Physical investigation on the thermal effects of air cooling for stacks in the 
range of 1 kW to 3 kW power rating is rare compared to publications on water-
cooled systems. The majority of predictive modeling concerning stack power 
outputs, temperature profiles and cooling effects are obtained largely from 
analytical approach, built from the foundations of theoretical electrochemistry, 
species transport and heat transfer. However, it is acknowledged that actual 
fuel cell behavior is also specifically influenced by component, manufacturing 
and assembly methods such as clamping pressure distribution and sealing 
characteristics, as well as flow disturbances due to MEA deflection and 
imperfections in gas channel construction. In other words, each developed PEM 
fuel cell would actually exhibit its own unique operational signature. 

The academic assumption where a fuel cell operates similarly every 
single time is certainly considered to be too idealistic. The uniqueness of a 
fuel cell behaviour mainly comes from the factors affecting reaction kinetics 
on the catalyst layers which are too sensitive to microscopic changes causing 
heterogeneous surface reaction occurrence [5]. Active sites require faster 
cooling rates to maintain near uniform cell temperatures. Wen and Huang [6] 
acknowledged the importance of identifying the hot spots as a vital step towards 
effective cooling and uniform cell temperatures. 

The sensivity of PEM fuel cell stacks to temperature is generally linked to 
the moisture levels required in the membrane for positive charge transport across 
the electrodes. Heat buildup within the cells would quickly dry the membrane 
and leads to greater electrical and thermal resistances [7]. However, heat is also 
needed for improved reaction kinetics at the catalyst layers. Therefore, thermal 
management of PEM fuel cells has to balance both requirements. 

Part of the experimental and analytical approach in this paper is adopted 
from the works of various researchers. Zhang et al. [8] introduced the lumped 
thermal mass model applying the transient stack temperature profiles based on 
solid-state thermal analysis. Temperature profile plots at different load currents 
and dynamic temperature to electrical power variation were identified as useful 
tools in modeling and experimentally validating steady-state and dynamic 
heat transfers in a stack [9]. The methodology for internal stack temperature 
measurements was shown in [10] with focus on cooling response analysis. Effect 
on stack-fan configuration to the performance of a fuel cell was conducted by 
Sasmito et al. [11], but all of these techniques are still constrained within the 
first-order thermal analysis. 

First-order thermal analysis directly relates the temperature measurements 
to the bulk characteristics of the system. However, second-order analysis allows 
an improved understanding on the internal thermal behaviour of the stack, ie. 
the rate of heat gain and dissipation in response to electrical power and cooling 
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mode variations. From the calculated cooling rate, qualitiative analysis on the 
effectiveness of the cooling operations can be performaed [12]. Hence, a detail 
cooling analysis of an air-cooled PEMFC under dynamic operational settings is 
the main subject presented here. The operational relationship between a certain 
design of mini channel geometry to differences in fan operation, in this case 
the application of positive and negative flow pressures, was reported together 
with a detail methodolgy for the evaluation of cooling effectiveness from the 
perspective of secon-order thermal analysis. In addition, thermal engineering 
studies on air-cooled closed cathode fuel cells are very rare compared to studies 
on open cathode stacks [13,14]. 

Thermal Analysis 

Thermal analysis from the perspective of fluid-solid interaction, or convection, 
is a difficult science in terms of accuracy. Disturbances in fluid flow, transient 
surface temperatures, or dynamic cooling loads usually pose a major problem 
in properly determining the representative heat transfer coefficient. Solid state 
thermal analysis via conduction is more direct and poses little problem in 
reliability even at dynamic load conditions [8]. 

