UNIVERSITI TEKNOLOGI MARA

STUDY ON NANOSTRUCTURED ZINC OXIDE THIN FILMS CHARACTERISTICS

Thesis submitted in fulfillment of the requirements for the degree of Master of Science

Faculty of Mechanical Engineering

July 2014

AUTHOR'S DECLARATION

I declare that the work in this thesis was carried out in accordance with the regulations of Universiti Teknologi MARA. It is original and is the results of my own work, unless otherwise indicated or acknowledged as referenced work. This thesis has not been submitted to any other academic institution or non-academic institution for any degree or qualification.

I, hereby, acknowledge that I have been supplied with the Academic Rules and Regulations for Post Graduate, Universiti Teknologi MARA, regulating the conduct of my study and research.

Name of Student	•	Ana Syahidah Binti Mohd Rodzi
Student I.D. No.	:	2009623858
Programme	:	Master of Science in Mechanical Engineering
Faculty	:	Faculty of Mechanical Engineering
Thesis Title	:	Study on Nanostructured Zinc Oxide Thin Films Characteristics
Signature of Student	:	An.

Date

July 2014

.

ABSTRACT

The Nanostructured zinc oxide (ZnO) materials in thin film have been achieved using electrochemical deposition (ECD) method. The morphology, crystal structure and optical properties of ZnO nanostructures have been characterized. The best potentials for deposition were -1.0V and -1.1V using ECD method. Analysis using (FESEM) showed that ZnO nanoparticles and nanorods growths uniformly. The XRD patterns of ZnO nanostructures thin films shows evident in good arrangement of crystal structure properties that has been investigated in high deposited temperature at 95°C and annealed at 500°C. It is proved that ZnO thin film texture surface with the c-axis perpendicular to the substrate surface. Deposition of ZnO seed catalysis growth of hexagonal wurtzite structure of ZnO and exhibited good arrangement of ZnO nanorods growth investigated at -1.0V, -1.1V, -1.2V, 1.3V and -1.4V of the potential applied. The highest transmittance spectra of -1.0V potential applied showed 80% transmittance spectra compared to that of other potentials which deposited at high deposition temperature. For piezoelectric properties, results at -1.0 V, -1.1 V and -1.2 V of ZnO thin films can give signal corresponding to the average of current output 600 µA, 200 µA and 50 µA, respectively. As a conclusion, the excellent ZnO nanostructures properties growth by ECD method has been achieved for the best deposition potential at -1.0 V and -1.1 V. Otherwise to improve the crystallites of ZnO has been prepared at high temperature deposition 95°C compare low temperature deposition. The high percentage transmittance has been exhibited at 80% after annealed in oxygen furnace to improve the optical properties.

ACKNOWLEDGEMENTS

Alhamdulillah, praise to Allah S.W.T for His love and Mercy, enable me to complete this research. First and foremost, I would like to give my deepest gratitudes to my research supervisor, Prof. Ir. Dr. Mohamad Nor Berhan for his advice, encouragement and guidance throughout the research. The completion of my thesis would not be possible without his excellent supervision.

I also would like to express my sincere appreciation to my co-supervisor, Assoc. Prof Dr. Mohamad Rusop from Faculty of Electrical Engineering for the support and great encouragement given to me in this research. My special thanks to Dr. Mohd Yusairie, lecturer of Faculty of Applied Science, Universiti Teknologi MARA, for giving me permission to use the AutoLab facility. Many thanks also to NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, for the facilities provided.

I also would like to acknowledge the helpful technicians, Mr Suhaimi and Mr Azlan for their assistance in the lab. Many thanks to the PhD students, Mr Hafiz, Mrs Salina, and Mr Azman and my laboratory colleagues and MSc students, Mr Musa, Mr Faiz, Mr Firdaus, and Mrs Samsiah, for their help, motivation, kindness and support during my study. I also would like to thank Universiti Teknologi MARA and Higher Education Ministry Malaysia (MOHE) for the scholarship and financial support.

