
COSMIC FPA CALCULATOR FOR MOBILE APPLICATION

DEVELOPMENT COST BASED ON UNITY3D GAME

ENGINE

Nur Atiqah Sia Abdullah, Nur Ida Aniza Rusli

Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA

40450 Shah Alam, Selangor, Malaysia
atiqah@tmsk.uitm.edu.my, idaaniza@gmail.com

Abstract

The emergence technology and popularity of mobile game application has led to higher

demands in producing more colorful game environment, interactive design and selecting

targeted platforms. To fulfil these requirements, mobile game engine; a framework to

create mobile game application should provide greater complexity and parameters to be

added in the mobile game properties. Thus makes the effort costing of mobile application

development difficult to be estimate accurately. Therefore, these mobile game

requirements is a new conceptual of software that still need to be tested properly to

existing estimation models as these estimation models are invented before the emergence

of mobile application requirements. Hence, the motivation is to adapt COSMIC

Functional Size Measurement (COSMIC FSM) for sizing the mobile game application

development as it is one of the estimation models suitable to sizing embedded software

and real-time system. This research use Unity3D game engine as the platform to

represent the mobile game requirements. These requirements are illustrated in the form

of component diagrams and class diagrams to order to maintain and control the

behavior of Unity3D features. The functional processes from component diagrams and

class diagrams are captured to be used later in the sizing process using COSMIC FSM

from the mapping between UML based-COSMIC FSM rules and measurement. A tool,

COSMIC FPA Calculator for Mobile Application is developed to demonstrate the

COSMIC FSM counting process for mobile game application costing.

Keywords: Software Measurement, Software Effort Estimation, COSMIC Functional Size

Measurement, UML, Mobile game application

1. Introduction

In general, software cost estimation involves the measurement of project properties

such as software, hardware and travel costing. However, most of estimation of software

costing is dominantly using effort estimation where it can be converted directly to the project

duration and cost together (Leung et al., 2002). Effort cost estimation process the number of

outcome produces and divides with number person per months required to the development of

the software project. These two effort costing component usually can be performed in the

term of size-related metric or function related metric to measure.

Size-related metric take the size of output from the software project to be used in

measurement by performing the line of delivered source code, number of delivered object

code instruction or the number of pages of system documentation. Line of source code per

programmer-month (LOC/pm) is a well-kwon technique in this category, where the

estimation is conducted by counting the total number of lines of source code and divides it by

the amount of duration to complete the project. This main area of research focus in function-

related metric, valued the cost estimation using functionality of delivered system.

This function-related metric has successful in estimates the software size from the

software requirements or business models (Lind et al., 2011; Uemura et al., 1999). Functional

Size Measurement (FSM) is one of promising for measuring functionality delivered system.

The FSM method was originally proposed by Albrecht Function Point to size the project from

the five elements of input, output, inquiries, internal and external files.

Going through the evolution and to improve Albrecht Function Point method, FSM has

provide users with several FSM technique such as International Function Point User’s Group

of Function Point Analysis (ISO/IEC 20926, 2003), Mk II Method of Function Point Analysis

(ISO/IEC 20968, 2002), NESMA Function Point Analysis (ISO/IEC 24570), COSMIC

Functional Size Measurement Method (ISO/IEC 19761, 2003) and FiSMA Functional Size

Measurement (ISO/IEC 29881, 2008) to cater different scenario of software development

(Meli et al., 1999).

This research adapts COSMIC FSM for sizing the mobile game application is one of

the evolutions in FPA that successfully estimate for embedded software and real-time system

(Soubra et al., 2011; Lind et al., 2009). The rules and measurement of COSMIC FSM are

utilized to be mapped with this new gaming context characteristics and requirements.

Gaming is one of entertainment areas that are increasing in popularity. With the

emerging market, game platform has witnessed the game transformation from the game

machines, video games, PC games to mobile application (Herman et al., 2002). The emerging

innovations of 3D technology along with wider, faster and more mobile internet accessibility

are expected to give a strong gaming competition in the market. The process of game

development requires developers to have a good idea of what component that should be used

for the development and specific tasks should be performed for user satisfaction. Since game

development involves a long code of programs, the game engine is very useful to organize a

group of program code that perform the task according to the requirement. The game engine

is a system designed for the creation and development of the game. It is able to simplify the

design process and handles or maintains the whole process of development of the game

application (Gregory et al., 2009; Abdullah et al.,2013; Abdullah et al., 2014).