Transient thermal behavior is more complex due to the ever-changing 
boundary conditions of the system such as the surface temperature. In actual 
fuel cell operation, dynamic local reactions are common due to factors such as 
localized mass concentration, membrane humidity changes and perturbations 
in reactant flow. In a solid body with heat generation and internal cooling, 
temperature changes will continue to occur exponentially until an asymptotic 
thermal saturation level, or a steady-state temperature distribution is reached [15]. 
This saturation level is a result of conductive and convective rate equilibrium 
which is reached within a specific time period and dependent on the specific 
temperature gradient within the solid, the convective cooling coefficient 
development and cooling surface geometries. The common method in transient 
conduction analysis of a system under cooling is the lumped capacitance method. 
However, its accuracy depends on the magnitude of temperature gradients within 
the solid body. 

The usual analytical methodology regarding thermal analysis of air-
cooled PEM fuel cells is as reported in [16]; stack temperatures is directly 
interpreted in various aspects to determine the impact of the cooling mode. 
Conversion of the physical measurements into a second order internal 
properties such as cooling rates are rarely found. In this work, the determination 
of various convective cooling properties is not a viable approach as the system 
involves a fuel cell stack with a set of cooling channels. Variations in cooling air 
parameters such as inlet velocity, flow rate, and even temperature is expected 
in the individual channels due to the fan-stack configuration. As dynamic 
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reaction sites are also expected across the cells, application of the lumped 
capacitance method in this study is also too complex to achieve. Therefore, 
empirical solid state analysis was taken as the analytical methodology for 
cooling performance evaluation. 

Despite operating based on the principles of electrochemical rather than 
thermochemical reactions, a PEM fuel cell generates heat as a by-product of 
the reaction irreversibilities, exothermic formation of water vapor and the 
ohmic resistances on charge flow across the electrodes. For simplicity, the heat 
generated within fuel cells are assumed to be the heat generated mainly at the 
reaction sites of the cathodes due to water vapour formation. The amount of 
heat generated can be estimated by using the system relations [17] based on the 
energy balance of the system and depending on the state of water formed. 

Energy of the fuel = electrical power obtained + heat generated 

—^Hfuel ^cell = L Vcell ^ cell + Qgen 0 ) 

n.F 

Normally, the water exists as vapor, and so the heating value of the fuel 
is equal to the Lower Heating value, and consequently 

Qgm = (1.254-VJI.ncell (Watts) (2) 

The required cooling load of individual cooling channels can be 
determined through 

Q __ Pfhcell _ (Kev ~ Kelt)*cell ( W a t t s ) ( 3 ) 

n n 

ncen = V-f- «> 
rev 

The reversible cell voltage, Vrev, is the maximum thermodynamically 
calculated potential of a single fuel cell regardless of size and design. It is 
evaluated based on the heating value of the fuel (hydrogen) and relative to 
the water phase formed during oxidation. Using the Lower Heating Value 
(LHV), a value of 1.254V is obtained. The theoretical cell voltage, V u, at 
any current loadings can be estimated by applying the conversion efficiency 
relation. In experiments, the measured cell voltage and current are directly 
applied to obtain the cell efficiency, r\cdp and thermal load. The total stack 
thermal load is calculated by substituting the cell voltage with the total stack 
voltage, and multiplying the reversible cell voltage with the appropriate 
number of cells. 
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In available literature concerning experimental approach, the common 
analysis relates the external stack temperatures to the phenomena under study. 
While this is a satisfactory approach to meet the required objectives, the 
evaluation of internal heat transfer rates would provide deeper insight on the 
thermal behavior of the cells. Transient temperature profiles are accompanied 
by its respective transient cooling rate profiles that clearly indicates the energy 
balance within the stack. 

In experimental design, the internal stack temperature is continuously 
monitored in time steps. The temperature profiles can be converted into transient 
heat transfer plots based on 

m 
A& stack, gain 

C (T.+,-T) 
j egv i+2 i' 

At 
(Watts) (5) 

where: 

Afi. stack, gain 

m 

c 

T 
i+i 

At 

change of stack heat content for the duration of the time 
step (W) 
total mass of carbon graphite plates (kg) 
specific heat of carbon graphite (J/kg.K) 
temperature reading at initial time step (K) 
temperature reading at end of single time step (K) 
time step (sec) 

The transient heat transfer profile is an indicator for the rate of thermal 
energy change within the measured periodicals; a positive value points to stack 
heating effect while negative values indicates a cooling effect. From the analysis 
of the experiments, the transient plots were shown to exhibit an exponential 
behavior with negative gradient and so requiring an arithmetically averaged 
heat transfer values for steady-state performance evaluation purposes such as 
the determination of the cooling effectiveness. 

