# **UNIVERSITI TEKNOLOGI MARA**

# PHYSICO-CHEMICAL PROPERTIES OF PINEAPPLE PEEL EXTRACT AND ITS APPLICATION TO ISOLATE LEUCINE FROM BEEF

### SITI ROHA BINTI AB. MUTALIB

Thesis submitted in fulfillment of the requirements for the degree of **Doctor of Philosophy** 

**Faculty of Applied Sciences** 

January 2015

#### ABSTRACT

During canning and juice processing of pineapple, pineapple peel usually discharged. Discharged of pineapple peel during these productions will produce waste and lead to serious environmental pollution. In industrial practices, pineapple waste is either used as animal feed or disposed to the soil as waste. Pineapple peel contain valuable natural enzyme which is bromelain. Bromelain is enzyme which believed to have many benefits and very promising to the development of food and pharmaceutical industries. The purpose of this study is to isolate leucine from beef by using purified bromelain from pineapple peel extract. Purified bromelain powder from pineapple peel was produced through purification process. These include extraction from pineapple peel using purified water as a medium extraction, purification by cation exchange chromatography, desalting using continuous diafiltrator and followed by freeze drying. Each step was found to produce different effect on bromelain activity, protein content, specific enzyme activity and purification level. It was found that bromelain extracted from 100g of pineapple peel could yield 1.0g of bromelain powder. The amino acid composition in 14 beef cuts was also determined in this study. The flank cut was found to contain significantly higher amount of leucine amongst the beef cuts. The enzymatic hydrolysis was done with bromelain enzyme as a substrate to produce beef protein hydrolysate with higher content of leucine. The optimisation condition for the isolation of leucine was found with bromelain concentration of 1.38%, hydrolysis temperature of 42.5°C and hydrolysis time of 31.59 hours. The isolation of leucine was done by cation exchange chromatography and followed by freeze drying to obtain leucine powder. The leucine produce are as crystalline solid form, clean and white deposit. This leucine powder was used to determine the secretion of insulin in plasma of male Sprague-Dawley rats. It was found that the mean plasma insulin concentration value was achieved maximum at 90 minutes and 180 minutes for intramuscular injection and oral, respectively after leucine administered. The percentage of insulin increment for both intramuscular injection and oral administration of leucine are 80.40% and 79.02%, respectively.

#### ACKNOWLEDGEMENTS

In the name of Allah, The Most Gracious and The Most Merciful. Peace and blessing of Allah al Mighty to our beloved, final Prophet Muhammad S.A.W and his relatives, all his companions and those who have followed. Alhamdulillah, all praise and thankfulness to Allah S.W.T, The Most Glorious and Omnipotent, with His willingness has allowed me to complete this research project.

The completion of this thesis is the results of guidance and support from many special individuals. I would like to express my gratitude to Assoc. Prof. Dr Zainal Samicho, my supervisor for his guidance, encouragement and comments to develop more knowledge during the period of my research. I appreciate Assoc. Prof. Dr Noriham Abdullah for her assistance, support and guidance and Dr Khuriah Abdul Hamid for her help in facilitating me to do experiments in Faculty of Pharmacy, UiTM Puncak Alam. With their suggestion and recommendation at every stage of the work has made this research easier. Thanks are also due to my entire family members especially my mother (Sapiah Binti Ibrahim) for their tremendous encouragement while finishing this thesis. With her blessing, I can overcome any difficulty and achieve the goal. To my late father (Hj Ab Mutalib Bin Hj Shafiee), this success is on the spirit that you gave to me before this. Your spirits are always with me and always inspire my life.

I wish to thanks the laboratory staff, Pn Siti Mahani, Pn Norahiza, Cik Shuhada and En Ahmad Kambali for their kindness in guiding me using the laboratory facilities.

Finally I would like to express my thankfulness to my friends especially Fazilah Fazilin, Emilia Azrina, Noor Hida Natrah and Nadzirah who has together with me gave their support and assistance throughout the completion of this thesis.

