
UNIVERSITI TEKNOLOGI MARA

LOW-LEVEL HYBRIDIZATION
SCRIPTING LANGUAGE

WITH
DYNAMIC PARAMETERIZATION

IN PSO-GA

SURAYA BINTIMASROM

Thesis submitted in fulfillment
of the requirements for the degree of

Doctor of Philosophy

Faculty of Computer and Mathematical Sciences

July 2015

AUTHOR’S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations
of Universiti Teknologi MARA. It is original and is the results of my own work, unless
otherwise indicated or acknowledged as referenced work. This topic has not been
submitted to any other academic institution or non-academic institution for any degree
or qualification.

I, hereby, acknowledge that I have been supplied with the Academic rules and
regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of
my study and research.

Name of Student

Student I.D. No.

Programme

Faculty

Thesis title

Signature of Student

Date

Suraya binti Masrom

2010247684

Doctor of Philosophy

Computer and Mathematical Sciences

Low-Level Hybridization Scripting Language
with Dynamic Parameterization in PSO-GA

.....M L ,

July 2015

iii

ABSTRACT

Surrounded by an assortment of intelligent, adaptive and efficient search entities, the
Low-Level Hybridization(LLH) for Particle Swarm Optimization (PSO) and Genetic
Algorithm (GA), are proven to be a comprehensive tool for solving different kinds of
optimization problems due to their contradictive behaviour. In addition, the two algo­
rithms have achieved a remarkable improvement from the adaptation of dynamic pa­
rameterization. However, in many cases, implementing the suitable hybrid algorithms
for a given optimization problem is a considerably difficult, which in most cases, is time
consuming. In addition, research has identified that the existing tools are not adequately
designed to enable users to easily develop the LLH algorithms with the dynamic param­
eterization. In responding to this problem, this research investigates rapid mechanisms
for the LLH design and development with easy, flexible and concise programming.
The research has proposed new implementation frameworks and new scripting language
with the dynamic parameterization. In addition, the research conducts a comprehensive
evaluation for the scripting language that covers the easiness, conciseness and flexibility.
Based on the implementation reviews from the existing LLHs that combine PSO with
GA, the implementation frameworks with a sequential global (SG) scheme, are found to
be widely used in practice. The scheme consists of three implementation frameworks:
the SG with mutation (SGMutation), the SG with crossover (SGCrossover) and the SG
with both crossover and mutation (SGCrossMutation). The scripting language is de­
signed and developed based on the algorithm structure that is defined in the proposed
implementation frameworks with the dynamic parameterization. Evaluations of four
different sets of applications that used the proposed implementation frameworks with
dynamic parameterization have indicated the effectiveness of each tested algorithm in
comparison to the single PSO and constant parameterization. In the scripting language
evaluation, nine LLHs and three single PSO algorithms have been successfully created
using the scripting languages. The codes of the scripting language are shown to easily
use, concisely describe the algorithm in a directly publishable form and flexible for new
problem creations. This work is the first exposition of scripting language for the LLH
of PSO-GA embedded with dynamic parameterization, which paves the way for further
research possibilities in the future.

ACKNOWLEDGMENT

Alhamdulillah, praise be to Allah, the Most Gracious, the Most Merciful.

Many people have contributed their ideas, time, and energy to assist me in the
pursuit of this research. A countless thanks to my main supervisor, Associate Professor
Dr. Siti Zaleha Zainal Abidin and my co-supervisor, Dr Nasiroh Omar. To work with
them has been a real pleasure to me, with heaps of fun and excitement. They have
always been patient and encouraging in most of the times and difficulties. Thank you
for the trust and understanding.

On a professional note, I must thank Professor John Grundy, Dean of Faculty of
Information and Communication Technologies at Swinburne University of Technology,
Hawthorn Campus, Victoria, Australia. I am grateful to be allowed for research
attachment at the faculty from November 2012 to January 2013. I have been very
privileged to collaborate with Dr Irene Moser and Dr James Montgomery. Also, a short
discussion with Professor Tim Hendtlass and Dr Clinton Woodward on experimental
issues and algorithm design has significantly improved my work.

Furthermore, I would like to express my sincere gratitude to Professor Min Chen
from the University of Oxford’s e-Research Centre for his insightful comments on
my research framework and for many motivating discussions during his short visit to
Universiti Teknologi MARA. Also, thank you very much to all JACIE teams of my
faculty with the continuous support and ideas.

The financial support of this study was funded by the Kementerian Pendidikan
Malaysia in together with Universiti Teknologi MARA. I thank you all the staff.