A0. stack, avg 

m C (T - T) 
' cgy i+n i' 

Zt 
(Watts) (6) 

where: 

A 2 , , 
•*-' stack, avg 

T 

2> 

averaged stack heat change rate (W) 
initial temperature reading (K) 
temperature reading at end of operation (K) 
total operation time (sec) 
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Evaluation of cooling effectiveness is central in any thermal cooling 
systems. Here, the cooling effectiveness is a direct comparison between the 
averaged cooling rates of the stack to the thermal power generated during 
operation. 

Q 
•e~'C, avg 

8 = ~p (7) 
th, stack 

where the average cooling rate, Qc av is obtained by subtracting the generated 
thermal power (P(f) at each loading to the arithmetically evaluated averaged 
stack energy change (Qs(ack avg). 

z-'c, avg th z-'stack, avg ^ ^ ^ ' 

The cooling effectiveness is relative to the simultaneous conditions of 
generated thermal power of the stack at a particular load and the rate of stack 
heating or energy gain; higher heating effect does not directly translate to lower 
cooling effectiveness. 

PEM Fuel Cell Design and Experimental 

Stack Design 
A 3-cell PEM assembly was developed with a nominal plate size of 330 cm2 

and half plate dimensions as shown in Figure 2. The cooling channels, labelled 
as Ms40, are of straight path configuration with an aspect ratio of 1.7 (3.48 mm 
width x 2 mm height). A single bipolar plate consists of 40 integrated cooling 
channels that runs through the plate with a total running length of 149.5 mm 
per channel. There are two bipolar plates and two monopolar plates in the 3-cell 
assembly. It should be noted that the monopolar plates does not integrate any 
cooling channels. 

The reactant flow field designs for both anode and cathode of the bipolar 
plate are multipass serpentine channel configuration with different number 
of channels, as specified in Table 1. In a fuel cell, the Membrane Electrode 
Assembly (MEA) is the heart of the cell where the electrochemical reaction 
occurs. The 5 layered MEA has an active area of 242 cm2 per cell, making it a 
large sized fuel cell by definition. 
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Depth Open—-

Depth 1.0mm 

»-• - - - -• —17&00 ^ -*i 
L _ , ~ _ 2 4 2 < 5 0 ^ ^ ^ - . ^ «J 

Figure 2. Half section geometry of the bipolar plate showing the integrated 
cooling channels within the plate 

Table 1. General specifications of the flow field design 

Specification 

Single channel geometry 

Flow configuration 

Number of nominal channels 

Total area coverage 

Anode 

Width : 1 mm 
Depth: 0.5 mm 

7-pass serpentine 

24 

240 cm2 

Cathode 

Width : 1 to 2 mm 
Depth: 0.5 mm ! 

3-pass serpentine 

15 

240 cm2 

Experimental 

The experimental objective was to investigate the thermal characteristics of 
the cooling channel design based on solid-state thermal analysis. To obtain the 
cooling effectiveness of each design, the heating and cooling rates of the stack 
are required which are directly dependant on the stack temperature profile. The 
heating rate can also be linked to its overall polarization behavior and calculated 
using equation 2; therefore, the stack voltage has to be monitored across all 
current loadings where the overall power curve of the stack is statistically 
determined. In turn, the cooling rates were obtained by the changes in the 
enthalpy of the stack; hence, an averaged stack temperature needs to be presented 
from a set of temperature readings across the stack. 