There are many game engines that are available in the market. This study focused on

five game engines as the platform for the mobile game application development. Unity 3D,

ShiVa 3D, Irrlicht 3D Engine, Reality Factory and Panda3D were chosen to be compared and

evaluated. These game engines are chosen because of open source and provide sufficient

features of the game engine.

This paper is structured as follows: Section 2 reviews the mobile game engine; Section

3 contains a research framework for this research; Section 4 discusses the UML presentation

of Unity3D; Section 5 shows the mapping process between UML modelling and COSMIC

FSM; Section 6 summarizes the COSMIC FSM evaluation for Unity3D. Finally Section 7

describes some conclusion.

2. Methods

This section presents the study on mobile game requirements through the features

provided by game engine. The study is important as game engine executes numerous

components as a platform to deliver complex functionalities in the game environment. Game

engine generally intended to be used for a particular type of game; this study therefore

provides an overview of five game engines in order to explore the possibility these

functionalities able to be included in estimation process using COSMIC FSM. Unity3D,

ShiVa Engine, Irrlicht Engine, Reality Factory and Reality Factory are chosen for further

review on the structure and functionality offered in each game engine.

Unity3D is an ecosystem game development developed by Unity Technologies (Unity

Technologies, 2015). This game engine provides a service to import 2D and 3D game content

to the game scene with the various optional features to use such as scripting using Java

programming language, tools and 3D editors especially for Windows and Mac operating

system.

ShiVa Engine is a game engine that supports more than 21 features to games in

platforms such as Windows, Linux and Mac OS (ShiVa Engine, 2015). Developed by

StoneTrip, this game engine provides features such as animation editor, ambience editor and

material editor to be implemented in devices such as PCs, Mac and Mobile Phone.

Implemented in C++ programming language; ShiVa Engine also compatible using plugin

such as Cinema 4D and Maya Blender for animation and graphical design. Irrlicht Engine is a

3D game engine that designed by Nikolaus Gebhardt (Irrlicht Engine, 2015). Irrlicht Engine is

written in C++ and VB.NET provides the elements like scene editor, lightmap generator and

indoor/outdoor technology to be added in the game. Irrlicht Engine also provides irrEdit and

GUI editor to customize the game environment.

Next is Reality Factory. Reality Factory simplifies the creation of the game application

by using C++ programming language (Reality Factory, 2015). Developed by Gekido Design

Group, this game engine uses Genesis3D to render the real-time game environment with

advanced features such as pathpoint engine, camera controls and physic/dynamic

shadows.Lastly, Reality Factory is a game engine that renders the game environment in

Python and C++ programming language (Panda 3D, 2015). This game engine offers features

such as native DirectGUI system, 3D Studio Max and Maya model through plug-in and also

OpenAL audio engine for game developers. The features of mentioned game engines will be

evaluated using Petridis Methodology in the next section.

A. Petridis Methodology for Comparing Game Engine

This section describes the detail process of selecting game engine which can be used as

a benchmark for the requirement of mobile game application. The selection of game engine

is carried out based on the comparison criteria proposed by Petridis methodology. The six

criteria in this methodology; fidelity, composability, accessibility, networking and

heterogeneity as shown in Table 1 reflects the architecture of the game engine and manage to

provide adequate information to be used in evaluation of game engine.

The concept of fidelity is defined as the bases to visualize the knowledge learnt in the

real world and to be transformed to the game environment. As the representation of features

such as narrative, depth of visualization and characters’ behaviour, Petridis et al., (2010)

divides this fidelity into audio-visual fidelity and function fidelity to make a clear distinction

of features to be used in the illustration of the game. Audio-visual fidelity includes features

such as rendering, animation, sound and effect meanwhile functional fidelity takes the feature

such as scripting, AI technique and physics to be grouped together.

Composability is defines as the feature that utilize reusability concept to create game

application using game engine. It also evaluates the efficiency element in the game engine to

provide services such as import and export via data or sources such as 3ds, Maya and CAD.

Using algorithm for example manage to provide an automation convergence between formats

and toolkits in game development process. Accessibility allows game engine to provide

support system by given information that can be retrieved by game developer including

learning curve, partial source code and licensing documentation. Providing the knowledge

about the game engine is useful for developers to design the game application through user

interface based upon the requirement.