Last but not least, words cannot express how grateful I am to all friends and
members of family, for all the prayers they have made for me. Also, my deepest
appreciation goes to my husband who has been supporting and blessing me from the
day of registering my study until the day of submitting the final manuscript. Not
forgetting my active kids Syazana, Muhammad, Madihah, Adam and Anas (my PhD
baby), thank you for all patience and sacrifices.

v

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND

One promising way to effectively solve optimization problem is by using
meta-heuristics algorithms. In this research, the concern is to propose rapid mecha­
nisms for the design and implementation of meta-heuristics hybridizations involving
two well-known meta-heuristics namely Particle Swarm Optimization (PSO) (Kennedy
and Eberhart, 1995; Clerc, 2006) and Genetic Algorithm (GA) (Holland, 1975; Af-
fenzeller, Winkler, Wagner, and Beham, 2009). These two meta-heuristics have gained
widespread appeal amongst researchers to solve optimization problems in a variety of
application domains. The algorithms were developed based on nature analogy, but are
different in several ways. The search element of PSO has been designed to mimic the
social activities of animals such as birds flocking or fish schooling. On the other hand,
GA has been designed to simulate the natural evolution of creatures such as genetic
reproduction and mutation.

The main motivation of meta-heuristics hybridization is to alleviate the limita­
tions of one algorithm with the strengths of others. PSO is known to be very efficient
in providing results quickly, but in some cases, its ability to find optimal solutions, es­
pecially for real life problems, is still insufficient (Matthew and Terence, 2005; Gao
and Xu, 2011). Most practical problems are multi-modal and due to its fast conver­
gence to a single point, PSO tends to converge to a local optimum. Compared to PSO,
GA is generally found to have better exploration properties (Wu and Law, 2011; Kaur,
2011). GA also has several operators that can control exploration and exploitation of
the search projection namely: mutation, crossover and selection (Crepinsek, Liu, and
Memik, 2013). Mutation is generally thought to enable exploration, whereas both ex­
ploratory and exploitative aspects are ascribed to crossover.

An integration of strengths from PSO and GA can yield a new meta-heuristic
with better efficiency than the single algorithm. In other words, GA operators help
PSO to have a good balance between the exploitation and exploration search capability
(Kaur, 2011; Alireza, 2011). Explorative aspects introduce diversity into the search
direction such that vast areas of the search space can be covered, while exploitation
provides the necessary search intensity to optimize the discovered solutions locally.
Therefore, the results produced by the PSO hybrid have a tendency to be more accurate
and faster than the single algorithm.

1

	LOW-LEVEL HYBRIDIZATION SCRIPTING LANGUAGE WITH DYNAMIC PARAMETERIZATION IN PSO-GA
	CONFIRMATION BY PANEL OF EXAMINERS
	AUTHOR’S DECLARATION
	ABSTRACT
	ACKNOWLEDGMENT
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	CHAPTER ONE INTRODUCTION
	1.1 BACKGROUND
	1.2 DEFINITION OF TERMS
	1.3 PROBLEM STATEMENT
	1.4 RESEARCH QUESTIONS
	1.5 OBJECTIVES
	1.6 THEORETICAL RESEARCH FRAMEWORK
	1.7 RESEARCH CONTRIBUTIONS
	1.7.1 Methodological Contributions for Rapid Software Development
	1.7.2 Theoretical Contributions
	1.7.3 Empirical Contributions

	1.8 RESEARCH SCOPE AND LIMITATIONS
	1.9 ORGANIZATION OF THESIS
	1.10 SUMMARY

	CHAPTER TWO
LITERATURE REVIEW
	2.1 INTRODUCTION
	2.2 SOFTWARE DEVELOPMENT FOR OPTIMIZATION PROBLEM ANDTHE META-HEURISTICS
	2.3 RAPID SOFTWARE DEVELOPMENT WITH SOFTWAREREUSE
	2.4 SOFTWARE LIBRARY
	2.5 SOFTWARE FRAMEWORK
	2.6 SCRIPTING LANGUAGE
	2.6.1 Scripting Languages for Rapid Application Development (RAD)
	2.6.2 Software Reuse in Scripting Language
	2.6.3 Scripting Languages for Flexible Software Extension

	2.7 DOMAIN-SPECIFIC LANGUAGE
	2.8 PROGRAMMING APPROACHES IN META-HEURISTICS<- REUSABLE SOFTWARE
	2.9 REVIEW OF THE DSLs FOR META-HEURISTICS
	2.9.1 Back-end Software for DSL
	2.9.2 Loop Abstraction
	2.9.3 Specific Features For Designing a DSL for Meta-heuristics

	2.10 GENERAL PRINCIPLES IN DESIGNING A DSL
	2.11 OPTIMIZATION PROBLEM MODEL
	2.12 TYPES OF OPTIMIZATION
	2.13 PARTICLE SWARM OPTIMIZATION
	2.13.1 Global Best and Local Best PSO
	2.13.2 PSO Advancements

