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ABSTRACT 

Energy management is one of the key issues in designing different types of 
hybrid vehicles, including cars, buses and trains. In this paper a hybrid train 
is studied in three modes of operation, using three different power sources. In 
order to keep the energy consumption at an optimum level, it is necessary to 
consider the characteristics of all the system's elements and also their optimum 
point of service. 

A fuzzy logic based energy management system has been designed and 
implemented. The underlying subject of the fuzzy based energy management 
system is to optimize the efficiency of internal combustion engine, ICE, 
considering the other power sources as flywheel and battery. Simulation results 
have been used to evaluate the performance of the fuzzy logic energy 
management system. 

Keywords: Flywheel Energy Storage (FES), Hybrid Train Systems (UTS), Energy 
Management System (EMS), State of Charge (SOC) 
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Introduction 

Increasing concerns on oil prices, pollution, global warming and future limitations 
on fossil fuels, have forced the railway industries to work more seriously on the 
development of hybrid electric and fuel cell locomotives. 

Hybrid propulsion systems, using a combination of efficient energy storage 
and supply systems, not only provide an ICE system with optimal energy 
consumption but also can maintain the capability of energy recovery in braking 
mode (regenerative braking). [1], [2] 

It is possible to use hybrid systems in two different design configurations 
as series and parallel hybrid configurations. Considering the advantages and 
shortcoming of each configuration for different applications, in this study a 
series hybrid system is modeled and analyzed. 

Flywheel Energy Storage, FES, Systems 

Flywheel Energy Storage systems, FESs, are considered as mechanical batteries. 
They propose some advantageous specifications upon ordinary battery systems, 
especially for hybrid electric trains. Their high specific energy and power, high 
energy efficiency, long life cycle and lower maintenance requirements are the 
main attractive features of FESs. 

Comparing to electrical energy storage equipments, FESs are basically similar 
to ultra capacitors, with this difference that in FESs the energy is stored as 
kinetic rather than potential energy. There is a direct analogy between angular 
speed of a flywheel and voltage in an ultra capacitor. [3] 

Energy storage flywheels are also useful in power conditioning applications, 
when there is a mismatch between the power generated and the power demand 
of the consumer. 

In general FES based hybrid systems for railway trains can be designed in 
three different configurations as: 

• Directly coupling the flywheel to the vehicle drive, via a Continuously 
Variable Transmission (CVT). 

• Using a standalone flywheel assembly, in the train in the same manner as an 
electrical battery. 

• Using the FES system as a stationary energy storage system installed in the 
stations, storing the regenerated energy during the braking mode of the 
train, in its approach to the station, and offering it to the train in its 
acceleration mode, when the train leaves the station. 

Utilization of flywheels in HTS helps in supplying the high energy demand 
of the train, when it is in acceleration mode. This provides the basis for reducing 
the high level of fuel consumption, as is the case in diesel and/or diesel electric 
trains. 
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The FESs also supply part of the required energy for the train movement 
cycle, from one station to the next. This can help to reduce the ICE's operation 
duration. This will also provide the opportunity to operate the ICEs in their 
optimal efficiency condition. 

HTS Configuration and Operation 

Figure 1 represents the block diagram of HTS propulsion system including its 
power sources. In this design, the flywheel is considered as the main source of 
energy and it is charged in each station, to its maximum level of energy, about 2 
MJ. The flywheels usually supply the train in acceleration mode, where the 
energy demand is in its maximum level. 

Flywheel 

(Main Source) 

v y 

Battery 

(Auxiliary I) 

V J 

Diesel generator 

(Auxiliary II) 

\ J 

Figure 1: Block Diagram of the Hybrid Train System 

The batteries as the first auxiliary source of energy have the role of supplying 
energy to the traction system, after the acceleration phase. The'batteries usually 
provide the required energy in low demand mode of train movement, i.e. in 
constant speed mode. They have also the role of stabilizing the train power 
irregularities, due to the changes in demand, in regenerated and/or consumed 
energy. 

The diesel-generator is considered as the second auxiliary source. The 
diesel-generator comes to service, when it is required by the Energy Management 
System, EMS, i.e. when the flywheel and batteries both have gone below a 
predefined State of Charge, SOC, levels. The SOC limit of the batteries, for this 
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purpose, can be defined in a dynamic manner, considering the current and future 
energy requirements of the system. 

In the studied system three different sets of variables as route profile, speed 
profile and driver commands are considered as inputs. 

The EMS output depends not only on the individual energy sources 
conditions, but also on the forthcoming train speed and route profiles. 

The energy management module of the system will determine a primary 
energy profile, based on the planned movement profiles and also efficiency and 
emission diagrams (maps) of the sources, stored in the system. The energy 
profile can be regulated later, in a dynamic way, in any unpredicted situations 
which might occur. These include the operational constraints, midway stops 
and/or speed alterations and so on. 

Figure 2 shows the block diagram of the whole energy management and 
control system. The system is modeled and simulated in Matlab/Simulink 
environment. The results have been compared with the actual data provided by 
references [4] and [5]. 

