NOVEL TECHNIQUES FOR INTELLIGENT POWER QUALITY DIAGNOSIS SYSTEM

.

BY :

NORALIZA HAMZAH ZUHAINA ZAKARIA SHAHRANI SHAHBUDIN

JUNE 2010

PROJECT TEAM MEMBERS

ASSOCIATE PROF. DR. NORALIZA HAMZAH Project Leader

.

Tandatangan

ASSOCIATE PROF. DR. ZUHAINA ZAKARIA

Project Member

100 m 0 ~ Tandatangan

SHAHRANI SHAHBUDIN

.

Project Member

Tandatangan

Abstract

Power Quality poses an important issue in power system industry since three decades ago. Numerous researches relating in solving the power quality disturbances have been actively undertaken by researches both in academia and industry. This project focuses on one of the many important issues, which is to classify the cause of the power quality problem. Two major disturbances are considered, voltage sag and transient which constitutes major power quality problems worldwide. Both of these problems are caused by mother nature and the equipment in power industry. The proposed technique employed in this project to classify the causes of voltage sag and transient is by using a statistical method, Support Vector Machine. A wavelet technique based on the Daubechies mother wavelet has been used as the feature extraction method. Each type of disturbances is extracted using the chosen dB mother wavelet. Sampling data are taken from the simulated IEEE 13 and 30 bus distribution data. The data are simulated using PSCAD and the SVM employed to classify the cause of each disturbance is written using Matlab script code. The results show that, the wavelet technique can be used to detect voltage sag and transient accurately. The support vector machine has been proven to be able to classify the cause of transient and voltage sag with 80% and 93% accuracy respectively.

TABLE OF CONTENTS

CHAPTER CONTENTS PAGE

List of Figures	VII
List of Tables	viii
List of Abbreviations	ix

1 INTRODUCTION

1.0	INTRODUCTION	1
1.1	OBJECTIVES	2

2 LITERATURE REVIEW

2.0	LITERATURE REVIEW	3
2.1	RELATED RESEARCH	6

3 METHODOLOGY

3.0	METHODOLOGY	8
3.1	PROJECT PROCEDURE	9
3.2	DEVELOPMENT OF NEW TECHNIQUES	10
3.3	EQUIPMENTS	10

4 FEATURE EXTRACTION

4.0	FEATURE EXTRACTION	12
4.1	WAVELET	12
4.2	WAVELET THEORIES	13

5 POWER QUALITY DISTURBANCES CAUSES CLASSIFICATION

5.0	POWER QUALITY	Y DISTURBANCES CAUSES	
	CLASSIFICATION	٩S	15
5.1	SUPPORT VECTO	DR MACHINES	16
5.2	TWO-DIMENSION	NAL EXAMPLE	17
5.3	FLYING HIGH ON	N HYPERPLANES	20
5.4	WHEN STRAIGH	T LINES GO CROOKED	21
5.5	THE KERNEL TR	ICK	23
5.6	TYPES OF KERN	EL FUNCTIONS	23
	5.6.1 L	inear	24
	5.6.2 P	olynomial	24
	5.6.3 R	adial Basis Function	25
	5.6.4 S	igmoid (Feed-Forward Neural Network)	26
5.7	SVM THEORIES		27

6 TRANSIENT

6.0	TRANSIENT	31
6.1	CHARACTERISTICS OF CAPACITOR ENERGIZATION	
	TRANSIENT	32
6.2	LIGHTNING TRANSIENT	34

7 VOLTAGE SAG

.

7.0	VOLTAGE SAG	35
7.1	VOLTAGE SAG DUE BY SHORT CIRCUIT FAULT	36
7.2	VOLTAGE SAG DUE BY MOTOR STARTING	39
7.3	VOLTAGE SAD DUE TO TRANSFORMER	
	ENERGIZING	41

8 RESULTS AND DISCUSSION

8.0	RESULTS AND DISCUSSION	42
8.1	VOLTAGE SAG RESULTS	42
8.2	TRANSIENT RESULTS	47