UNIVERSITI TEKNOLOGI MARA

CHARACTERIZATION OF PROTEASE FROM THERMOPHILES ISOLATED FROM LOCAL HOT SPRINGS

MOHD NUR FAKHRUZZAMAN BIN NOORIZHAB

MSc

September 2012

ABSTRACT

To obtain enzymes with improved thermostability, many have resort to isolate enzymes from naturally occuring thermophilic organisms. However, the disadvantage is that it is often difficult to get good vield. Hence this study was undertaken to investigate the thermophilic protease production in eight isolated thermophiles (Al, A3, A4, A5, A6, A8, A13 and A14) by both biochemical PCR. All the eight thermophiles were subjected to skim milk agar assay to detect protease enzyme and further amplified by PCR for protease gene. All the eight thermophiles were positive for protease gene but in skim milk assay, only A1, A3, A4, A6 and A8 demonstrated hydrolysis. Comparative analysis amongst these eight indicated that A8 had the highest proteolytic activity and therefore was further examined its potentials. A8 was found to be motile, Gram positive rod with endospore, catalase positive, oxidase negative and is a glucose, sucrose, fructose fermenter except maltose. The protease enzyme was stable at 55°C to 75°C and was Furthermore, A8 protease activity was inhibited by 5 mM most active at pH 7. ethyldiaminetetraacetyl acid and 5 mM phenysulphonylmethylfluoride thus indication that it produced two types of proteases; metalloproteases and serine proteases. Further indentification by 16S rRNA gene sequencing revealed that it is closely related to Geobacillus thermocatenulatus strain BGSC 93A1 with 70% similarity to peptidase of Geobacillus sp. strain C56-T3 (Accession No. CP002050.1), Geobacillus sp. strain Y412MC61 (Accession No. CP001794.1) and Geobacillus kaustophilus strain HTA426 (Accession No. BA000043.1). The protease fragment sequence of Geobacillus sp. strain A8 was submitted to GenBank (Accession No. JF960945) where it codes for S8 peptidase group (a group for serine-type protease). Molecular weight determination by SDS-PAGE for A8 was found to be 20-27 kDa. The total protease activity by fermentation study was 185 U/ml. In conclusion this study had successfully isolated a thermostable protease producer identified as Geobacillus sp. A8 based on 16S rRNA and biochemical analysis.

ACKNOWLEDGEMENTS

Alhamdulillah, first and foremost I would like to express my greatest grateful towards AllahS.W.T., with His Most Gracious and Most Merciful; I was able to complete this study. I would like to express my gratitude to the Ministry of Sciences, Technology and Innovation, Malaysia (MOSTI) for granting me the National Sciences Fellowship (NSF) scholarship.

My sincere appreciation goes to my project supervisor, Associate Professor Dr. Hajjah Zuridah Haji Hassan for the countless guidance, advice, motivations, patience, trust and assistance throughout the period of this study. I am also deeply grateful to my cosupervisor, Associate Professor Dr. Zeenathul Nazariah Allaudin from Faculty of Veterinary Medicine, Universiti Putra Malaysia (UPM) for her kind advice, support and permitting use of the facilities in the Virology Laboratory. Nevertheless, my gratitude also goes to the former Dean of Faculty of Health Sciences, Professor Dr. Abdul Rahim Md. Noor. Special thanks are also extended to all staff of Medical Laboratory Technology, Faculty of Health Sciences, UiTM for their assistance and permission to use some of the equipments for this study. My invaluable thanks also go to the staffs of Virology Laboratory UPM especially to Pn. Noraini and my colleague and also my lecturer, Pn. Siti Nazrina Camalxaman for providing helpful technical assistance and sharing experiences during cloning works.

Furthermore, to many important figures that are closely related to this study, Assistant Science Officer, Pn. Zuliana Zakaria and former post-graduate students, Siti Aisyah Mualif, Izham Naquiddin Shah, to my collegues Norazwin Norazizi, Sufiyan Hadi Mahadir, Mohd Shafiq A'ali, Mohd Shafiq Aazmi, Mohd Ashraf Rostam and Ahmad Norasidi Raffie for their never ending support. My utmost appreciation to my beloved parents and family for their continous prayers and support. This work is also dedicated to them. This study is funded in part by DanaKep 600_RMI/ST/DANA 5/3/Dst (023/2009) and FRGS 02/2007.

TABLE OF CONTENTS

AUTHOR'S DECLARATION	ii
ABSTRACT	iii
ACKNOWLEDGEMENTS	iv
TABLES OF CONTENTS	v
LIST OF TABLES	X
LIST OF FIGURES	xii
LIST OF PLATES	xiv
LIST OF ABBREVIATIONS	XV

CHAPTER ONE: INTRODUCTION

1.1	Background of Study	1
1.2	Problem Statement	4
1.3	Research Output	4
1.4	Hypothesis	5

CHAPTER TWO: LITERATURE REVIEW

2.1	Thermophiles and Thermophilic Enzymes					
	2.1.1 Extreme environments and the origin of thermophy					
	2.1.2	Thermophile as sources of valuable enzymes	9			
	2.1.3	Discovery of thermophiles from different sources	10			
	2.1.4	Thermostable enzymes and its applications	13			
2.2	Protease					
	2.2.1	Classification of proteases	17			
2.3	Approaches in Searching and Identifying Protease Producer2.3.1 Phenotype-based screening method2.3.2 Genotype-based screening method					

	2.3.3	16S rRNA gene sequence identification	ce analysis as of	an accurate tool for bacteria	22
2.4					
2.4	Capability			23	
2.5	Exploration of Protease Gene from the Bacillus and				
	Geobacillus sp.				24
2.6	Bacillu	s sp. as the Main S	Sources of	Industrial Proteases	25
2.7	Methods in Protease Production				
	2.7.1 Fermentation media and its effect on bacterial protease				
2.8	Import	ance of Pro	tease (Characterization	26
2.9	Applications of Molecular Biology Techniques in Improving Protease Versatility as a Multi-industrial Enzyme				
	2.9.1	Rationale behind the mo proteases by genetic eng	odification of gineering	naturally available	28
	2.9.2	Common techniques in	genetic eng	ineering of proteases	29
	2.9.3	TOPO TA cloning and i gene cloning	its advantages	s over conventional	31
CHAPTER THREE: MATERIALS AND METHODS					
3.1 Recovery of A1, A3, A4, A5, A6, A8, A13 and A14 thermophile and <i>Thermus aquaticus</i> (ATCC 25104) from glycerol stocks cultures		nd A14 thermophile glycerol stocks			
		S			33
3.2	Protea	se Producer Screening by	Skim Milk A	Agar (SMA) Assay	36
3.3	Mainte	enance of the A8 Th	ermophile f	or Further Studies	36
3.4	Screening for Protease Gene by PCR				
	3.4.1	Protease gene detection	using degene	rate primers	37
	3.4.2	Analysis of the amplifie the successful of detecti	d gene fragm ng protease g	ents to confirm genes.	40
3.5	Identification of Protease Producing Thermophile through 16S rRNA Gene Sequence Analysis				