Thermocouples were positioned within the cooling channels, 
approximately 25 mm from the open ends, to obtain a direct surface temperature 
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response to the cooling activity. The positioning covered both cooling fluid ends 
within three designated stack zones relative to the hydrogen inlet and outlet 
ports - top zone (near the hydrogen inlet), middle zone and bottom zone (near 
the hydrogen exit) - as illustrated in Figure 4. 

Figure 3. Stack assembly (left) and side view (right) displaying the internal 
components and the integrated cooling channels within the two bipolar plates 

i inlet Air exit * r 
Mono polar plate 1 

a a o B a a a a a a a e a o a a a a a a a a 

• • a a a a a a a o B a a a a a a a m a a 

Bipolar 

Bipola 

plate 1 

plate 2 

Mono polar plate 2 

1 Air inlet : ^Thermocouple insertion points: 1 

1 1. Two wires at the middle of the plate (both bipolar plates) 
! 2. Two wires at approximately 50 mm from opposite plate edges (alternate plates) j 

H2exit % \ 

Figure 4. Schematic showing the positioning of the thermocouples at one end 
of the stack; thermocouple depth at 25 mm from open ends 

In order to limit the effects of reactant-assisted cooling, the experiments 
exercised external parameter control by applying constant stoichiometric ratios 
(adjustments to mass flow) and using non-humidified reactants. A novel aspect 
of this work is on conducting the tests under different fan settings. Typically, the 
cooling fans are set at negative pressure (or suction) and positioned horizontally 
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to induce air flow from the bottom to the top of the stack. Cooling effects at 
positive pressure flows was not found in literature. Here, the fans are positioned 
vertically (as in Figure 5) and two fan settings were applied based on varying 
the flow momentum sources (positive and negative pressures). Four fans, with 
a power rating of 6W each (refer Table 2 for specifications), are mounted on 
a plate covering the entire cooling channel array and forming a single cooling 
fan system. 

Three current loadings of 10A, 20A and 30A were applied for each fan 
setting. It is essential in having at least three data points (load variation) at 
each fan setting for the predictive mathematical application.This provides a 
variation in stack performance database (I-V curves) that was further processed 

Figure 5. Actual experimental setup inclusive of fuel cell stack, test station, 
reactant supply lines, and data acquisition facilities 
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by statistical analysis to obtain a generalized polarization behavior with higher 
accuracy. 

The test sets were labeled based on both the load and fan setting. 
The first letter designates the cooling fan setting and the immediate number 
identifies the current load setting, as specified in Table 3. Three sets of 
measurement instruments installed. The first were the cables connecting both 
electrodes with the electrical loader that allows load control and measurement 
of stack voltage. The second set was thermocouple wires positioned within 
the cooling channels. The third set was a multi meter for manual cell voltage 
monitoring 

Table 2. Cooling fan specifications 

Parameter 

Model type 

Input power (max speed) 

Voltage DC 

Overall size (casing) 

Fan speed 

Air flow at max fan speed 

Value 

EC-6025HH12C 

4.6W 

12V 

120 mm x 120 mm 

6000 

31.81 CFM 

Table 3. Designation of test labels based on load and fan setting 

Load (Amp) 

10 

20 

30 

Cooling fan setting 

Blower (B) 

B10A 

B20A 

B30A 

Suction (C) 

C10A 

C20A 

C30A 

At each load, the test station automatically updates the voltage values 
over a standard 5 second interval. Temperature monitoring were performed by 
the temperature data logger, also manually set at 5 second intervals. Besides 
the total stack voltage, individual cell voltages were measured manually using 
the multi meter. Each individual tests were performed at 10 minutes of active 
load and cooling as the stack thermal equilibrium were normally reached within 
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that period; less time at lower loads. The internal properties of the fuel cell 
material is provided in Table 4 and were applied in the analytical methodology. 
The specification of the experimental parameters is listed in Tables 5 to 8. 

