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 This study investigates the influence of fuel injection pressure and 

timing on the performance, combustion, and emission characteristics of 

a single-cylinder, 1500 rpm common rail direct injection (CRDI) diesel 

engine fueled with a diesel–biodiesel blend containing 20% palm kernel 

methyl ester and 80% diesel, enriched with hydrogen at a flow rate of 

10 LPM (PKME20H10). The objective is to enhance engine efficiency 

and emission control through a green hydrogen–biodiesel strategy. 

Artificial Neural Network (ANN) models were developed to predict 

engine responses, and optimization was achieved using the hybrid Non-

Dominated Sorting Genetic Algorithm II (NSGA-II) coupled with the 

Technique for Order Preference by Similarity to Ideal Solution 

(TOPSIS). Experimental and computational analyses revealed that the 

optimal combination of an injection timing of 25 before top dead center 

(BTDC) and an injection pressure of 512 bar achieved a brake thermal 

efficiency (BTE) of 30.1%, a brake specific fuel consumption (BSFC) 

of 0.123 kg/kWh, and substantial reductions in emissions. Carbon 

monoxide emissions decreased by 10%, unburnt hydrocarbon emissions 

decreased by 45%, and smoke opacity decreased by 17%. The study 

demonstrates that hydrogen enrichment in biodiesel improves 

combustion quality and engine sustainability, offering a viable pathway 

for low-carbon automotive energy systems. 
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INTRODUCTION 

The global energy scenario is rapidly evolving due to concerns over fossil fuel depletion, rising greenhouse 

gas emissions, and the growing demand for cleaner and renewable energy sources. The transportation 

sector, which heavily depends on diesel and petrol, is one of the major contributors to air pollution and 

carbon emissions (Prabhu et al., 2023a; Shen et al., 2023; Praveenkumar et al., 2023). This dependence has 

prompted significant research efforts toward developing sustainable alternatives that can be directly utilized 
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in existing compression ignition (CI) engines without extensive modification. Among these alternatives, 

biodiesel has gained substantial attention because of its renewability, non-toxic nature, high 

biodegradability, and lower emission footprint (Anand & Debbarma, 2024; Nithya et al., 2023; Prabhu et 

al., 2023b). 

Biodiesel is typically derived from vegetable oils or animal fats through transesterification, resulting 

in fatty acid methyl esters (FAME) suitable for CI engine operation. Several studies have demonstrated that 

biodiesel can partially replace conventional diesel without compromising basic engine performance. B20 

(20% biodiesel and 80% diesel) blends demonstrate brake thermal efficiency (BTE) comparable to diesel, 

while significantly reducing hydrocarbon (HC), carbon monoxide (CO), and smoke emissions. Studies on 

palm, karanja, jatropha, soybean, and mahua biodiesels further confirm that inherent oxygen content 

enhances combustion efficiency and suppresses particulate formation (Anderson et al., 2023; Kumar & 

Choudhary, 2023; Mohite et al., 2024a). However, biodiesel exhibits certain limitations such as higher 

viscosity, lower volatility, and reduced calorific value, which can negatively influence atomization and 

fuel–air mixing at low loads (Nibin et al., 2024; Gültekin et al., 2024). These drawbacks often result in 

incomplete combustion and slightly higher fuel consumption compared to diesel (Mohite et al., 2024b; 

Panda et al., 2025). 

To address these performance gaps, researchers have explored hydrogen enrichment as a 

complementary approach to improve biodiesel combustion. Hydrogen, being a carbon-free energy carrier, 

possesses a high flame speed, wide flammability limits, and excellent diffusivity (Kanth et al., 2020; Akcay 

et al., 2020; Jamrozik et al., 2020). These properties promote faster and cleaner combustion when 

introduced into the intake manifold or directly into the cylinder of a CI engine. Hydrogen supplementation 

has been found to enhance BTE, reduce HC and CO emissions, and improve the heat release profile (Jabbr 

& Koylu, 2019; Santhosh & Kumar, 2021). Kanth et al. (2019) reported a 2.2% improvement in BTE and 

a 24% reduction in CO emissions when hydrogen was blended with biodiesel under dual-fuel conditions. 