Table 1. Criteria for Comparing Game Engines.

Criteria Features

Audio Visual

Fidelity

Rendering

Animation

Sound

Functional Fidelity Scripting

Supported AI Technique

Physics

Composability Import / Export Content

Developer Toolkits

Accessibility Learning Curve

Documentation and Support

Licensing

Cost

Networking Client Server / Peer-to-peer

Heterogeneity Multiplatform Support

Meanwhile, networking is used to support the game application in a larger scale by

enable game application to have multiplayer connected and interacts through servers. Client

server and peer-to-peer manage to increase the popularity and provide a long term playing

game. Lastly heterogeneity is concerns on the element to deploy the game on specific devices

or software. This enables the game to be released in application such as GPS, simulator or

mobile phones.

B. Comparison of Selected Game Engines

As the objective to estimate the functionality of mobile game, Audio Visual, Functional

Fidelity and Networking are going to be described in detail for the comparison process. These

chosen criteria are appropriate features in the game engine architecture can be mapped to

COSMIC rules and measurement. Composability, Accessibility, and Heterogeneity are

excluded as these criteria do not have the required functionality to estimates. This paper

adapts Petridis’s methodology to compare Unity3D, ShiVa Engine, Irrlicht3D Engine, Reality

Factory and Panda3D. It is shown in Table 2 and Table 3.

Table 2 shows Unity3D, ShiVa Engine and Reality Factory provide various features for

audio-visual fidelity. These three game engines support elements such as texturing, lighting,

shadows, special effect, animation and sounds. This assessment shows that Unity3D, ShiVa

Engine and Reality Factory are the game engines that are able to support the technologies

used for computer graphics.

Table 3 shows the comparison of five game engines in functional and networking

fidelity criteria. Results shows that Unity3D and ShiVa Engine offer similar features. Both

game engines support scripts, path finding, basic physics, collision detection, rigid body,

vehicle physic and networking capabilities for 3D game.

From the three criteria, the Unity3D and ShiVA game engine offered similar features in

terms of functionality, networking and audio-visual fidelity. This two game engine will be a

benchmark of the game engine to be used for further estimation using COSMIC FSM as both

game engines has sufficient features used by common mobile application and more

comprehensive to be used in a case study for mobile application development estimation.

Moreover, both of game engines also support multiple platforms including iOS, Windows

Phone and Android.

Table 2. Comparison of Game Engines in Audio-Visual Fidelity.

Audio-

Visual

Fidelity

Unity3D ShiVa Engine Irrlicht Engine Reality

Factory

Panda3D

R
en

d
er

in
g

T
ex

tu
ri

n
g

Basic

Bummapping

Procedural

Basic

Bumpmapping

Multi-

texturing

Mipmapping

Projected

Basic

Multi-

texturing

Bumpmapping

Mipmapping

Basic

Multi-

texturing

Bummapping

Mipmaping

Project

Procedural

Basic

Animated

texture

Pointer

3D texture

L
ig

h
ti

n
g
 Per-vertex

Per-pixel

Lightmapping

Per-vertex

Per-pixel

Lightmapping

Per-vertex

Per-pixel

Lightmapping

Per-vertex

Per-pixel

Lightmapping

Per-vertex

Per-pixel

Lightmapping

S
h

ad
o

w
s

Projected

Blob shadows

Dynamic-

shadows

Shadow

mapping

Shadow

mapping

Shadow

mapping

Not applicable

S
p

ec
ia

l
E

ff
ec

ts

Environment-

mapping

Lens-flare

Bill-boarding

Particle

Motion

Blur

Sky

Water

Mirror

Environment-

mapping

Lens-flare

Bill-boarding

Particle

Motion

Blur

Sky

Water

Mirror, Fire,

Fog, Weather

Skeletal-

animation

Animation-

blending

Morphing

Keyframe-

animation

Skeletal-

animation

Animation-

blending

Skeletal-

animation

A
n

im
at

io
n

Forward-

kinematics

Keyframe

Animation-

skeletal

Animation

Animation-

blending

Morphing

Forward-

kinematics

Keyframe

Animation-

skeletal

Animation

Animation-

blending

Skeletal-

animation

Animation-

blending

Morphing

Keyframe-

animation

Skeletal-

animation

Animation-

blending

Skeletal-

animation

S
o

u
n

d

2D Sound

3D Sound

Streaming

Sound

2D Sound

3D Sound

Streaming

Sound

Not applicable 3D Sound

OpenAL-audio

engine

FMOD-audio

engine

Miles-audio

engine

Table 3. Comparison of Game Engines in Functional Fidelity and Networking Fidelity.