Last but not least, I would like to convey my deepest appreciation to my father and mother, Mr. Mohd Rodzi bin Said and Mrs. Aishah Binti Ismail for their prayers every day the keep encouraging and supporting me from behind during my entire research period. All contributions have been most meaningful to me andyour supports have given me the strength to persevere. May Allah S.W.T bless us all.

TABLE OF CONTENTS

	Page
AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLE OF CONTENTS	v
LIST OF TABLES	viii
LIST OF FIGURES	ix
LIST OF ABBREVIATIONS	xvi

CHAPTER ONE: INTRODUCTION

1.1	Nanotechnology	1
1.2	Problem Statement	4
1.3	Objective of the Research	5
1.4	Research Scope	5
1.5	Thesis Organization	6

CHAPTER TWO: REVIEW OF CONTEMPORARY WORKS

2.1	Zinc Oxide (ZnO)	8
2.2	The synthesis of ZnO nanostructures	11
2.3	The characterization of ZnO nanostructures	16
2.4	Chapter Summary	20

CHAPTER THREE: RESEARCH METHODOLOGY

3.1	Sample preparation		22
	3.1.1	As-Received materials	22

v

	3.1.2	Substrate cleaning process	23
	3.1.3	Preparation of ZnO solution	24
	3.1.4	Electrochemical preparation of Nanostructured ZnO Film	26
	3.1.5	ZnO nanorods growth	28
	3.1.6	Thermal annealing process	30
	3.1.7	RF Magnetron Sputtering	34
	3.1.8	Physical vapour deposition (PVD) method	36
3.2	Chara	cterization techniques	38
	3.2.1	Cyclic Voltammetry	38
	3.2.2	X-Ray Diffraction (XRD)	40
	3.2.3	Field EmissionScanning Electron Microscopy (FESEM)	44
	3.2.4	Ultraviolet-Visible (UV-VIS) Spectrophotometer	46
	3.2.5	Photoluminescence (PL)	47
	3.2.6	Raman Scattering (RS)	48
	3.2.7	Piezoelectric properties	51
3.3	Chapt	er Summary	53
CHA	PTER	FOUR: RESULTS AND DISCUSSION	
4.1	Introd	luction	55
4.2	Effect	of precursors using zinc chloride and zinc nitrate	56
	4.2.1	Zinc Chloride as precursor	57
		4.2.1.1 Electrochemical studies	57
		4.2.1.2 Surface Morphology of ZnO thin film	60
		4.2.1.3 Structure of ZnO thin film	62
		4.2.1.4 Transmittance spectra	64
	4.2.2	Zinc Nitrate as precursor	67
		4.2.2.1 Electrochemical studies	67

vi

		4.2.2.2 Surface Morphology of ZnO thin film	68
		4.2.2.3 Structure of ZnO thin film	70
		4.2.2.4 Transmittance spectra	73
4.3	Effect	of deposition temperatures	74
	4.3.1	Electrochemical studies	74
	4.3.2	Surface Morphology of ZnO thin film	76
	4.3.3	Structure of ZnO thin film	79
	4.3.4	Transmittance spectra	81
4.4	Therm	al annealing process	• 83
	4.4.1	Electrochemical studies	83
	4.4.2	Surface Morphology of ZnO thin film	84
	4.4.3	Structure of ZnO thin film	87
	4.4.4	Photoluminescence spectra	88
4.5	ZnO a	s seed catalysis growth on PVD method	91
	4.5.1	Surface Morphology of ZnO thin film	91
	4.5.2	Structure of ZnO thin film	93
	4.5.3	Transmittance spectra	94
	4.5.4	Piezoelectric output current	95
4.6	Chapte	er Summary	96
CHAF	PTER F	FIVE: CONCLUSIONS AND RECOMMENDATIONS	
5.1	Conclu	usions	97
5.2	Recom	amendations	98
REFE	RENC	ES	99
APPENDIX		109	

LISTS OF TABLES

Tables	Title	Page
Table 2.1	Physical parameters of ZnO	11
Table 2.2	Comparison of piezoelectric materials	15
Table 3.1	Materials purchased from commercial suppliers	23
Table 3.2	Parameter and condition set-up to deposit the ZnO seed catalyzed by PVD methods	37
Table 4.1	Summary of crystallite size of ZnO thin films that	71
	increased when the potential decreased to more negative value	
Table 4.2	The plane, FHWM and the grain size of ZnO	94
	nanostructures by XRD results	

