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ABSTRACT

Surrounded by an assortment of intelligent, adaptive and efficient search entities, the 
Low-Level Hybridization(LLH) for Particle Swarm Optimization (PSO) and Genetic 
Algorithm (GA), are proven to be a comprehensive tool for solving different kinds of 
optimization problems due to their contradictive behaviour. In addition, the two algo­
rithms have achieved a remarkable improvement from the adaptation of dynamic pa­
rameterization. However, in many cases, implementing the suitable hybrid algorithms 
for a given optimization problem is a considerably difficult, which in most cases, is time 
consuming. In addition, research has identified that the existing tools are not adequately 
designed to enable users to easily develop the LLH algorithms with the dynamic param­
eterization. In responding to this problem, this research investigates rapid mechanisms 
for the LLH design and development with easy, flexible and concise programming. 
The research has proposed new implementation frameworks and new scripting language 
with the dynamic parameterization. In addition, the research conducts a comprehensive 
evaluation for the scripting language that covers the easiness, conciseness and flexibility. 
Based on the implementation reviews from the existing LLHs that combine PSO with 
GA, the implementation frameworks with a sequential global (SG) scheme, are found to 
be widely used in practice. The scheme consists of three implementation frameworks: 
the SG with mutation (SGMutation), the SG with crossover (SGCrossover) and the SG 
with both crossover and mutation ( SGCrossMutation). The scripting language is de­
signed and developed based on the algorithm structure that is defined in the proposed 
implementation frameworks with the dynamic parameterization. Evaluations of four 
different sets of applications that used the proposed implementation frameworks with 
dynamic parameterization have indicated the effectiveness of each tested algorithm in 
comparison to the single PSO and constant parameterization. In the scripting language 
evaluation, nine LLHs and three single PSO algorithms have been successfully created 
using the scripting languages. The codes of the scripting language are shown to easily 
use, concisely describe the algorithm in a directly publishable form and flexible for new 
problem creations. This work is the first exposition of scripting language for the LLH 
of PSO-GA embedded with dynamic parameterization, which paves the way for further 
research possibilities in the future.
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CHAPTER ONE 

INTRODUCTION

1.1 BACKGROUND

One promising way to effectively solve optimization problem is by using 
meta-heuristics algorithms. In this research, the concern is to propose rapid mecha­
nisms for the design and implementation of meta-heuristics hybridizations involving 
two well-known meta-heuristics namely Particle Swarm Optimization (PSO) (Kennedy 
and Eberhart, 1995; Clerc, 2006) and Genetic Algorithm (GA) (Holland, 1975; Af- 
fenzeller, Winkler, Wagner, and Beham, 2009). These two meta-heuristics have gained 
widespread appeal amongst researchers to solve optimization problems in a variety of 
application domains. The algorithms were developed based on nature analogy, but are 
different in several ways. The search element of PSO has been designed to mimic the 
social activities of animals such as birds flocking or fish schooling. On the other hand, 
GA has been designed to simulate the natural evolution of creatures such as genetic 
reproduction and mutation.

The main motivation of meta-heuristics hybridization is to alleviate the limita­
tions of one algorithm with the strengths of others. PSO is known to be very efficient 
in providing results quickly, but in some cases, its ability to find optimal solutions, es­
pecially for real life problems, is still insufficient (Matthew and Terence, 2005; Gao 
and Xu, 2011). Most practical problems are multi-modal and due to its fast conver­
gence to a single point, PSO tends to converge to a local optimum. Compared to PSO, 
GA is generally found to have better exploration properties (Wu and Law, 2011; Kaur, 
2011). GA also has several operators that can control exploration and exploitation of 
the search projection namely: mutation, crossover and selection (Crepinsek, Liu, and 
Memik, 2013). Mutation is generally thought to enable exploration, whereas both ex­
ploratory and exploitative aspects are ascribed to crossover.

An integration of strengths from PSO and GA can yield a new meta-heuristic 
with better efficiency than the single algorithm. In other words, GA operators help 
PSO to have a good balance between the exploitation and exploration search capability 
(Kaur, 2011; Alireza, 2011). Explorative aspects introduce diversity into the search 
direction such that vast areas of the search space can be covered, while exploitation 
provides the necessary search intensity to optimize the discovered solutions locally. 
Therefore, the results produced by the PSO hybrid have a tendency to be more accurate 
and faster than the single algorithm.
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