# **TABLE OF CONTENTS**

| CONFIRMATION BY PANEL OF EXAMINERS | ii   |
|------------------------------------|------|
| AUTHOR'S DECLARATION               | iii  |
| ABSTRACT                           | iv   |
| ACKNOWLEDGEMENTS                   | v    |
| TABLE OF CONTENTS                  | vi   |
| LIST OF TABLES                     | ix   |
| LIST OF FIGURES                    | xi   |
| LIST OF ABBREVIATIONS              | xiii |
|                                    |      |

### **CHAPTER ONE: INTRODUCTION**

| 1.1 | Background and Problem Statement | 1 |
|-----|----------------------------------|---|
| 1.2 | Significant of Study             | 3 |
| 1.3 | Objective of Study               | 3 |
| 1.4 | Scope and Limitation of Study    | 3 |

# CHAPTER TWO: LITERATURE REVIEW

| 2.1           | Pineapple |                                      | 5  |
|---------------|-----------|--------------------------------------|----|
|               | 2.1.1     | Harvesting And Maturity of Pineapple | 6  |
|               | 2.1.2     | Variety of Pineapple                 | 7  |
|               | 2.1.3     | Pineapple Peel                       | 8  |
|               | 2.1.4     | Physico-Chemical Properties          | 9  |
|               | 2.1.5     | Rheological Properties               | 10 |
| 2.2 Bromelain |           | elain                                | 11 |
|               | 2.2.1     | Application of Bromelain             | 13 |
|               | 2.2.2     | Classes of Proteasess                | 14 |

|     | 2.2.3    | Production of Bromelain Powder                   | 15 |
|-----|----------|--------------------------------------------------|----|
| 2.3 | Beef     |                                                  | 18 |
|     | 2.3.1    | Droughtmaster Beef                               | 18 |
|     | 2.3.2    | Amino Acid                                       | 19 |
|     | 2.3.3    | Essential Amino Acid in Beef                     | 20 |
|     | 2.3.4    | Leucine                                          | 21 |
| 2.4 | Protein  | n Hydrolysate                                    | 22 |
| 2.5 | Degree   | e Hydrolysis                                     | 22 |
| 2.6 | Diabetes |                                                  | 23 |
|     | 2.6.1    | Insulin                                          | 23 |
|     | 2.6.2    | Mechanism of Leucine Stimulate Insulin Secretion | 24 |
| 2.6 | Respo    | nse Surface Methodology                          | 25 |

### **CHAPTER THREE: METHODOLOGY**

| 3.1 | Material |                                                           |    |
|-----|----------|-----------------------------------------------------------|----|
|     | 3.1.1    | Raw Materials                                             | 29 |
| 3.2 | Methods  |                                                           |    |
|     | 3.2.1    | Determination of Physico-Chemical Properties of Pineapple | 29 |
|     |          | Peel Extract                                              |    |
|     | 3.2.2    | Determination of Rheological Properties                   | 32 |
|     | 3.2.3    | Bromelain Production Procedure                            | 34 |
|     | 3.2.4    | Desalting By Continuous Diafiltration                     | 35 |
|     | 3.2.5    | Drying of Desalted Bromelain Using Vacuum Freeze Dryer    | 36 |
|     | 3.2.6    | Storage Study of Bromelain Powder                         | 36 |
|     | 3.2.7    | Bromelain Activity Determination of Bromelain Powder      | 36 |
|     | 3.2.8    | Determination of Protein Content in Bromelain Powder      | 39 |
|     | 3.2.9    | Determination of Specific Enzyme Activity                 | 40 |
|     | 3.2.10   | Sodium Dodecyl Sulphate- Polyacrylamide Gel               | 40 |
|     |          | Electrophoresis (SDS-PAGE)                                |    |
|     | 3.2.11   | Amino Acids Content in Beef                               | 41 |
|     | 3.2.12   | Optimisation of Leucine Isolation By Bromelain Solution   | 43 |