Table 4. PEMFC stack parameters 

Properties / parameters 

1. Material 

2. Specific heat, C 

3. Density 

4. Top/bottom surface areas (total) 

5. Side surface areas (total) 

6. Thermal conductivity 

Values 

Carbon graphite 

710J/kg.K 

2240 kg/m3 

57.12 cm2 

1018.5 cm2 

20 W/m.K 

Table 5. Experimental setup parameters 

Properties / parameters 

1. Load current 

2. Test station model 

3. Temperature data logger model 

4. Number of temperature probes 

Values 

10A,20Aand30A 

GasHubl.6kW 

Gavitron 

8 K-type thermocouple wires 

Table 6. Cooling air supply properties 

Properties / parameters 

1. Inlet temperature (ambient) 

2. Nominal velocity at max fan power 

- Blower fan setting 

- Suction fan setting 

Values 

26°C - 29°C 

2.2 m/s 

1.9 m/s 
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Table 7. Hydrogen supply properties 

Properties / parameters 

1. Delivery pressure from main line 

2. Inlet pressure 

3. Backpressure difference 

4. Inlet temperature 

5. Supply flow rate range (stoichiometry) 

- lOAload 

- 20Aload 

- 30Aload 

6. Supply source 

7. Purity 

Values 

0.8 bar gage 

0.6 bar - 0.7 bar gage 

0.2 bar - 0.4 bar gage 

32°C - 35°C 

0.91/min(12) 

1.3 1/min(8.7) 

1.5 1/min(6.7) 

Hydrogen supply tank 

99.999% 

Table 8. Reactant air supply properties 

Oxygen (Air) 

Properties / parameters 

1. Delivery pressure from mainline 

2. Inlet pressure 

3. Backpressure difference 

4. Inlet temperature 

5. Supply flow rate 

6. Air stoichiometry 

- lOAload 

- 20Aload 

- 30Aload 

7. Supply source 

8. Relative humidity 

Values 

1 bar gage 

0.7 bar - 0.8 bar gage 

0.2 bar - 0.4 bar gage 

35°C - 38°C 

0.24 liters/min 

26.4 

13.2 

8.8 

Compressed air tank 

« 50% 
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Results and Discussion 

The experimental results and analysis are presented here in the order of stack 
polarization, stack temperatures, transient and steady-state cooling rates and 
cooling effectiveness. 

Stack Polarization 

3.25 

I 

4 6 

Time (min) 

Figure 6. Example of averaged stack voltage profiles (at 10A loading) 
showing the existing variations during experimental 

Throughout the different loadings, there were slight variations in stack 
voltages of both fan settings (Figure 6) due to differences in reactant flow and 
subsequent cell activity. Figure 7 is an example of the averaged stack voltage 
profile based on the individual cell voltage readings, and these averaged 
values were applied extensively for the determination of subsequent electrical 
and thermal analysis. To evaluate its statistical reliability, standard deviation 
analysis of these averaged voltage values compared to the whole range of 
experimental values were performed. The open voltage showed the lowest 
standard deviation for all stacks at less than 1%, conforming the consistency 
of design quality and operating procedure. The maximum deviation was found 
under operation at 20A and 30A loads, but still falls within a very acceptable 
limit of less than 6%. 

The normalized I-V curves using averaged voltage values and the 
ensuing electrical-thermal power outputs are presented in Figures 8 and 9. 
As an important note, all stacks were operated at reactant temperatures near 
to ambient as well as low inlet pressures. In addition, the performance was 
based on dry reactant condition where no humidification of the reactants was 
performed. These operating conditions were selected to evaluate the thermal 
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positive pres • 
(blow) fan setting 

negative pressure 
^unt0TTffarn»ettmg™ 

10 20 

Load Current (Amp) 

SO 

Figure 7. Averaged voltage variation for both fan settings 

20 

Load Currant (Amp) 

Figure 8. Normalized I-V curves of stack Ms40 from no load to 40A 
electrical load 

effects within the stack without significant influence from the inherent reactant 
properties. However, the selected operating conditions led to lower power 
densities than usually obtained for industrial stacks. 