Functional and Networking

Fidelity

Unity3D ShiVa

Engine

Irrlicht

Engine

Reality

Factory

Panda3D

Scripting Script Yes Yes No Yes Yes

Object Model No No No No No

Support AI

Technique

Path Finding Yes Yes No No Yes

Decision

Making

No Yes No No No

Physic Basic Physics Yes Yes No Yes No

Collision

Detection

Yes Yes Yes Yes No

Rigid Body Yes Yes No Yes No

Vehicle

Physics

Yes Yes No No No

Networking Client-Server Yes Yes No No Yes

Peer-to-Peer No No No Yes No

However, Unity3D is chosen for further estimation because it is one of the most widely

referred game engines in most of the research and mobile development. Unity3D also has

released 80 mobile games compared to ShiVa game engine has released 28 mobile game

according DevMaster (DevMaster, 2015) and ModDB (ModDB, 2015) game engine

databases. Unity3D also has a large community and provides many tutorials to be learned.

3. Research Framework

This section describes the conceptual framework of this research. The detail procedure

and method to collect data is shown in Figure 1. The research framework is consists five

phases; preliminary study, analysis of literature, UML modelling and mapping, system design

and implementation, and also finding phase manage to help the structural process for

developing the estimation tool for mobile game application. This framework is a good

approach for identify the research objectives, purposes and data collection to be used in the

measurement. The detail steps for each stage for Unity3D UML-COSMIC FSM are describes

in following section.

a. Preliminary Phase

The work begins with collecting information from journals and articles to allow this

search to have strong foundation in the domain area. This phase also performs the analysis of

software cost estimation, functional size measurement and mobile game application

development and framework to enable this study associate these concept for further research.

b. Systematic Review

The detail rules and procedure of COSMIC FSM are analysed to be used later in the

measurement process. This step also contains with a comparison characteristic of selected

game engine. Five open source game engine; Unity3D, ShiVa3D, Irrlicht3D Engine, Reality

Factory and Panda3D were compared using Petridis methodology in order to obtain suitable

game engine to serves as data collection or a requirement for mobile application development

for this research. The concept of UML modelling also is revised to provide a better

understanding of mapping and calculation process between UML based and COSMIC FSM.

Phase Activity Outcome

Figure 1. Research framework

1. System objectives

2. Hardware and software

requirements

3. UML model for the tool

4. Testing with various

UML game model

SDLC Waterfall Methodology

 Requirement

 Analysis

 System Design

 Implementation and

Testing

System Design

and

Development

1. Component diagram and

class diagram of Unity3D

2. Mapping table of

COSMIC-UML

3. Mapping tables of

COSMIC mobile game

4. Data movement table

1. UML representation of Unity 3D

game engine

2. Mapping COSMIC concept and

UML

 Identification of COSMIC

concept with mobile game

 Identification of functional

process and data movement

 Calculation of COSMIC

function point

UML

Modelling and

Mapping

1. Rules and calculation for

COSMIC FSM

2. Comparison table of

Unity3D, ShiVa3D,

Irrlicht3D Engine,

Reality Factory and

Panda3D

Detail characteristics of:

1. Detail of COSMIC FSM

measurements, steps and

rules with COSMIC-UML

2. Game engine architecture

Systematic

Review

1. Research problem

2. Research objectives

3. Research questions

4. Scope of study

Review of:

1. Software metrics

2. Software metrics for mobile

application

3. Software Cost Estimation

4. Function Point Analysis (FPA)

5. Mobile game application

6. Game engine

Theoretical

Study

COSMIC FPA Calculator

for Mobile App

1. Function point size

2. Cost estimation

Findings

c. UML Representation and Mapping

This phase is composed of UML representation of the Unity3D game engine. The UML

model of Unity3D is constructed to presenting the assets and the flow of data or components

in Unity3D. The mapping rules between COSMIC concept and UML are finalized to be used

as a guideline for calculating COSMIC function point (CFP) value for mobile application.

