UNIVERSITI TEKNOLOGI MARA

Biomass Production and Phenology of Selected Aerobic Rice Intercropped With legume cover crop *Arachis pintoi*

WAFA BIN MOHD SALLEH

Final Year Project Report Submitted in Partial Fulfillment of the Requirements for the Degree of Bachelor of Science (Hons.) Plantation Technology and Management

Faculty of Plantation and Agrotechnology

January 2015

CANDIDATE DECLARATION

I declare that the work in this final Year Project was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the result of my own work, unless otherwise indicated or acknowledged as referenced work. The final year project report has not been submitted to any other acedemic institution or noon acedemic institution for any degree or qualification.

In the event that my fianl year project is found to violate the conditions mention above, I voluntarily waive the right of corferment of my bachelor degree and agree to be subjected to the disciplinary rules and regulations of Universiti Teknologi MARA.

Name of Candidate	:	WAFA BIN MOHD SALLEH
Candidate's ID No	:	2012867812
Program	:	Bachelor of Science (Hons.) Plantation
		Technology and Management
Faculty	:	Plantation and Agrotechnology
Title	:	Biomass Production and Phenology of
		Selected Aerobic Rice Intercropped with
		Legume Cover Crop Arachis pintoi
Signature of Candidate	:	
Date	:	25 th JANUARY 2015

ABSTRACT

Rice is important to Malaysia because it is staple food for this country and mostly of the paddy farmer in Malaysia is a smallholder in total 296 000 of farmers that cultivate a wet land paddy. Aerobic rice is a rice that grown in well-drained, non-puddled and non-saturated soils compare to conventional wetland paddy have a major problem that is weed because the absent of puddled and saturated in the field. *Arachis pintoi* or pinto peanut is one of leguminous family can increases soil conservation and improvement by fixing nitrogen. In the practice there is no specification of fertilizer application practice in paddy cultivation, only as references. The study is to evaluate the biomass production and phenology of aerobic rice grown intercropping with *Arachis pintoi* under various rate of fertilizer and determine the relative contribution of nitrogen from *Arachis pintoi* to total nitrogen uptake of aerobic rice with the difference treatment such as 100% NPK, *Arachis pintoi*, 50% NPK + *Arachis pintoi* and 100% NPK + *Arachis pintoi*. From this study, there is no significant difference (P>0.05) between the treatment of application of fertilizer and intercropping of Arachis pintoi in the aerobic cultivation.

TABLE OF CONTENT

	ABS	ГКАСТ	iv			
ABSTRAK						
	ACKNOWLEDGEMENT					
	TABLE OF CONTENT					
	LIST	OF TABLE	ix			
	LIST	OF FIGURE	х			
	LIST	OF ABBREVIATION	xi			
	СНА	PTER 1 INTRODUCTION				
	1.0	Background of study				
		1.0.1 Rice industry.	1			
		1.0.2 Weed problem.	2			
		1.0.3 Nitrogen.	3			
	1.1	Problem statement				
	1.2	Purpose of study	5			
	1.3	Objective				
	1.4	Hypothesis				
	1.5	5 Scope of study and limitation.				
	CHA	PTER 2 LITERATURE REVIEWS				
	2.1	Aerobic rice cultivation.	7			
	2.2	Pinto peanuts (Arachis pintoi) as a cover crop.	8			
	2.3	Nitrogen fixation and soil conservation.	9			
	2.4	Biomass production and phenology of paddy.	10			
	CHA	PTER 3 MATERIAL AND METHODS				
	3.1	Site description	12			
	3.2	Experimental Design and treatment.	12			

2.2	Culture		10
3.3	Cultur	al practice.	13
	3.3.1	Paddy seedling	13
	3.3.2	Land preparation.	13
	3.3.3	Arachis pintoi preparation.	14
	3.3.4	Watering practice.	14
	3.3.5	Crop protection and maintenance.	14
3.4	Data collection.		15
	3.4.1	Plant growth.	15
	3.4.2	Biomass production.	15
	3.4.3	Phenology.	16
	3.4.4	Soil and Plant analysis.	16
	3.4.5	Light Interception and Transmission Ratio.	17
3.5	Statist	ical analysis.	17

CHAPTER 4 RESULT

4.1	Plant	growth	18
	4.1.1	Plant height	18
	4.1.2	Tiller number	19
	4.1.3	Panicle number	20
4.2	Pheno	logy	21
	4.2.1	Panicle initiation	21
	4.2.2	Heading and Flowering	22
	4.2.3	Maturation	23
4.3	Bioma	155	24
	4.3.1	Biomass production	24
	4.3.2	Partitioning ratio	25
	4.3.3	Leave area	26
4.4	Canop	y PAR light transmission ratio	27
	4.4.1	Percentage of canopy PAR transmission ratio at flowering	
		stage (56 DAT).	27
	4.4.2	Percentage of canopy PAR transmission ratio at ripening	
		stage (84 DAT).	28
4.5	Soil fe	rtility in each plot of treatment	30