Jabbr & Koylu (2021) showed that hydrogen addition in hydrogen–diesel mixtures reduced soot by 60%, 

while Akcay et al. (2021) observed higher in-cylinder pressure and improved combustion completeness in 

hydrogen-enriched waste-oil biodiesel. Similar studies by Sun et al. (2024) and Jia et al. (2024) concluded 

that moderate hydrogen flow rates (4 L/min - 10 L/min) enhanced engine performance and reduced 

emissions, though excessive enrichment caused NOx to rise due to higher combustion temperatures. 

Hydrogen therefore, acts as an efficient supplementary fuel for biodiesel-powered engines, yet its 

optimal proportion and control parameters require precise calibration. The oxides of nitrogen (NOx)–

efficiency trade-off remains a persistent challenge because increasing hydrogen concentration improves 

combustion efficiency but also elevates in-cylinder temperatures that accelerate NOx formation (Holman 

& Gajda, 1978; Debbarma et al., 2020). Hence, fine-tuning of injection pressure (IP) and injection timing 

(IT) is essential to balance combustion quality, emission characteristics, and fuel economy (Bhowmik et 

al., 2025; Vadlamudi et al., 2025). Injection timing determines the start of combustion and influences 

ignition delay, while injection pressure controls atomization and air–fuel mixing. Earlier injection tends to 

increase peak pressure and temperature, leading to improved BTE but higher NOx, whereas delayed 

injection may reduce thermal efficiency and increase CO and HC emissions. Similarly, higher injection 

pressure promotes finer spray formation and faster mixing but may also contribute to increased NOx at 

elevated loads (Seelam et al., 2022; Ramachander et al., 2021). 

A review of recent literature highlights a clear research gap: although several studies have addressed 

biodiesel–hydrogen dual-fuel operation, very few have investigated the combined optimization of injection 

timing and pressure using a systematic multi-objective framework. Most prior studies focused on 

experimental variations of either fuel composition or injection parameters, neglecting their complex 

nonlinear interactions. Given that multiple engine responses such as brake thermal efficiency (BTE), brake 

specific fuel consumption (BSFC), NOx, smoke, and CO must be optimized simultaneously, classical 
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methods alone are insufficient for deriving the best compromise solution. Consequently, advanced 

computational intelligence techniques have become indispensable in modern engine optimization. 

Artificial Neural Networks (ANNs) have emerged as a powerful tool for modeling complex nonlinear 

relationships among engine input and output parameters. ANNs can accurately predict responses such as 

performance and emissions based on experimental datasets, minimizing the number of physical tests 

required. They have been effectively applied to simulate combustion behavior in diesel, biodiesel, and dual-

fuel engines with high correlation accuracy (Vadlamudi et al., 2023a). However, prediction alone does not 

resolve the optimization challenge. Therefore, evolutionary algorithms, particularly the Non-Dominated 

Sorting Genetic Algorithm II (NSGA-II), are often employed for multi-objective optimization. NSGA-II 

can efficiently identify a set of Pareto-optimal solutions that represent the best trade-offs between 

conflicting objectives such as high efficiency and low emissions. Since NSGA-II produces multiple optimal 

solutions, decision-making techniques like the Technique for Order of Preference by Similarity to Ideal 

Solution (TOPSIS) are subsequently integrated to rank and select the most balanced configuration 

(Vadlamudi et al., 2023b; Santosh & Kumar, 2021). 