This phase continues with the process of obtaining the CFP value of Unity3D by mapping the

UML modelling of Unity3D game engine to COSMIC rules. Mapping COSMIC rules and

UML model of the Unity3D game engine will determine the elements that will distribute to

COSMIC Entry, Read, Write or Exit data movements before it can be aggregated to numbers.

d. Systematic Design and Development

This phase involves the process of gathering the requirements to develop a calculator for

mobile application using COSMIC function point. The components are identified to be used

as the medium to implement the software measurement. The components required for the

development of calculator are listed below.

- Checkbox. This component allow user to tick several inputs data entry such as camera,

audio and particle system to process at a time.

- Tabbed panes. The calculation provides 28 checkboxes to represent Unity3D

components. Tabbed panes is suitable for organize these 28 checkboxes by splitting these

checkboxes into two tabs. Although it is distributed in two tabs, but the function of

tabbed panes allows the values of checkboxes pointed in a single reference.

- Text fields. Text fields allow user to continue the costing process by insert the amount of

duration to develop the project and salary per one programmer.

- Table. Table is used to display the detail information from the data entry, including the

message and data movements of the mobile game component.

The design phase is illustrated using component diagrams and class diagram to represent

the data of the calculator. From the UML modelling, the calculator allows the activities such

as selection of data entry, COSMIC function point calculation, and effort costing for the

mobile game application project.

e. Findings

The outcome of the study explains the elements in the UML representation of Unity3D

game engine able to capture the functional process of COSMIC FSM and categorized into the

COSMIC data elements; Read, Write, Entry or Exit for the sizing process. The mapping

process allows this research to obtain the function point based on the UML concept and

COSMIC FSM rules and measurement.

4. The UML Modelling of Unity3D

This section describes the function point calculation process based on Unity3D game

engine environment. The process begins with the illustration of UML model of Unity3D to

represent the requirements for mobile game application development. This reverse engineering

process leads to creation of UML modelling based on Unity3D documentation. This UML

modelling divides into several groups of component and classes.

Figure 2 shows the portion of component diagram named Core. This Core component is

consist of three class diagram namely as Object, Component and GameObject class diagram.

The elements in the GameObject and Components are inherited from the Object class. The

element in Object associates with classes in other components. This Object class is crucial to

create, use or destroy the model for current scene.

Figure 2. Core component diagram in Unity3D

Behaviour component in Figure 3 is consisting of Behaviour and MonoBehaviour class

diagram. This component provides the optional to enable and disable object modelling in

Object class diagram in Core component. Behaviour component also associates with elements

with Rendering, Physic, Effect, and Animation component. Apart of enable and disable, this

component also uses as bases for derived scripts.

Figure 3. Behaviour component diagram in Unity3D

Animation component consists of Animation, Animation State, AnimationEvent,

AnimationClip, AnimationCurve and Keyframe class diagrams. Allow the modification of

game speed, time and scripting to play the game animation, the detail Animation component

diagram in Unity3D is shown in Figure 4.

Figure 4. Animation component diagram in Unity3D

Meanwhile, Figure 5 shows the details of Physic component. Physic component consists

of SphereCollider, Box, WheelCollider, MeshCollider, Capsule, Terrain, Collider,

RigidBody, ConstantForce and CharacterController class. This Physic component provides a

technology for collider and continuous forces between objects. The Collider and RigidBody

class are the main classes that relate all mentioned class to the Behaviour class in Behaviour

component.

Figure 5. Physic component diagram in Unity3D

Rendering component is consists of Camera, LightProbeGroup and LOD that are

composed to the Component class in Core component. The Behaviour class in Behaviour

component is composed of GUIElement, Light, GUILayer , OcclusionPortal, SkyBox and

OcclusionArea class to allow player to view the game scene, texturing images and also

integrates the 2D and 3D elements. Figure 6 shows the Rendering component diagram in

Unity3D.

Figure 6. Rendering component diagram in Unity3D

Figure 7 shows the class diagrams that are embedded in Mesh component. Mesh

component consists of Mesh, MeshFilter, SkinnedMesh and TextMesh class to allow

modification in mesh scripts and filter all mesh components through association with

Component and GameObject class in Core component. Figure 8 incorporates set of classes for

Effect component. This Effect component is consists of ParticleSystem class, LineRenderer

class and TrainRenderer class that associate with Component class in Core component.