Route Profile 

Input data Speed Profile 

Driver 
commands 

^ 

Fuzzy logic 
energy 

management 
and control 

Current Train velocity 

State of Energy 

Selection of 
the power 
source and 
operation 

mode 

and route information 

Flywheel 

Battery 

Diesel generator 

- • Traction motor 
and Tram 

Power demand 

Figure 2: Basic Block Diagram of Power Controller 

The following specifications have been considered for the system 
components throughout this research work: 

• Permanent magnet motor: 80kW continuous, 100 kW peak; 
• Battery: 30 KW, 2 KWh; 
• Total vehicle mass: 12000 kg. 
• Internal combustion Engine: 63 KW 

Table 1 provides the system, route and operation characteristics which are 
considered in determining the energy consumption. The information provided is 
based on a typical route, with a predefined speed profile. The train acceleration 
and deceleration are considered as 0.73 m/s2 and 0.6 m/s2 respectively. 

38 



Fuzzy Based Energy Management Algorithm for Hybrid Train Systems 

Table 1: Vehicle, Route and Operation Character Performance Characteristics 

1 

2 

3 

4 

5 

6 

7 

8 

Values 

Max. train speed 

Train acceleration 

Number of axle 

Max. line gradient 

Acceleration mode 

Constant velocity 

Regeneration mode 

Total travelled 

Parameters 

45km/h 

0.73 

4 

4% 

17 s 

30 s 

20 s 

850 m 

Energy Management System 

The energy management system checks the state of energy of different sources 
and allocates them to the traction system, considering the predicted energy 
consumption profile. 

If the total stored energy falls below a minimum predefined level, the diesel 
system will be turned on, although a reduction of train speed, in order to reduce 
the power demand of the system, has a higher priority than activating the diesel 
system. So the energy should be managed in such a way that: 

1. Flywheel provides the required energy, as far as it is reasonable. The 
reasonability is determined by considering all mentioned and related data, 
including the future path of the train. 

2. The batteries will provide the required energy in the low power demand 
mode. 

3. ICE comes to service, considering the efficiency map and power demand 
4. When traction motor goes to regeneration mode, the energy should be 

stored in the flywheel and/or batteries, based on their SOC levels. 

Figures 3 and 4 represent the efficiency maps of permanent magnet motors/ 
generator and ICE respectively. Figure 5 shows the power losses vs. the SOC of 
the batteries considered for this study. The maps are generated, using the Advisor 
modeling system introduced in reference [6]. 

Based on the efficiency maps of the energy sources and also the 
environmental and operational conditions, the EMS determines the optimal 
working points of flywheel, diesel generator and batteries. 

An efficiency of 80% is considered for the flywheel, which corresponds to 
an SOC of 0.3 to 0.9. As Figure 3 shows, the maximum efficiency for generator is 
90% for the speed range of 2000 to 3200 rpm. 
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Figure 3: Efficiency Map of Motor/Generator 
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Figure 4: Efficiency Map of ICE 
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Figure 5: Resistant vs. SOC of Battery 
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In this range, a torque of 80 to 140 Nm can be provided, while for the ICE, a 
maximum efficiency of about 30% for a speed range of 1000 to 3200 rpm and a 
torque of 75 to 120 Nm is expected. Figure 4 

So the optimum working points for a diesel generator should be determined 
based on both generator and diesel efficiency maps. 

For batteries, as Figure 5 represents, the minimum loss is maintained between 
an SOC of 0.3 to 0.8, meaning that the EMS should manage to utilize the batteries 
and also keep them charged in this range. 

Power Prediction and Computing 

A reasonable energy management decision, for distributing the power load on 
the sources, should be based on a fair estimation of the current power 
requirements and also prediction of its forthcoming values. This requires 
information of the route profile, train load, operational requirements, stop point 
of train and etc. Having this information provided, the required energy can be 
determined by train resistance formula. 

R^K^ K2.V+ K^V2 + W.G/100 

In above resistance formula, also known as Davis formula, the followings 
are considered: 

• Kv friction dependent resistance, a function of axle load, surface condition, 
rail and wheel profiles and bearings. 

• K2, coefficient of speed dependent losses, originated from flange friction, 
bumps, etc. 

• Kv coefficient of resistances dependent on square of speed. This includes 
air resistance which depends upon cross section area, shape, length, etc. of 
vehicle. 

• W.G/100, Gradient resistance term, speed independent originated from up 
and downstream gradients. Gradient resistance is considered as the 
component of train weight which is parallel to the grade line. 

Other resistances such as curve resistance are ignored in the above formula. 
Curve resistance is originated from friction of rail flanges against rails as the 
train moves on a curve. For a particular train, the Davis equation can be written 
as follows: 

K3 = (1.3 w.n + 29n) + b.w.n. (at + v0) + c.A. (at + v0)
2 + 20 w.n.G (1) 

E=[lRtV.dt (2) 
* 0 
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E = (at^- (1.3 H\/I + 29 w)) + 

t3 t4 t2 

b.w.n.a — + c.A.a — + 20 w.n.G.a — 
3 4 2 (3) 

Where: 

Rt = resistance force (N) 
n = number of axles 
w = axle load (kg) 
a = acceleration (m/s2) 
G = gradient (%) 
A = area (m2) 
b = friction coefficient 
c = drag coefficient 

Fuzzy Logic Energy Management 

After computing the power demand, the EMS is required to select the online 
power source and the rate of power generation at each particular duration and 
train movement phase. 