The integration of ANN with NSGA-II and TOPSIS offers a robust hybrid framework that bridges the 

gap between experimental data and intelligent decision-making. ANN-based metamodels predict 

performance and emission responses under diverse injection settings, NSGA-II explores the optimization 

space, and TOPSIS identifies the most feasible solution. This combination ensures accurate prediction, 

efficient optimization, and systematic ranking of results, enabling data-driven improvements in fuel 

injection control strategies for hydrogen–biodiesel dual-fuel common rail direct injection (CRDI) engines. 

This study experimentally and computationally optimizes a CRDI engine using diesel–biodiesel blend 

containing 20% palm kernel methyl ester with 10 LPM hydrogen enrichment (PKME20H10), analyzing 

injection timing and pressure effects at 1500 rpm.  The engine data are then used to train and validate ANN 

models, which are further coupled with NSGA-II and TOPSIS for identifying the best compromise 

configuration between thermal efficiency and emissions. The study aims to establish a reproducible 

methodology that integrates empirical experimentation with artificial intelligence-based multi-objective 

optimization. It is important to note that while the introduction previously mentioned long-term engine 

performance, economic viability, lifecycle assessment, and advanced real-time control systems, these 

aspects were not within the current experimental scope. The primary emphasis of this study is therefore 

limited to performance, combustion, and emission optimization of hydrogen–biodiesel blends under 

different injection strategies. The long-term and economic analyses are acknowledged as future research 

directions that will extend the present findings toward holistic sustainability assessment. 

In summary, this study explores the effect of hydrogen enrichment and injection parameter variation 

on biodiesel fueled CRDI engine operation. It develops an intelligent ANN–NSGA-II–TOPSIS framework 

for optimal parameter selection, aiming to enhance energy efficiency, minimize pollutant emissions, and 

contribute to cleaner engine technologies aligned with global carbon neutrality goals. 

 

EXPERIMENTAL SETUP AND PROCEDURE 

Experiments used a single-cylinder CRDI diesel engine with eddy-current dynamometer; specifications, 

setup, as illustrated in Fig 1, and output uncertainty analyses are summarized in Tables 1 and 2. 

Fuel blend preparation 

The palm kernel methyl ester (PKME) used in this study was produced by transesterification of crude 

palm kernel oil with methanol and potassium hydroxide (KOH) under controlled temperature and agitation 

at Apex Innovations Laboratory, Pune (India), attaining > 98 % conversion. The purified biodiesel was 

blended with diesel to prepare PKME20 (20 % biodiesel + 80 % diesel). Table 3 shows the details of 
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physicochemical properties of fuels used in the study. For hydrogen enrichment, compressed hydrogen 

(purity > 99.99 %) was supplied from a 250-bar cylinder through a pressure regulator, flame arrester, and 

flow-control valve. The flow rate was maintained at 10 L min⁻¹ using a calibrated rotameter, forming the 

PKME20H10 mixture.  

 

Fig. 1. Experimental setup. 

Table 1. Engine specifications 

Different parameters Specifications 

Model APEX Cr.DI. 

Rated power, dynamometer 5.2 (kW), Eddy current 

Speed 1500 (rpm) 

Compression ratio and cylinder bore 17.5:1 & 87.5 (mm) 

Stroke (mm) 110 

 

Table 2. Uncertainty parameters 

Parameters Accuracy and uncertainty (%) 

Measured values 
 

Speed (rpm) ± 1 & ± 1.42 

HC (ppm) ± 10 & ± 1.0 

CO ± 0.01 & ± 0.5 

NOₓ (ppm) ± 10% & ± 1.52 

Smoke opacity ± 1% & ± 2 

Calculated values 
 

BTE – & ± 0.8 

BSFC – & ± 0.25 
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Table 3. Physicochemical properties of fuels used in the study 

Fuel Cetane number / Octane number Density (kg/m³) Viscosity (mm²/s) Calorific value (MJ/kg) 