Meanwhile Projector and LensFlare class are connects to the attributes in Behaviour

component. Lastly, Figure 9 shows details component diagram for the Asset. It consists

AudioClip, Texture, CubeMap and TextAsset that connects the attributes in Object class in

Core component. Texture3D, Texture2D , MovieTexture and RenderTexture are associated

with TextureClass diagram.

Figure 7. Mesh component diagram in Unity3D

Figure 8. Effect component diagram in Unity3D

Figure 9. Asset component diagram in Unity3D

The following section presents the mapping procedure between UML modelling of

Unity3D and COSMIC FSM. The adaption of COSMIC FSM in UML modelling is crucial

for the identification of functional process and also the data movement which these element

capable to be used later in the estimation process.

5. UML Modelling and COSMIC FSM Mapping

Table 4 presents the mapping rules between COSMIC concept, and UML concept,

diagram and element. Adaptation from Lavazza et al., (2009) proposal, this mapping is

important because it helps to identify the functional process and data movement in Unity 3D.

Component diagram and class diagram are used to classify the data movements that are

included in the functional requirement model. COSMIC FSM functional process categorized

the data movements in entry, exit, read or write data movement using the COSMIC FSM-

UML based rules due to the availability of component diagram and class diagram to sizing the

functional process from the structured environment within the component diagram, class

diagram, the boundary and its interaction as a whole.

Table 4. Mapping rules between COSMIC concept and the UML

(Source: Lavazza et al., 2009)

COSMIC

concept

UML concept UML diagram UML element

Functional

Process

The functional

requirements contained

in the component. Must

reside completely within

one component

Use case Use case

Sequence Sequence interaction

User Surrounding component Use case Agent directly connected with a use

case

Component External component directly

connected with the system.

Boundary Component boundary Use case Boundary of the subject

Component Boundary of the system component

Entry data

movement

Operation in required

interface

Sequence

Component

Class

Message from external component

to the system

Exit data

movement

Operation in provided

interface

Sequence

Component

Class

Message from the system to

external component

Read/Write

data

movement

Parameter with direction

=in/out

Sequence

Component

Class

Message involving persistent data

from system to instance of class

within the system

Triggering

event

Component for

distinguish it from

messages

Component

Class

Operation in interface realized by

the system and invoked

spontaneously by an active external

component

Level of

granularity

Part of categorization Component

Class

Class

Level of

decomposition

Part of categorization Component Data that cross boundaries of the

system, operation of the interfaces

or to parameter of these operations

 COSMIC FSM categorized the data movements into entry, exit, read or write from

the operations in component diagram and class diagram. The identification and categorization

of data movement (entry, exit, read or write) in each functional process is according the

message contained in the function. Entry data movement allows the process of bringing the

message from external resources to the system. It is opposites to exit data movement where

the message from the data in the system to the external component. Read or write data

movement is identified by the message involving persistent data from system to instance of

class within the system. Lastly the triggering events also are performed for this process.

6. COSMIC FSM Measurement for Unity3D

All component diagrams are used in the identification of functional process and data

movement in the Unity3D. The measurement to the function point is based on the

classification within the data group in Unity3D. The identification of data movement, either

read, write, entry or exit data movements are basically from the message carried by the

respective functions. Each function might post a message, which is in either category of a

query message (as read data movement); build connection message (write data movement); a

request message (as entry data movement) or response to the message (exit data movement).

The data movement is illustrated in Table 5 consists of data movement and size of

transaction for Core component, Behaviour component, Physic component, Rendering

component, Animation component, Mesh component, Effect component and Asset

component respectively.