LIST OF FIGURES

Figures	Title	Page
Figure 1.1	Schematic of feedback control system with sensors	3
	and actuators capable of translating other forms of energy	
	(in this example, chemical) into and from electrical	
	energy, the language of the microprocessor	
Figure 2.1	The wurtzite structure model of ZnO	9
	with Tetrahedral coordination	
Figure 2.2	The rock salt (left) and zincblende (right) phases	10
	of ZnO. O atoms are shown as white spheres,	
	and Zn atoms as black spheres. Only one unit cell is	
	illustrated for clarity	
Figure 2.3	The summary of some applications	12
	and properties of ZnO nanostructures	
Figure 2.4	Different morphologies of ZnO nanostructures	13
Figure 2.5	Different types of piezoelectric materials	16
Figure 2.6	Variation of capacitance with pressure	17
Figure 2.7	The low and high magnification of SEM images	19
	of the sample grown on the Si substrate with	
	different seed layer. (a)(b) bare Si; (c)(d)ZnO powder;	
	(e)(f)Zn powder; (g)(h) ZnO nanoparticles	
Figure 3.1	Procedure flowchart of cleaning substrate process	24
Figure 3.2	Chemical used in preparation of ZnO solution	25
	(a) zinc nitrate hexahydarate, (b) hexamethylenetetramine	

and (c) potassium chloride

Figure 3.3	The preparation of ZnO solution stirred in	26
	room temperature for 24 hours	
Figure 3.4	The schematic diagram of electrochemical	27
	deposition method set-up	
Figure 3.5	The actual diagram of electrochemical deposition	28
	method set-up using AUTOLAB system	
Figure 3.6	The cycle diagram of chemical reactions	30
	involving ZnO nanorods growth on ITO substrate	
Figure 3.7	ZnO nanorods growth on the ITO substrate	30
	shown for every stage process (a) no deposition	
	(b) nucleation regions where reactions begin	
	(c) ZnO seeds formed (d) ZnO nanorods were grown	
Figure 3.8	Schematic diagram of thermal annealing	31
	of ZnO samples which was located inside the furnace.	
Figure 3.9	The actual diagram of thermal furnace used	32
	to anneal the ZnO samples	
Figure 3.10	The cycles of the annealed the ZnO thin film	33
	inside the thermal annealing oxygen furnace	
Figure 3.11	RF Magnetron Sputtering used to sputter Au on the substrate	34
Figure 3.12	Head of RF Magnetron sputtering where	34
	the substrate was placed	
Figure 3.13	A sputtering technique used to deposit thin films	35
	of a material onto a substrate	
Figure 3.14	The PVD used to deposit the ZnO thin film	36

х

Figure 3.15	The process involved in PVD technique	37
Figure 3.16	The block diagram of major of an	39
	electro analytical system performing voltammetric analysis	
Figure 3.17	XRD machine	40
Figure 3.18	Diffraction of x-rays by planes of atoms	41
Figure 3.19	Typical XRD pattern of ZnO nanoparticles	43
Figure 3.20	Standard JCPDS card of bulk ZnO with hexagonal structure	43
Figure 3.21	(a) The (FESEM) measurement and	• 44
	(b) EDAX results of ZnO nanoarrays	
Figure 3.22	Schematic images of SEM	45
Figure 3.23	UV-VIS Spectrophotometer machine	46
Figure 3.24	Photoluminescence (PL) instrument	47
Figure 3.25	Photoluminescence (PL) spectrum	48
	of ZnO nanowires for polymer doping, grown by	
	physical vapour transport	
Figure 3.26	Schematic diagram of vibration energy in Raman Scattering	49
Figure 3.27	Raman scattering spectrum of the ZnO nanorods	51
	grown at room temperature	
Figure 3.28	ZnO thin film samples measured the	52
	piezoelectric properties of ultrasonic wave.	
	(a) and (b) Actual diagram of measured of ZnO samples	
	and (c) schematic layout of overall experiment be connected	
Figure 3.29	Flow of ZnO thin film fabricated and measured by voltage	53
Figure 3.30	Schematic diagram of summary of methodology in this research	54