The polarization analysis allows the evaluation of thermal energy as 
the load is varied. It is closely related to the conversion efficiency which 
is determined from the actual stack voltage changes. Equal electrical and 
thermal power outputs occurs at approximately 20A load corresponding to a 
conversion efficiency of 50%. From that point onwards, the thermal power 
increases exponentially compared to the reduced rate of electrical power rise 
as the efficiency falls below 50%. The maximum thermal-to-electrical power 
ratio at 40A was determined at 1.3 to 1. 

Fuel cell voltage is relatively dependant on the energy density of each 
reactant flowing through the anode and cathode, as well as the conductivity of the 
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0 10 20 30 40 

Load Currant (Amp) 

Figure 9. Electrical and thermal power generation 
(50% cell efficiency at 20A load) 

components bridging the two reactants. At its maximum voltage (open voltage 
condition), the electrons are not flowing resulting in optimum energy density 
difference between the opposite polars. When the circuit between anode 
and cathode is connected and electrical load is demanded, electrochemical 
activity at both anode and cathode converts the reactants into its respective 
compounds, and so the mass and energy density of the reactants were reduced 
resulting in the energy equilibrium being compromised. 

An efficient fuel cell (high voltage at high load current) allows a very 
fast removal and replenishment of the reactants. However, the existence of 
generated heat and water, and combined with geometrical aspects of the flow 
channels such as depth and length that influences the mechanics of flow, 
would have diverse effects on the rate of reactant replenishment into the 
fuel cell. The most common phenomena during operation to explain voltage 
drops would be the flooding effect, which is caused by formation of water 
in liquid phase within the channels and blocking the passage of reactants. 
Operation at low reactant temperature, such as defined for the works here, 
evidently promoted a high level of flooding within the channels that led to 
voltage deteriorations. 

Stack Temperature 
In active cooling experiments, the zonal stack temperatures for each experimental 
set were individually plotted, as presented in Figure 10 for blower fan setting at 
20A load, allowing a closer look into the temperature distribution along a cooling 
channel at a specified zone as well as an indicator on areas of electrochemical 
activity. However, these zonal temperatures are individual readings and do not 
represent the stack temperature as a lumped entity. Therefore, the temperature 
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readings were averaged to represent a single stack temperature as a basis for 
thermal calculations. 

The middle zone profile indicates that the center area temperature is 
always higher than the exit area temperature. The inlet area temperatures, where 
cooling effects are optimum due to first contact with the incoming coolant, 
are significantly lower than the exit temperature. The trend found here highly 
suggests that the center area is actively generating heat. Further details on active 
reaction zone characterization are beyond the scope of this publication and will 
be presented elsewhere. 

The comparative profiles of the averaged stack temperature (Figure 
11) indicates a greater cooling consistency of the negative pressure (suction) 
fan setting compared to positive pressure (blow) setting due to a better degree 
of flow control into the channels. Higher inlet resistance are expected from 
the more energetic and mixed fluid stream of the blower fan setting resulting 
in lower flow rates within the cooling channels. At 30A load where the stack 
thermal energy is generated higher and across a wider MEA area, the blower fan 
setting has the advantage of stack edge cooling that contributed to enhanced 
cooling rates. 

In terms of cooling response, the suction fan setting has the capability 
to achieve thermal saturation conditions at a faster response time compared 
to blower fan setting, especially at low thermal loads. However, a significant 
increase in generated thermal energy (at 30A) shows that the cooling response 
deteriorates for the suction fan setting and is approximately similar with the 
blower fan setting. In general, the controlled induced streamlines of the suction 
fan setting provides a more stable cooling behavior within the channels. 

