UNIVERSITI TEKNOLOGI MARA

CHARACTERIZATION OF SURFACE LAYER DEVELOPMENT ON DUPLEX STAINLESS STEEL RESULTING FROM THERMOCHEMICAL HYBRID TREATMENT

MOHD SHAHRIMAN ADENAN

Thesis submitted in fulfillment of the requirement for the degree of **Doctor of Philosophy**

Faculty of Mechanical Engineering

August 2015

ABSTRACT

The application of duplex stainless steels in various applications such as in petrochemical, water desalination and paper milling industries has rapidly increased in recent years, taking advantage of the combination of high strength and good corrosion resistance from the dual phase stainless steels. However, having low wear resistance and low surface hardness limits the applicability of the steels for wider applications; thus, improvement of the features is essential. A thermochemical hybrid treatment process has been developed to improve the wear resistance and surface hardness of duplex stainless steels without compromising its corrosion resistance. The process was performed by using a mixture of methane (CH4), ammonia(NH3) and nitrogen (N2) at low temperature of below 500°C. The process simultaneously introduces the alloying elements of carbon and nitrogen into the surface of the duplex stainless steels forming a precipitation free layer along with improvement of wear resistance and surface hardness. This study discusses the influence of the process parameters such as temperature, holding time and gas composition used during the process towards the structural development and morphology of the layer as well as the effects of precipitation on the chromium element. It was found that the nitrogen and carbon diffused at the layer producing expanded austenite phase and expanded ferrite phase of a complex combination of YN, YC, an and as The expanded phases increased the surface hardness up to five times, improvised the wear resistance of the treated samples. However, traces of precipitation of chromium were detected in sample treated at prolonged 30 hours of holding time and for the sample treated for a temperature of 500 °C, indicating the limit of the process parameter used to produce the precipitation free expanded phases. It can be concluded that the improvement on the surface hardness and wear resistance of duplex stainless steel can be achieved by the formation of expanded phases at the layer by controlling the main parameters during the thermochemical process.

ACKNOWLEDGEMENT

In the name of Allah, Most Gracious, Most Merciful

All praise and glory to Almighty Allah (Subhanahu Wa Taalaa) who gave me all the courage and patience in order to complete this work. Peace and blessing of Allah be upon Prophet Muhammad (Peace Be upon Him).

I would like to express my highest appreciation and gratitude to my PhD supervisors, Assoc. Prof. Dr. Esa Haruman and Prof. Dr, Mohamad Nor Berhan, for a constant help, guidance and support throughout this work and on several other occasions. Acknowledgement is due to the Faculty of Mechanical Engineering, Universiti Teknologi MARA for supporting this research and providing me with necessary infrastructure and research environment.

I also want to acknowledge my colleagues and friends, whom I had a pleasant, enjoyable and fruitful discussions. Thanks are due to the staff of Material Science Laboratory and Heat Treatment Laboratory, FKM, UiTM and to all those assist me during the this work.

Finally, I extend my acknowledgement and heartfelt love to my wife, Latifah; sons, Imran & Izz; parents, brother and sister, who have been with me all the time to spur my spirits.

TABLE OF CONTENT

	Page
CONFIRMATION BY PANELS OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENT	vi
LIST OF TABLES	X
LIST OF FIGURES	xi
LIST OF ABBREVIATIONS	xvii

CHAPTER ONE: INTRODUCTION					
				1	
of		research		2	
1.3 Problem identification and approach					
				6	
	the	rese	earch	7	
				7	
				8	
1.8 Research significance and outcome					
	of oproach	of oproach the	of research oproach the rese	crion of research oproach the research	

CHAPTER TWO: LITERATURE REVIEW				
2.1 Stainless steel	10			
2.1.1 Classification of Stainless Steel	15			
2.1.1.1 Martensitic Stainless Steel	17			
2.1.1.2 Ferritic Stainless Steel	18			
2.1.1.3 Precipitation Hardening (PH) Stainless Steel	19			
2.1.1.4 Austenitic Stainless Steel	20			

	2.1.1.5 Duplex	s Stainle	ess Steel	l					21
,	2.1.2 Metallurgical	Asp	ect	of	Duplex	Stainl	ess	Steel	22
	2.1.2.1 Austeni	tic Phas	se						25
	2.1.2.2 Ferritic	Phase							26
	2.1.2.3 Interme	tallic Pl	nase						26
2	2.1.3 Corrosion	Properti	es	of	Duplex	Stainle	ess	Steel	29
	2.1.3.1 Pitting	and (Crevice	Corro	sion of	Duplex	Stainles	ss Steel	30
	2.1.3.2 Stress	Corrosi	on Cra	cking	(SCC) of	Duplex	Stainle	ess Steel	31
	2.1.3.3 Intergra	nular A	ttack (I	GA) Co	rrosion				32
2	2.1.4 Tribological	Behav	iour	of	Duplex	Stainl	ess	Steel	33
2.2 \$	Surface engineering								36
2	2.2.1 Thermochemica	l Engin	eering T	reatme	nts				38
2	2.2.2 Thermochemica	l Treatr	nent on	Stainles	ss Steel				40
2	2.2.3 Development	of S	Supersat	turated	Phase	(S-phase)) Laye	er in	
	Thermochemic	al Treat	ment of	Stainle	ss Steel				41
2	2.2.4 Characteristics	of S-pha	se						42
2	2.2.5 S-phase Format	ion in I	Low Ter	mperatu	re Thermo	chemical	Treatm	ent of	
	Duplex Stainle	ss Steel							44
2.3 (Gaseous Thermochen	nical tre	atment						47
2	2.3.1 Gas Nitriding								49
2	2.3.2 Gas Nitrocarbur	izing							50
2	2.3.3 Gas Carburizing	5							51
2	2.3.4 Gas Carbonitrid	ing							52
2	2.3.5 Thermochemica	l hybrid	Treatn	nent					53
2.4 \$	Summary	of		litera	ture	re	view		55

CHAPTER THREE: RESEARCH METHODOLOGY	57
3.1 Sample preparation	60
3.1.1 Duplex Stainless Steel SAF 2205 Sample	60