Figure 4.1	Simplified diagram overall in results and discussion	56
Figure 4.2	Two types precursors; Zinc Chloride and	56
	Zinc Nitrate used with different parameters	
Figure 4.3	Cyclic voltamnogram curve of ITO-coated glass	58
	in 0.01M ZnCl2 + 0.1MKCl aqueous solution,	
	sweep rate was 50mV/s (red arrow denoted as	
	reduction process, black arrow indicated oxidation process)	
Figure 4.4	The current density-times curve in 300 s of deposition time	59
Figure 4.5	The schematic diagram of ZnO nanoparticles thin film	59
	for all parameters	
Figure 4.6	Morphology of ZnO thin film after deposition	60
	by varying parameters, (a) -1.3 V for 5 min,	
	(b) -1.4 V for 5 min (c) -1.5 V for 5 min,	
	(d) -1.5 V for 10 min, (e) -1.5 V for 15 min	
Figure 4.7	The XRD spectra of ZnO thin films at several	63
	of potential applied	
Figure 4.8	The XRD spectra of ZnO thin films at different times	63
Figure 4.9	Optical transmission of electrodeposited ZnO films of various	65
	potential applied with different methods as-prepared	
	by ECD method and annealed in oxygen atmosphere	
Figure 4.10	Optical transmission of electrodeposited ZnO films of various	66
	deposition times with different methods as-prepared by	
	ECD method and annealed in oxygen atmosphere	
Figure 4.11	Cyclic voltamnogram curve of ITO-coated glass in 0.01M	68
	of Zn (N03)2 + 0.1MKCl+HMT aqueous solution,	
	sweep rate of 50mV/s	

Figure 4.12	FESEM images of nanostructured ZnO on ITO substrate	69
	prepared using zinc nitrate with HMT at (a) -1.0 V,	
	(b) -1.2 V, (c) -1.4 V, and (d) -1.6 V.	
Figure 4.13	FESEM images of nanostructured ZnO annealed	70
	in oxygen on ITO substrate prepared using zinc nitrate	
	with HMT at (a) -1.0 V, (b) -1.2 V, (c) -1.4 V and (d) -1.6 V	
Figure 4.14	The XRD patterns of the electrodeposited film on	72
	the ITO substrate after annealed at 500 °C for	
	different potentials at room temperature	
Figure 4.15	The optical transmittance of ZnO thin film by	73
	electrodeposition without annealed present, where (a)-(d)	
	and annealed (2a)-(2d) were respectively	
	corresponding to -1.0, -1.2, -1.4 and -1.6 V	
Figure 4.16	Cyclic voltamnograms measured at an ITO-glass electrode	75
	in 0.01 M of Zn (NO3)2 with HMT. The sweep was	
	measured at a scan rate of 50mV/s over the potential	
	range from 0 to -2.0 V. (a) whole CV process,	
	(b) the reduction process. Label (i)-(iii) refer to the	
	following electrochemical reaction: (i) oxygen reduction;	
	(ii) deposition metallic zinc, and (iii) deposition metallic zinc	
Figure 4.17	The FESEM images of ZnO nanostructures as-deposited	77
	by electrochemical deposition at 27 °C temperatures for	
	different potentials, where(a) -1.0 V, (b) -1.2 V,	
	(c) -1.4 V and (d) -1.6 V	
Figure 4.18	The FESEM images of ZnO nanostructures as-deposited	78
	by electrochemical deposition at 95 °C temperatures for	