Diesel 46 834 3.32 44.552 

PKME100 51 886 4.66 42.255 

PKME20 48 872 3.91 42.188 

Hydrogen 130 (Octane number) 0.06 0.84 118.3 

Test conditions and measurements 

Experiments were conducted at a constant speed of 1500 rpm under six brake-power (BP) levels (1.0 

– 3.5 kW). Injection pressures of 400, 500, and 600 bar and injection timings of 21, 23, and 25 CA bTDC 

were tested. A piezoelectric pressure transducer mounted on the cylinder head recorded in-cylinder 

pressure, and data acquisition was performed through a high-speed interface with LabVIEW software. K-

type thermocouples measured intake-air, exhaust-gas, and lubricant temperatures. CO, CO₂, NOx, and HC 

were measured using an AVL five-gas analyzer, and smoke opacity was determined using an AVL 437 

smoke meter. All instruments were calibrated prior to testing, and each point was recorded after 15 min of 

steady-state operation. The hydrogen line shown in Fig 2 consisted of a cylinder, flow meter, flame arrester, 

and non-return valve; manifold pressure was maintained at 2 bar to ensure uniform air-fuel mixing and 

operational safety. 

Experimental protocol 

Baseline data were first obtained with D100, followed by PKME20 and PKME20H10 under identical 

load and parameter conditions. Each test was repeated three times, and the average value was used for 

analysis. The measured parameters in-cylinder pressure, heat-release rate, and ignition delay were used to 

interpret the effect of injection timing and pressure on combustion, performance, and emissions.  

Artificial neural network (ANN) methodology 

ANN models predicted engine performance, combustion, and emissions using experimental hydrogen-

biodiesel data. The network was trained and validated using MATLAB R2023b Neural Network Toolbox, 

following the feed-forward back-propagation algorithm.  

Network configuration 

A three-layer feed-forward architecture (input, hidden, and output layers) was employed. 

• Input parameters: Load, injection pressure, injection timing, fuel type (D100, PKME20, 

PKME20H10), and hydrogen flow rate. 

• Output parameters include BTE, BSFC, UHC, CO, smoke opacity, and NOx. 

The log-sigmoid activation function was used in the hidden layer and the linear transfer function in the 

output layer. The network weights were optimized using the Levenberg–Marquardt (trainlm) back-

propagation algorithm owing to its rapid convergence and stability in nonlinear mapping problems (Dahake 

et al., 2024; Pitchaiah et al., 2023). 

Data division and training 

The total dataset, comprising 162 experimental observations, was randomly divided into: 

• Training set – 70 %, 

• Validation set – 15 %, and 
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• Testing set – 15 %. 

During training, the algorithm iteratively minimized the Mean Squared Error (MSE) between predicted 

and experimental values until convergence. The performance of each developed model was evaluated using 

the statistical indices Mean Absolute Percentage Error (MAPE), Root Relative Squared Error (RRSE), and 

the correlation coefficient (R) as defined in Equations 1–3. Low MAPE/RRSE and high R values confirmed 

model accuracy (Liao et al., 2023). 

Integration with optimization framework 

The validated ANN models were integrated with NSGA-II for multi-objective optimization, while 

TOPSIS identified the most balanced solution from the Pareto set. This integrated framework allowed 

simultaneous optimization of efficiency and emission parameters, forming the methodological backbone of 

this research (Wang et al., 2023; Zeng et al., 2023). 

 

RESULTS AND DISCUSSION 

The optimization of injection time and injection pressure of a diesel-biodiesel blended fuel for a hydrogen-

enriched engine is being showcased in the current research work. The discharge of the engine considered 

for the study is around 7 lpm to 13 lpm. In case of a hydrogen engine, the deviation of the brake thermal 

efficiency for varying brake power is illustrated in Fig 2(a). The brake thermal efficiency ascends with an 

ascending flow rate of hydrogen and vice versa, as observed from Fig 2(a). However, in the case of higher 

loads, the amount of NOx emitted is significantly higher for a rise in the flow rate of hydrogen (at 13 lpm), 

as shown in Fig 2(b). Henceforth, the flow rate of hydrogen was fixed at 10 lpm to obtain the required 

results by changing the parameters, viz., injection pressure and injection time.  