The main idea behind fuzzy EMS is to model an expert operator capable of 
controlling the process without using a mathematical description of the process 
behavior as is the case in classical and modern control theories. 

The fuzzy logic EMS is designed to take the responsibility of this task, 
because of the following reasons: 

• The rule-based fuzzy algorithms are more flexible than the classic controllers. 
• Fuzzy rule-based methods are inherently robust to system uncertainties [5] 

and [7]. 

Optimizing the efficiency of ICE is considered as one of the main aims in 
designing the fuzzy rules for the EMS. The fuzzy EMS operates the ICE in its 
optimal operating points (i.e. optimal torque and speed) defined by its efficiency 
map. 

Inputs to fuzzy logic EMS are the batteries' SOC and driver movement 
commands. In the first step (fuzzification), membership degrees of the two inputs 
are computed using the membership functions (MFs). 

Due to the fact that crisp signals are expected from the EMS, Sugeno-Takagi 
fuzzy controller is used in this system. The fuzzy rules specified for the system 
should cover the whole operation area of each particular power supply and 
traction motors. 

Table 2 represents the maximum required power and energy for a typical 
light train for a route of 850 meters, specification of which is provided in Table 1. 
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Table 2: Energy and Power Requirement Data 

1 

2 

3 

Parameters 

Max. power in constant velocity of 50 km/h 

Max. power in 0.7 m/s2 acceleration 

Energy required for acceleration mode 

Values 

15 kw 

70 kw 

1.76 MJ 

The fuzzy rules planned for the EMS can be listed as follows: 

If E flywheel is mot low and P is high then generator mode is OFF. 
If E flywheel is low and P is low and SOC battery is not high then generator 
mode is ON and ? generator is 240 rad/s and T generator is 100 Nm. 
If E flywheel is low and P is high then generator mode is ON and co generator 
is 550 rad/s and T generator is 100 Nm. 
If E flywheel is low and P is normal then generator mode is ON and co 
generator is 240 rad/s and T generator is 100 Nm. 
If E flywheel is low and P is negative low or negative high and SOC battery 
is not high then generator mode is OFF. 
If E flywheel is normal and P is low then generator mode is OFF. 
If E flywheel is high and P is not high then generator mode is OFF. 

0.5! 

Of 

low normal high 

0 0 J 0.2 0.3 0.4 0̂ 5 0.6 0,7 0̂ 8 0.9 1 
input variable"SOCof battery" 

Figure 6: Membership Functions for SOC of Battery 

low normal high 

0.5 

0.2 0.4 0.6 0+8 1 L2 1.4 1.6 
input vaiiableHE of A w h e e l " 

1.8 

Figure 7: Membership Functions for Flywheel Energy 
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0.51 

negative bigb negative low low normal high 

-100 -^0 -60 80 

Figure 8: Membership Functions for Power Demand 

Simulation Result 

The EMS has been implemented and simulated with Matlab fuzzy logic toolbox. 
Figures 9-12 show the operating points of the ICE, generator and batteries. 
Figure 9 shows that the generator has been operated close to its optimal points, 
which is defined for it. 

The operating points for ICE in figure 10 shows that the ICE is operating 
close to its optimal points, in the speed range of 1600-3000 rpm and torque 
range of 75 -120 Nm. 

The batteries are also operated in high SOC range from about 0.6 to 0.85, in 
which low power loss and high efficiency is expected. 

0 500 1000 1SO0 2000 2600 3000 3500 4000 
mOtCf Spttd (tpff>) 

Figure 9: Operation Points of Generator, Using Fuzzy Logic EMS 
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1000 2000 3000 4000 
Sf*0d(fpw) 

5000 6000 

Figure 10: Operation Points of ICE Using Fuzzy Logic EMS 

.xttf* 

02 0.4 00 OB 

Figure 11: Operation Points of Batteries, Using Fuzzy Logic EMS 

Comparing the results of this simulation, with what has been represented in 
reference [4], where a simple controller with similar parameters and conditions 
has been used; about 10% reduction in fuel consumption is achieved. 

Conclusion 

In this paper, a fuzzy logic algorithm for energy management of HTS systems is 
modeled and its performance is analyzed. 

Utilizing a flywheel energy storage system, besides the batteries and a small 
size diesel generator provides different alternatives for the system, in terms of 
energy sources. The EMS optimizes the energy flow between the power sources 
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in different modes of train journey, from one station to the other. The results 
show a considerable reduction in fuel consumption, by operating the ICE in its 
optimal working point. 

Due to the fixed railway routes, the whole journey path can be considered in 
predicting the train's energy profile. This can be a useful area for future research. 
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