

UNIVERSITI TEKNOLOGI MARA

**CODONOPSININE DERIVATIVES AS
POTENTIAL INHIBITORY AGENTS
AGAINST METHICILLIN-
RESISTANT *STAPHYLOCOCCUS*
AUREUS (MRSA)**

SAIFUL AZMI BIN JOHARI

Thesis submitted in fulfillment
of the requirements for the degree of
Doctor of Philosophy

Faculty of Applied Sciences

September 2017

ABSTRACT

Methicillin-resistant *Staphylococcus aureus* (MRSA) is a nosocomial-related and economically-relevant Gram-positive bacterial pathogen that has been known to display multidrug-resistance properties towards a wide range of structurally-unrelated antibiotics and antimicrobial agents. On the other hand, codonopsinine is a plant-based pyrrolidine alkaloid which is known to display remarkable antibiotic, hypotensive and low cytotoxic activity. Previously, 30 codonopsinine derivatives with electron rich functional groups were synthetically produced. In this study, selected microbiological and pre-clinical assays were carried out to investigate the possibility of using codonopsinine derivatives as potential new inhibitory agents against MRSA and methicillin-sensitive *S. aureus* (MSSA) isolates. In the MIC assay, only two novel compounds, MFM501 and MFM514, showed good inhibitory activity with MIC values between 7.81 to 31.3 $\mu\text{g}/\text{ml}$ against 38 MRSA and 13 MSSA isolates. The MBC/MIC ratio exhibited that both active compounds has a bacteriostatic effect against MRSA and MSSA isolates. In the time-kill studies, MFM501 showed a time-dependent killing action while MFM514 displayed a concentration-dependent killing effect. MFM514 also exhibited a faster bacteriostatic action than MFM501. Additionally, SEM analysis suggests that both active derivatives may exert its inhibitory activity via bacterial lysis and/or cytoplasmic membrane disruptions which resulted in the various irregular, distorted, shrunken and larger shapes of the treated MRSA cells. In the *in vitro* cytotoxic assay, both active molecules showed low cytotoxic activity with IC_{50} value of $> 625 \mu\text{g}/\text{ml}$ against three non-cancerous mammalian cells. Following that, oral acute toxicity study revealed that the estimated LD_{50} value for MFM501 was $> 300 \text{ mg/kg}$ and $< 2000 \text{ mg/kg}$ (Category 4) while MFM514 exhibited less toxicity with an estimated LD_{50} value of $> 2000 \text{ mg/kg}$ and $< 5000 \text{ mg/kg}$ (Category 5). Finally, in the mouse protection assay, the ED_{50} values for MFM501 and MFM514 were calculated at 87.16 mg/kg and 29.39 mg/kg dosage, respectively, while both active codonopsinine derivatives exhibited a dose-dependent mice protection trend. This study showed that both active pyrrolidone compounds have the potential to be developed further as clinically active, safe and efficacious anti-MRSA agents. Since the dire need for new antibacterial agents are literally crucial for the survival of mankind, it is hoped that this study will serve as a proof-of-concept paper to interested investors and/or healthcare-related companies for further R&D endeavour and/or commercial applications.

ACKNOWLEDGEMENT

In the name of God, the Most Gracious and Most Merciful, Alhamdulillah, with Allah's permission, I have embarked and completed this long and challenging journey of a PhD study.

My deepest gratitude and respect goes to my main supervisor Assoc. Prof. Dr. Sharifah Aminah Syed Mohamad, Department of Bimolecular Sciences, Faculty of Applied Sciences, Universiti Teknologi MARA (UiTM), for her continuous invaluable advice, constructive suggestions and guidance towards completing this interesting research project.

I would like to extend my appreciation to my supervisory committee, Dr. Mohd Fazli Mohammat, Institute of Science (IOS), Faculty of Applied Sciences, UiTM and Dr. Mastura Mohtar, Antimicrobial Laboratory (MAM), Bioactivity Programme, Natural Products Division, Forest Research Institute Malaysia (FRIM), for their critical and technical discussions on this research project.

My sincere thank also extended to the Department of Public Service (JPA), FRIM and UiTM for the financial supports provided through the 'Hadiyah Latihan Persekutuan', Pre-Commercialization Grant (GPP) and the LESTARI grant for this research study.