different potentials, where (a) -1.0 V, (b) -1.2 V,

(c) -1.4 V and (d) -1.6 V

Figure 4.19	XRD patterns of ZnO nanostructures deposited	80
	using ECD method where deposition temperatures at	
	(a) T= 27 °C, (b) T= 95 °C for different potentials	
Figure 4.20	Optical transmittance with various deposition potentials	82
	at (i) -1.0 V,(ii) -1.2 V, (iii)-1.4 V, and	
	(iv) -1.6 V for temperature of (a) T= 27 °C and (b) T= 95 °C	
Figure 4.21	Cyclic voltameter curves of ITO-coated glass with bath	83
	temperature of 95°C, sweep rate of 50 mV/s	
Figure 4.22	FESEM images of ZnO thin film before annealing	85
	process at (a) 1000 (b) 10 000, (c) 50 000 and	
	(d) 100 000 magnifications	
Figure 4.23	FESEM images of ZnO thin film after annealing process	85
	at (a) 1000 (b) 10 000, (c) 50 000 and (d) 100 000 magnifications	
Figure 4.24	FESEM images of ZnO thin film after annealing process	86
	at (a) thickness of ZnO thin film (b) EDAX spectra with	
	Zn and O compounds (i) 100,000 magnifications	
Figure 4.25	XRD spectra of ZnO thin films without and	88
	with annealing process	
Figure 4.26	Room temperature of PL spectra of ZnO thin film	89
	without and with the annealed process	
Figure 4.27	Plot of energy band gap of UV emission obtained from	90
	PL measurements of ZnO thin film at as-prepared	
	and annealed temperature	

Figure 4.28	A draft of energy levels of the calculated	90
	defect states in the ZnO film	
Figure 4.29	FESEM images of ZnO seed catalyzed used after	92
	depositing at (a) -1.0V, (b) -1.1V, (c) -1.2V,	
	(d) -1.3V and (e) -1.4V	
Figure 4.30	The XRD spectra of ZnO nanostructures on	93
	different potentials applied	
Figure 4.31	The transmittance spectra of ZnO thin films	95
	as the function of deposition potentials	
	(a) -1.0 V, (b) -1.1 V, (c) -1.2 V, (d) -1.3 V and (e) -1.4 V	
Figure 4.32	Piezoelectric output current of different	96
	ZnO nanorods for different potential applied	
	(a) -1.0V, (b) -1.1V, (c) -1.2V, (d) -1.3V and (e) -1.4V	

LIST OF ABBREVIATIONS

Abbreviations

ZnO	Zinc Oxide
ZNRs	Zinc Oxide Nanoarrays
ZnO NW	Zinc Oxide Nanowires
MEMS	Micro-Electro-Mechanical System
FCC	Face-Centered Cubic
AFM	Atomic Force Microscopy
TEM	Transmission Electron Microscopy
SEM	Scanning Electron Microscopy
FESEM	Field Emission Scanning Electron Microscopy
EDAX	Energy Dispersive Analysis X-ray Spectroscopy
XRD	X-ray Diffraction
PL	Photoluminensce
RS	Raman Scattering
PVD	Physical Vapour Deposition
CV	Cyclic Voltameter
ITO	Indium Tin Oxide
Mn	Manganese
Si	Silicone
SiC	Silicon Carbide
GaAs	Gallium Arsenide
GaN	Gallium Nitrate
NaCl	Rocksalt
ZnCl	Zinc chloride
$Zn(NO_3)_2$	Zinc nitrate
ECD	Electrochemical Deposition
PVDF	Polyvinylidene Fluoride
HMT	Hexamethylenetetramine
KCl	Potassium Chloride
DI Water	Deionised Water

.

ACG	Aqueous Chemical Growth
HT	Hydrothermal Treatment
СТА	Conversional Thermal Annealing
DSCs	Dye Sensitized Solar Cells
LED	Light Emitting Diode
PZT	Lead Zirconate Titanate
RF	Radio Frequency
FWHM	Full Width Half Maximum
Ref.	References
WE	Working Electrode
CE	Counter Electrode
Ag/AgCl	Silver/Silver Chloride

.