Cooling Profile and Effectiveness 
The averaged stack temperature profile is the representative bulk temperature of 
the stack as it is simultaneously heated and cooled. At varying loads, difference 
in generated thermal power was observed. The relation between the generated 
stack heat, assumed constant for a specific electrical load, and the stack heat 
gain profile provided the required dynamic cooling rates of each load and fan 
setting. Due to the constant thermal power assumption (Ph), the projected 
transient cooling trend (Q ) resembles the trend of the exponential stack 

° v-2--c, transient7 r 

energy gain (Qstack ex), but with a visible difference in magnitude and flow 
vector (minus sign indicating stack cooling). Mathematically, 

Q , t =
 p

th~Qt k (Watts) (9) 
^c, transient tn ^^ stack, exp v 7 v / 

In Figure 12, the relationship is presented graphically based on the load 
30A of the positive pressure fan setting. With an assumed constant generate 
heat, the stack thermal gain was initially higher as the energy is accumulated 
and reduces exponentially as the cooling effect kicks in. By substracting the 
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Figure 10. Stack temperature profiling at different stack zones (a - c) while 
(d) is the averaged stack temperature (data from 20A load and full power 

blower fan setting experimental). 

stack heat gain from the generated heat, a cooling profile was obtained. The 
cooling trendline is similar to the stack heat gain trend due to the assumed linear 
heat generation. 

An effective cooling system is capable of immediately responding to 
the cooling load that would translate into lower temperature jumps and thus 
reducing the effect of themal stresses within the fuel cell. The exponential 
cooling rate trend should also have a large negative gradient that allows the 
conduction and convective heat transfer mechanisms to reach an asymptotic 
level at a faster response time. Figure 13 compares the cooling profiles of all 
the experimentations, and it shows a larger gradient is generally achieved by 
the suction fan setting. 

Generally, the cooling effectiveness of all the modes are at acceptable 
levels. An excellent cooling system should reach at least 90% cooling 
effectiveness. Figure 13 indicates that this requirement is partially achieved. 
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Figure 11. Averaged stack temperature profile across all electrical loads 
(B: positive pressure fan setting; C: negative pressure) 
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Figure 12. Graphical presentation of the transient cooling rate of the stack 
based on a constant heat generation (from blower fan setting at 30A) 

In terms of cooling consistency, a difference of 6% between the minimum and 
maximum effectiveness was obtained. The effectiveness of negative pressure 
fan setting (suction) is slightly lower than its positive pressure counterpart, but, 
it is able to provide a higher consistency (2% difference across all loads). The 
slightly higher cooling performance of the blower fan setting is mainly due to 
the assistance of frontal surface cooling which is negligble for its counterpart. 
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Figure 13. Cooling profile for both suction and blower fan settings 
across all the loads 

Figure 14. Cooling effectiveness of each operating mode based 
on averaged cooling rate 
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The erratic, but satisfactory, cooling performance is largely due to its smaller 
channel aspect ratio which gives a higher resistance to incoming fluid flow. 
However, smaller cross-sections provide an ideal heat transfer interaction 
between the hot surface and the cooling fluid, partially offsetting the effect 
of inlet resistance. 

Conclusion 

Experimental investigation on the effect of cooling modes to the thermal 
behaviour of a PEM fuel cell stack was performed. The methodology for 
second-order thermal analysis was outlined and provided more information 
on the cooling effectiveness of the thermal management operation compared 
to conventional first-order stack temperature analysis. Though the variations 
in cooling effectiveness values was not literally translated into a fixed 
temperature difference between the cooling modes, the general trend where 
high cooling effectiveness points to lower maximum stack temperatures are 
evident. Thermal saturation condition between the conduction and convection 
mechanisms within the stack governs the cooling response and effectiveness 
of each cooling mode. It was also found that the stack accumulates heat load 
for periods of no less than four minutes before the cooling effects and its 
distribution stabilizes the stack temperature. The accumulated heat load would 
cause thermal stresses and expansion of components, leading to concentrated 
leaks as well as permanent deformation such as cracks. 
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