My grateful acknowledge is due to my colleagues; Mr. Abd. Rashid Li, for introducing me to Dr. Mohd Fazli Mohammat who eventually starts off this research project; Dr. Nik Musa'adah Mustapha, for the usage of the FRIM Animal House; Mr. Mohammad Jemain Mohammad Ridhwan and Mr. Mohd Kamal Nik Hassan, for their technical discussions on the experimental design and results analysis for mice infection assay; Mr. Azman Mohamed for his tremendous help assisting me in performing the mice infection assay; Mdm. Rohana Sahdan for her help in carrying out the cytotoxicity assay; my MAM co-workers, Mdm. Mazurah Mohamed Isa and Mdm. Hannan Abdul Wahab for their help in preparation of the microbiological component of the research project.

To my beloved wife and sons (Ammar, Luqman and Naufal), thank you for your love and patience throughout this life-changing experience of a PhD student. To my mother and family (Ang, Nizam, Cik Dah, uncles and cousins), thank you for your understanding and constant support throughout my study.

Finally, this PhD thesis is dedicated to the loving memory of my very dear late father, Mr Johari Baharuddin, for his hope and aspiration for me to strive for the highest level of education available. This piece of victory is dedicated to you.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xiii
LIST OF ABBREVIATIONS	xvi
CHAPTER ONE: INTRODUCTION	1
1.1 Background of Study	1
1.2 Problem Statement	4
1.3 Scope and Limitations of the Study	5
1.4 Significance of Study	6
1.5 Objectives of the Study	6
CHAPTER TWO: LITERATURE REVIEW	7
2.1 MRSA: The Incredible Superbug	7
2.1.1 <i>Staphylococcus aureus</i> : An Introduction	7
2.1.2 Emergence of Hospital-Acquired (HA) MDR MRSA	7
2.1.3 Vancomycin: The Last Line of Defence against MRSA Infections	9
2.1.4 New Classes of Drugs against MRSA	10
2.1.5 Invasion of MRSA into Healthy Populations	12
2.1.6 Livestock: A New MRSA-Conquered Frontier	13
2.1.7 Presence of MRSA in Inert Environments	15
2.1.8 Adaptive Nature of MRSA	16
2.1 Significant Role of <i>Staphylococcus aureus</i> in the Rise of Antibiotic Resistance	17
2.2.1 A Brief History of Antibiotics	17
2.2.2 The Rise of Antibiotic Resistance	18

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

Methicillin-resistant *Staphylococcus aureus* (MRSA) is a nosocomial-related, Gram-positive bacteria that has been known to display multidrug-resistance properties towards a wide range of structurally-unrelated antibiotics and antimicrobial agents (Johari et al., 2015). Recently, novel strains have also emerged outside of hospital settings, aptly named as community-acquired (CA) MRSA and livestock-associated (LA) MRSA (Stefani et. al., 2012; Monecke et al., 2011).

Nevertheless, MRSA is still regarded as a major healthcare-associated threat, and one of the most common antibiotic-resistant and economically relevant pathogen in the world as exemplified in Figure 1.1 (Centers for Disease Control and Prevention [CDC], 2015a; CDC, 2015b; Smyth et al., 2010; Oluwatuyi, Kaatz & Gibbons, 2004). MRSA infections or hospital-acquired (HA)-MRSA infections have been a bane in the healthcare community since it was reported in 1961, only two years after methicillin was introduced into clinical practice (Sakoulas & Moellering, 2008; Chambers & DeLeo, 2009).

Although epidemiological data from separate studies were often not comparable owing to differences in study design and populations sampled, a decreasing rate of HA-MRSA infections have been detected all over the world (Chen & Huang, 2014; David, Cadilla, Boyle-Vavra & Daum, 2014). Recent studies have strongly suggest that these declining trends were due to the replacement of current HA-MRSA clones with CA-MRSA strains (Chen & Huang, 2014; David, Cadilla, Boyle-Vavra & Daum, 2014; D'Agata, Webb, Horn, Moellering & Ruan, 2009).

Nonetheless, high MRSA infections (>50%) were still reported in several European and Asian countries such as Malta (51.8%), Romania (64.5%), Vietnam (74.1%), South Korea (77.6%) and Sri Lanka (86.5%) (European Centre for Disease Prevention and Control [ECDC], 2013; Lai et al., 2014). In Malaysia, HA-MRSA has been isolated from patients in Hospital Kuala Lumpur (HKL) as early as 1978, nineteen years after its first appearance in the United Kingdom (UK) (Hanifah, Hiramatsu &