CHAPTER ONE INTRODUCTION

1.1 NANOTECHNOLOGY

The word "nano" indicates one billionth of a unit quantity, and research in nanotechnology has rapidly grown every year presenting good improvement in the use of nanomaterials. Nanotechnology refers to control and manipulation of materials in nanometer dimensions [1]. Nanomaterials is defined as material which has dimension or size up to 100 nm of the control of matter within the nanometer range, which has created novel and used to fabricate nanoscale devices. Synthesis of size and shape controlled nanostructures such as rods, cubes, wires, fibers, their self-assembly, properties and possible applications are under rigorous research. The importance of nanotechnology, state of the art technology centers with excellent processing, characterization and device fabrication facilities are being developed. Physical characteristics which are significantly different for these nanostructured materials have been attributed to their structural characteristics between isolated atoms and bulk macroscopic materials. "Quantum confinement" is basically due to changes in the atomic structure as a result of direct influence of the ultra-small length scale of the energy band structure. The electronic, mechanical, optical and magnetic properties of the nanoscale materials can all be attributed to the changes in total energy and structure of the system. In a free electron model, the energy of the electron and the spacing between energy levels, both vary as a function of $1/L^2$, with L as the dimension in that direction.

At nanoscale dimensions, the normal collective electronic properties of the solid become severely distorted and the electrons at this length scale tend to follow the "particle in a box" model, which might often require higher order calculations to account for band structure. The states of electron are more likely those found in the localized molecular bonds than the macroscopic solids. The main implication of such confinement changes in the system total energy, and also the overall thermodynamics stability. The chemical reactivity, being a function of the system structure and the occupation of the outermost energy levels, will be significantly affected at such length, causing a corresponding change in physical properties [2].

COPYRIGHT © UiTM

Most industrial and commercial activities involve control and monitoring environment with application such as safety, environmental and chemical plant instrumentation. Large impact in order to achieve the process or environmental control usually has the connection between the system and the environment to monitor the call sensor. Figure 1.1 shows the standard operation of feedback control system, in which the sensor and actuator have translated the other forms of energy (in this example, chemical) into and form electrical energy to the language of the microprocessors. This operation depends on the availability of appropriate input and output transducers commonly designated as sensor and actuators. Sensor and actuators are working in concert with the 'brain' of the system, the microprocessor. While microprocessor and the requiste analog to digital converters have been available for some decades, sensor and actuator technology has continued to lag, particularly with regard to achieving adequate sensitivity, reproducibility, and stability at reasonable cost [3]. Furthermore, MEMS has given a rapid progress over the past decade, in depositing high quality and reproducible oxide films onto silicon substrates for example high superconductors, high dielectric constant omit dielectrics and ferroelectrics.

In thin film technology, the development of semiconductor materials as sensor tools depends largely to the force-surface interaction which requires fast response time, improves selectivity through the use of arrays and reduces costs. An introduction of new technology known as "smart sensor" which uses small size of semiconductor sensors fabricated on silicon, (Si) substrate allows for integration with Si-based microelectronic circuits and micro-electro-mechanical system (MEMS), applied onchip electronics for data acquisition and signal processing [4,5]

FIGURE 1.1

In fact, in this research, the ZnO materials have been studied as sensor materials that attract many researchers, engineers and academician as it has served various applications such as material science and sensor fabrication field. Therefore, a number of industries and researchers are looking forward and have opened possible ways for them to grab the opportunity to supply the source of materials.

COPYRIGHT © UiTM

1.2 PROBLEM STATEMENT

Most researchers have made some thought on how to develop and optimize the ZnO materials in the electronic device applications. This is due to the limitation of current materials such as silicon (Si) and gallium arsenide (GaAs) in the electronic device application at high temperature conditions, high operating speed and smaller scales are the most important parameters in electronic device fabrication. The ZnO materials have interesting characteristics which enable excellent in physical and chemical properties to improve the stability and durability.

In terms of application of ZnO nanostructures, despite their crystalline morphology, the orientation and surface structure must be well controlled during preparation process, and also can improve the quality of their optical and electronic properties. Unfortunately, ZnO nanostructures such as nanorods that were grown at relatively low temperature usually showed poor crystallization and optical properties too. Therefore, one of the significant differences between ZnO nanostructures and an epitaxial is larger surface area of the former. This is an advantage for some applications, for example sensor device, optoelectronic devices such as light emitting diode (LED) and solar-cell devices. So far, the knowledge about surface recombination or other surface effects in ZnO nanostructures is still limited, which is necessary for further investigation.

