UNIVERSITI TEKNOLOGI MARA

THERMOSOLUTAL MARANGONI CONVECTIVE BOUNDARY LAYER EQUATIONS

NORAINI BINTI AHMAD

Thesis submitted in fulfillment of the requirements for the degree of **Master of Science**

Faculty of Computer and Mathematical Sciences

December 2013

ABSTRACT

Prandtl velocity boundary layer has conceptualized the mathematical description of boundary layers that led to wide applications in engineering processes. In coupled dissipative boundary layer, the surface tension gradient play an important role at the interface in determining the characteristics of the boundary layer flow. In this study, the surface tension is assumed to depend linearly or quadratically on temperature and/or concentration gradients. Four mathematical models are formulated for the steady dissipative boundary layer flows. The systems of the steady boundary layer equations in form of system of partial differential equations (PDE) are transformed to system of ordinary differential equations (ODE) by similarity transformation. The ODE systems are solved numerically by using the Runge-Kutta-Fehlberg with shooting technique. The first problem considered the linear dependence of surface tension on temperature and solute concentration on the momentum and heat and mass transfer of MHD mixed convection boundary layers with suction or injection. The results show that as thermal and solutal Marangoni parameters increase the velocity, thermal and concentration boundary layer thickness for buoyancy-opposed flow increases but their thickness reduce for buoyancyassisted flow. In the second problem, the combined effects of power law temperature and solute concentration on the surface tension, species concentration and pressure gradient are considered. The results shows thermosolutal surface tension ratio increases the velocity boundary layer thickness but decrease the temperature and concentration boundary layer thickness. The effect of porosity is considered in the third problem and significant effect of porosity can be observed in the momentum boundary layer but less impact on the rate of heat and mass transfer. In the fourth problem, the flow and temperature patterns on thermal Marangoni convection are studied. The effect of magnetic field, porous medium and permeable surface with the quadratic temperature dependence surface tension are considered. The results show the increase of thermocapillary or Marangoni effects and weaker magnetic field strength lead to stronger reverse flow.

ACKNOWLEDGEMENT

Alhamdulillah. Praise to Allah S.W.T for giving me the strength and patient to complete this study.

First and foremost I would like to express my deepest gratitude to my supervisor Associate Professor Dr. Seripah Binti Awang Kechil for her valuable guidance, advice, encouragement and insightful comments that enable me to complete this study. This wonderful and challenging journey will be cherished and will definitely guide me in my future endeavours.

I am also thankful to my second supervisor Puan Norma Binti Mohd Basir for her support and opinion. I am also indebted to the Universiti Teknologi Mara (UiTM) and Ministry of Higher Education for the financial support under the young lecturers scheme (TPM). I am most grateful to my beloved family and my lovely husband and thanks for all their sacrifices, support, pray and hope that provided me the strength to complete this study.

I owe many thanks to my classmate and all of my friends who always provide support and care during my time of needs. They always help me in any activities of brainstorming discussion and exchanging ideas and thus give me an enjoyable studying environment. They made my life at UiTM a truly memorable experience and their friendships are invaluable. Last but not the least, I would like to thank all the UiTM lecturers for all the valuable knowledge. May god bless us all always. Amin

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iti
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	vii
LIST OF FIGURES	ix
LIST OF NOMENCLATURE	xii

CHAPTER ONE: INTRODUCTION

1.1	General Introduction	1
1.2	Research Background	2
1.3	Problem Statement	4
1.4	Objectives of the Study	4
1.5	Scope of the Study	5
1.6	Significance of Research	5
1.7	Thesis Organization	6

CHAPTER TWO: LITERATURE REVIEW

2.1	Marangoni Convection Boundary Layer			
2.2	Magnetic Field and Mass Fluxes			
2.3	Boundary Layer Equations		13	
	2.3.1	Development of Velocity, Thermal and Concentration	13	
		Boundary Layers on Flat Surfaces		
	2.3.2	Derivation of Velocity Boundary Layer Equations	15	
	2.3.3	Thermal Boundary layer Equations	22	

	2.3.4	Concentration Boundary layer Equations	26	
2.4	Method of Solution			
	2.4.1	Similarity Transformations	29	
	2.4.2	Runge-Kutta-Fehlberg Method (RKF45)	35	
		and shooting technique		
СНА	PTER T	HREE: MATHEMATICAL MODELS AND		
SOL	UTIONS	OF MARANGONI CONVECTION BOUNDARY		
LAY	ER FLO	WS		
3,1	Thermo	osolutal MHD Marangoni Mixed Convection in the Presence	37	
	of Suct	of Suction or Injection		
	3.1.1	Model Formulation	38	
	3.1.2	Nondimensionalization	40	
	3.1.3	Similarity Transformation	46	
	3.1.4	Results and Discussion	52	
3.2	Effects	of Suction or Injection on Marangoni Boundary Layers with	61	
	Power Law Surface Temperature and Concentration			
	3.2.1	Model Formulation	61	
	3.2.2	Nondimensional Governing Equations	68	
	3.2.3	Results and Discussion	68	
3.3	Thermosolutal MHD Marangoni Convection over a Flat Permeable			
	Surface in a Porous Medium with Internal Heat Generation and a			
	First Order Chemical Reaction			
	3.3.1	Model Formulation	74	
	3.3.2	Boundary Layer Equations	76	
	3.3.3	Results and Discussion	80	
3.4	Concluding Remarks			

CHAPTER FOUR: THE FLOW AND TEMPERATURE PATTERNS OF MHD MARANGONI CONVECTION IN LIQUID LAYER