	2.14 DYNAMIC PARAMETERIZATION
	2.14.1 Time-vary Parameterization
	2.14.2 Adaptive Parameterization

	2.15 LOW-LEVEL HYBRIDIZATION VS HIGH-LEVELHYBRIDIZATION
	2.16 GENETIC ALGORITHM (GA)
	2.17 REVIEW OF PSO-GA HYBRIDIZATIONS
	2.18 REVIEW OF META-HEURISTICS FRAMEWORKS
	2.19 REVIEW OF META-HEURISTICS REUSABLE SOFTWARE
	2.20 REVIEW OF THE EVALUATION APPROACHES OF THEMETA-HEURISTICS REUSABLE SOFTWARE
	2.21 RESEARCH GAP
	2.22 SUMMARY

	CHAPTER THREE METHODOLOGY
	3.1 INTRODUCTION
	3.2 OPERATIONAL FRAMEWORK
	3.3 PHASE 1: THEORETICAL STUDY
	3.4 PHASE 2: RESEARCH DESIGN
	3.4.1 Formulation of Research Problem
	3.4.2 Justification of the Research Activities

	3.5 PHASE 3: IMPLEMENTATION FRAMEWORKS STUDY
	3.5.1 Benchmark Functions
	3.5.2 Vehicle Routing Problem with Time Window (VRPTW)
	3.5.3 Dataset for the Implementation Frameworks
	3.5.4 Research Instruments for the Implementation Frameworks

	3.6 PHASE 4: SCRIPTING LANGUAGE STUDY
	3.6.1 Scripting Language Design and Development
	3.6.2 Scripting Language Evaluation
	3.6.3 Benchmark Functions for the Flexibility Test
	3.6.4 Research Instruments for the Scripting Language Evaluations

	3.7 SUMMARY

	CHAPTER FOUR
THE IMPLEMENTATION FRAMEWORK
	4.1 INTRODUCTION
	4.2 WORKING STRUCTURE OF THE PSO-GA
	4.3 FORMAL DEFINITION
	4.4 Taxonomy
	4.4.1 Components
	4.4.2 Implementation
	4.4.3 Parameterization

	4.5 IMPLEMENTATION FRAMEWORK
	4.5.1 Scheme 1: Sequential Explicit Global (SEG)
	4.5.2 Scheme 2: Sequential Implicit Global (SIG)
	4.5.3 Scheme 3: Sequential Explicit Partial (SEP)
	4.5.4 Scheme 4: Sequential Implicit Partial (SIP)
	4.5.5 Scheme 5: Sequential Global (SG)
	4.5.6 Scheme 6: Sequential Partial (SP)

	4.6 IMPLEMENTATION REVIEW
	4.7 EMPIRICAL EXPERIMENTS
	4.7.1 Experiment Set 1: Time-vary Parameterization on Continuous OptimizationProblem
	4.7.2 Experiment Set 2: Adaptive Parameterization on ContinuousOptimization Problem
	4.7.3 Experiment Set 3: Constant Parameterizations on Continuous OptimizationProblem
	4.7.4 Experiment Set 4: Vehicle Routing Problem with TimeWindow (VRPTW)
	4.7.5 Discussion

	4.8 SUMMARY

	CHAPTER FIVE
THE SCRIPTING LANGUAGE
	5.1 INTRODUCTION
	5.2 USE CASE DIAGRAM
	5.3 OVERALL SOFTWARE ARCHITECTURE
	5.4 THE FRONT-END SCRIPTING LANGUAGE
	5.4.1 Basic Conventions
	5.4.2 Scripting Language Specifications

	5.5 THE INTERMEDIATE COMPILER
	5.5.1 Compiler Enhancement
	5.5.2 Compilation Error

	5.6 THE BACK-END SOFTWARE FRAMEWORK
	5.7 SCRIPTING LANGUAGE EVALUATION
	5.7.1 Scripts for the LLHs and Single PSO with Time-vary Parameterization
	5.7.2 Scripts for the LLHs and Single PSO with Adaptive Parameterization
	5.7.3 Scripts for LLHs and Single PSO with Constant Parameterization
	5.7.4 Easiness Test
	5.7.5 Conciseness Test
	5.7.6 Flexibility Test
	5.7.7 Discussion

	5.8 SUMMARY

	CHAPTER SIX CONCLUSIONS
	6.1 SUMMARY OF THE THESIS
	6.2 CONTRIBUTIONS
	6.2.1 Software Engineering
	6.2.2 Meta-heuristics Development Approach

	6.3 RESEARCH LIMITATION
	6.3.1 The Easiness and Conciseness Analysis
	6.3.2 The Optimization Applications Tested with the Scripting Language

	6.4 FUTURE WORKS
	6.5 FINAL WORDS

	REFERENCES
	APPENDIX
	AUTHOR’S PROFILE