There are also cost reduction issue in electronic device fabrication. Therefore, the wide band gap semiconductor such as silicon carbide (SiC), gallium nitrate (GaN) and diamond materials are expensive to prepare and require higher cost to install appropriate equipment for the process. By introducing the metal oxide semiconductor such as ZnO has definitely revealed new performance in fabrication devices, and also cheaper process. ZnO can be fabricated as it is an abundant material, as well as easier to prepare and could be grown on non-crystalline substrate such as glass and polymers.

1.3 OBJECTIVE OF THE RESEARCH

Many researchers have proved that ZnO materials have excellent physical and chemical properties and have been selected as the best material to be fabricated in electronic devices. Hence, this research has been done with three main goals that focus on the following topics which are:

- a. To synthesis the ZnO nanostructured thin film using the electrochemical deposition method
- b. To characterize the ZnO nanostructured thin film using the electrochemical deposition method
- c. To examine the ZnO nanostructured thin film at low and high deposition temperature bath

1.4 RESEARCH SCOPE

In this research, glass and indium tin oxide (ITO) substrates were coated with glass to observe the growth of ZnO nanostructured materials. Glass substrate has good properties such as stable in high temperature, electrical conductor and optically transparent. The glass substrate and ITO-coated glass has dimension of 20 mm x 20 mm x 1mm.

The electrochemical deposition (ECD) method has been used to grow the ZnO thin film by which the preparation of samples is simple, fast and economical as compared to current ZnO preparation method such as sputtering, chemical vapor deposition (CVD) and sol-gel method. The advantages of ECD method become very attractive for commercialization, especially in terms of cost effectiveness.

The sample preparation process was carried out in the laboratory in order to avoid any danger and to ensure a clean environment during experiment. The preparation steps need to be achieved as the ZnO materials can be found in various shapes such as particles, rods and wires in which strongly depend on the experimental parameters used. The types of precursors used, different potential applied, different deposition temperature of bath solution, annealing process were also involved and ZnO thin film was used as a seed catalyst by PVD method.

COPYRIGHT © UiTM

Besides that, in order to prepare the samples, the understanding of the characteristics of ZnO thin film has been studied so that the best properties can be optimized by some testing equipments used in this research. All the parameters were carried out according to types of testing being done, for example to observe the ZnO nanostructures images and diameter using field emission scanning electron microscopy (FESEM) attached with EDAX to determine the composition present in ZnO thin film. Other tests used was x-ray diffraction (XRD) equipment which is very important to analyse the crystal structure of ZnO nanostructure thin film as-prepared and annealed condition. UV-Vis spectrophotometer, photoluminescence and Raman spectroscopy were also used in this research to characterize the ZnO thin film that have optical properties which indicated that the light can transmit through the ZnO thin film by displaying the graphs curves.

1.5 THESIS ORGANIZATION

Chapter one briefly explains about introduction of the research carried out, problem statement, and objective of the research. Research scope is also presented in this chapter.

In chapter two, a brief review is presented from the contemporary works done by previous researcher, particularly on fundamentals on ZnO nanostructures properties, the synthesis methods used before to achieve the desired of nanostructures shapes. This chapter also includes the characterization investigated by some researchers such as morphology, crystal structure and also optical properties results. The comparison of ZnO nanostructures growth in low temperature and high temperature of deposition temperature by ECD method is also provided.

Chapter three introduces the methodology or experimental details used for this work. The preparation of ZnO thin film using ECD method is also discussed and the characterization process is also investigated in order to determine the parameters. All measurements used are mentioned in this chapter.

Chapter four presents the characterization of ZnO nanostructured. Results and discussion of the prepared samples using ECD method are also presented. The study includes thin film structural, morphological, and optical properties. The parameters for the study are two types of precursors used such as zinc chloride and zinc nitrate, different potential applied, and different deposition temperature of bath solution. An

improvement of ZnO nanostructures thin film has also been made which involves the thermal annealing process using the oxygen atmosphere heat at 500°C in one hour. The next improvement is the growth of ZnO nanostructured for uniformity which uses ZnO as seed catalysis deposited by PVD method.

Finally, the thesis ends with some concluding results that achieved in this research through the best results are also presented. The recommendations part also includes for the future research in new technology that be expanded which are also discussed in chapter five.