Table 5: Data Movement and Size Of Transaction For Unity3D

Component Process R W E X CFP

Core Object 2 2 2 2 8

Component 3 1 2 1 7

GameObject 5 2 7 1 15

Behaviour Behaviour 0 0 1 1 2

Mono

Behaviour

0 1 3 3 7

Physic RigidBody 5 2 9 1 17

Collider 0 2 0 0 2

Character

Controller

0 2 0 0 2

Wheel

Collider

1 0 0 0 1

Physics 3 8 0 2 13

Rendering Camera 5 9 0 4 18

LOD 1 1 0 0 2

GUIElement 2 0 0 0 2

GUILayer 1 0 0 0 1

Animation Animation

State

0 0 1 1 2

Animation 3 5 4 1 13

Mesh Mesh 5 5 1 0 11

Skinned

Mesh

0 1 0 0 1

Effect Particle

System

4 2 4 0 10

Line

Renderer

0 4 0 0 4

Asset AudioClip 1 1 0 0 2

Procedural

Texture

1 0 0 0 1

Texture3D 2 1 0 0 3

Texture2D 7 7 0 0 14

Movie

Texture

0 3 0 0 3

Render

Texture

1 3 1 1 6

CubeMap 3 3 0 0 6

Texture 2 0 0 0 2

Total CFP 175

This table consist of Process, Message Sent, Data Movement and COSMIC Function

Point (CFP). The example of Entry data movement is identified from the Object data group

represents the FindObjectOfType from the Object component. One Write data movement is

estimated from the MonoBehaviour data group represents the IsInvoking function in

Behaviour component. The Exit and Entry data movement is identified from the

RenderTexture data group represent as DiscardContents and Create functions respectively.

The Unity3D game engine is estimated have 175 COSMIC Function Point CFP by

adding up all the number of Entry, Exit, and Read and Write data movements. The following

contains the procedure of mapping the COSMIC rules and UML concept for Unity3D:

• Step 1 involves the process of capturing the layers embedded in the software. The

illustration of requirement processes are only considers the software layer as one layer

only. All functional requirements are assumed to be on the same level.

• Step 2 provides the identification of the boundary underlying in the software. The

measurement towards this software boundary is from the interaction among

component diagrams in the Unity3D. The component diagrams serves as the

maintenance of the class diagrams that are embedded in the components.

• Step 3 is the process to capture the functional process in Unity3D from the operations

and interactions between class diagrams.

• Step 4 is the process of the finding the data group from the requirements. This paper

by default assumes all functions in the same class diagram as one data group

A. Prototype

This section presents the estimation tool for mobile game application. The values of

components collected from the Unity3D game engine are aggregated into number as a result

of the mapping process between UML modelling and COSMIC FSM rules and measurement.

Mobile game components and its functional values are then structured into this estimation

tool.

This estimation tool provides a set of package entry to allow users to select component

for the mobile game application development. The Unity3D components are listed in two

packages. Fig 10 shows the list of components including Core, Behaviour, Physic and

Rendering. Meanwhile Animation, Mesh, Effect and Asset component are placed in package

two in Fig 11. The overall effort estimation of mobile game application development can be

further processed based the total function point obtained from the package entry.

Figure 10. Package One Figure 11. Package Two

Figure 12. Effort Estimation Calculation

When the entire components have been specified, the tool will computes the total

function point in COSMIC function point. The total cost of software project can be obtained

when user enter duration (per month) to complete the project and salary (per month) for one

programmer, as illustrated in Figure 12. The tool effectively supports the estimation for

mobile game application by using function point approach specifically in COSMIC function

point from the utilization of assets in Unity3D.

7. Conclusion

This paper presented COSMIC FSM for sizing the mobile game development. Creation

of mobile game requires complex requirements. Therefore, adaption of game engine

architecture to represent the requirement of mobile game is acceptable to sizing the effort

estimation of mobile game application using COSMIC FSM rules and measurement.

Selection of Unity3D through the evaluation of game engine methodology proposed by

Petridis’s is important to be use as benchmark for mobile game design. Represented in UML

modelling, Unity3D functions are controlled in the component and class diagrams context in

order to maintain the performance of each function. The mapping procedure between UML

modelling and COSMIC FSM rules is crucial to obtain the COSMIC FSM function point of

mobile game application. This paper also demonstrates an estimation tool to help practitioner

to calculate the effort estimation of mobile game application using COSMIC FSM.

Acknowledgement

The authors express appreciation to Research Management Institute (RMI) and Faculty of

Computer and Mathematical Sciences of Universiti Teknologi MARA for sponsoring this

paper.

References

Abdullah, N.A.S., Rusli, N.I.A., & Ibrahim, M.F. (2013). A Case Study in COSMIC

Functional Size Measurement: Angry Birds Mobile Application. Proceedings of the IEEE

Conference on Open Systems, 139-144.

Abdullah, N. A. S., Rusli, N. I. A., & Ibrahim, M. F. (2014, October). Mobile game size

estimation: COSMIC FSM rules, UML mapping model and Unity3D game engine. In

Open Systems (ICOS), 2014 IEEE Conference on (pp. 42-47). IEEE.

COSMIC–Common Software Measurement International Consortium. (2007). The COSMIC

Functional Size Measurement Method-version 3.0 Measurement Manual (The COSMIC

Implementation Guide for ISO/IEC 19761: 2003). Retrieved from

http://www.cosmicon.com/portal/public/COSMIC%20Method%20v3.0.1%20Me

asurement%20Manual.pdf

DevMaster (2015). Retrieved from http://devmaster.net/.

Gregory, J., Lander, J., & Whiting, M. (2009). Game engine architecture. AK Peters.

Herman, L., Horwitz, J., Kent, S., & Miller, S. (2002). The history of video games.

 Gamespot. Retrieved on February, 7, 2002.

Irrlicht Engine (2015). Retrieved from http://irrlicht.sourceforge.net/.

ISO/IEC 19761. (2003). COSMIC Full Function Points Measurement Manual v.2.2.

ISO/IEC 20926. (2003). Software Engineering – IFPUG 4.1 Unadjusted FSM Method –

Counting Practices Manual.

ISO/IEC 20968. (2002). Software engineering - Mk II Function Point Analysis - Counting

Practices Manual.

ISO/IEC 24570. (2004). Software Engineering-NESMA Functional Size Measurement

Method version 2.1-Definitions and Counting Guidelines for the Application of Function

Point Analysis. International Organization for Standardization, Geneva.

ISO/IEC 29881. (2008). Software Engineering—FiSMA Functional Size Measurement

Method version 1.1, Int’l Organization for Standardization, 2008.

Lavazza, L., & Del Bianco, V. (2009). A case study in COSMIC functional size

 measurement: The rice cooker revisited. In Software Process and Product

 Measurement (pp. 101-121). Springer Berlin Heidelberg.

Leung, H., & Fan, Z. (2002). Software cost estimation. Handbook of Software

 Engineering, Hong Kong Polytechnic University.

Lind, K., Heldal, R., Harutyunyan, T., & Heimdahl, T. (2011, November). CompSize:

Automated size estimation of embedded software components. In Software

Measurement, 2011 Joint Conference of the 21st Int'l Workshop on and 6th Int'l

Conference on Software Process and Product Measurement (IWSM- MENSURA). 86-95.

doi: 10.1109/IWSM-MENSURA.2011.49

Meli, R., & Santillo, L. (1999, October). Function point estimation methods: a

 comparative overview. In FESMA (Vol. 99, pp. 6-8).

ModDB (2015). Retrieved from http://www.moddb.com/.

Panda3D (2015). Retrieved from http://www.panda3d.org/.

Petridis, P., Dunwell, I., de Freitas, S., & Panzoli, D. (2010, March). An engine selection

methodology for high fidelity serious games. In Games and Virtual Worlds for Serious

Applications (VS-GAMES), 2010 Second International Conference on (pp. 27-34). IEEE.

Reality Factory. Retrieved from http://www.realityfactory.info/cms/

http://devmaster.net/
http://irrlicht.sourceforge.net/
http://www.moddb.com/

Soubra, H., Abran, A., Stern, S., & Ramdan-Cherif, A. (2011, November). Design of a

 Functional Size Measurement Procedure for Real-Time Embedded Software

 Requirements Expressed using the Simulink Model. In Software Measurement,

 2011 Joint Conference of the 21st Int'l Workshop on and 6th Int'l Conference on

Software Process and Product Measurement (IWSM-MENSURA) (pp. 76-85). IEEE.

ShiVa Technologies (2015). ShiVa editor. Retrieved from http://www.stonetrip.com/.

Uemura, T., Kusumoto, S., & Inoue, K. (1999). Function point measurement tool for

 UML design specification. In Software Metrics Symposium, 1999. Proceedings. Sixth

International (pp. 62-69).

Unity Technologies (2015). Retrieved from http://unity3d.com/.

http://www.stonetrip.com/
http://unity3d.com/