  
(a) (b) 

Fig. 2. (a) Variation in BTE with different fuel and (b) variation in NOx of different fuel. 

Energy share 

The study explores pre-mixed lean combustion by analyzing the energy contribution of injected fuel. 

It found that hydrogen intake impact during combustion is minimal under varying PKME20 inputs, load, 

and injection parameters. Higher energy contributions from hydrogen in dual-fuel engines are controlled 

by increasing injection pressures and times, especially as PKME20 provides more energy at higher loads. 

Combining hydrogen with PKME20 increases energy share during combustion, particularly with injection 
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pressures raised from 400 to 500 bar. At 600 bar, using a hydrogen-PKME20 blend lowers cylinder internal 

temperatures, preventing flame spread (Vadlamudi et al., 2025). This modulation of energy share in dual-

fuel mode considers the energy ratio of primary to pilot fuel. 

Table 4 shows variations of injection time and pressure for both Hydrogen and PKME20 at a discharge 

of 10 lpm or 0.05 kg/h of introducing hydrogen. For Hydrogen and PKME20, it was observed that, with 

the variation of injection pressure, energy shared with brake power varies too, as shown in Fig 3(a)-(b).  

Table 4. Experimental matrix 

Test fuels FIT and IT 

D100, PKME20, PKME20H10 
21 CA bTDC, 23 CA bTDC, 25 CA bTDC 

400, 500 & 600 bar 
*FIT – Fuel Injection Timing (expressed in crank angle degrees before top dead center,  CA bTDC) 
*IT – Injection Timing / Injection Pressure variable pair, indicating the combined test parameter in which injection timing ( CA 

bTDC) and injection pressure (bar) were systematically varied to study their influence on performance and emissions. 

 

  
(a) (b) 

Fig. 3. Energy shared with brake power (a) different fuel and (b) H2 different IP. 

Combustion characteristics 

In-cylinder pressure 

Changes in injection timing significantly impact cylinder pressure dynamics, as observed in Fig 4. 

Enhanced timing increases the pressure, raising the temperature and pressure around the top dead center. 

Early injection, initially inadequate for combustion support, necessitates additional fuel to increase chamber 

density and facilitate rapid combustion at a pre-mixture stage, elevating maximum pressure from 400 to 

500 bar. PKME20H10 shows a 5.55% higher injection timing than diesel, reaching peak cylinder pressures 

around 72 bar at 500 bar injection pressure. Conversely, PKME20 has a 7.35% lower timing due to quicker 

ignition and better atomization. As pilot fuel ignites 1 - 3 before diesel and biodiesel, cylinder pressure 

escalates with increased hydrogen content. Higher pressures achieved by advancing the injection pressure 

from 500 to 600 bar result in finer atomization and reduced spray momentum, while quicker ignition from 

the premixed fuel leads to pressure improvements (Farooq et al., 2024; Panda et al., 2025; Seelam et al., 

2022). However, the biodiesel blend shows weaker atomization due to higher viscosity and surface tension, 

impacting pressure behavior during the injection cycle at 21 CA bTDC (Nithya et al., 2023; Anderson et 

al., 2023; Isler-Kaya & Karaosmanoglu, 2023). 
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(a) (b) 

 

 
(c) 

Fig. 4. In-cylinder pressure: (a) 400 bar, (b) 500 bar, and (c) 600 bar. 

Heat release rate 

Fig 5 showcases how different injection timings and pressures impact heat release in diesel engines 

with hydrogen-enhanced fuels, based on data averaged over 100 engine cycles. Heat release rate, crucial 

for diesel combustion prediction, adheres to the first law of thermodynamics (Santhosh & Kumar, 2021; 

Seelam et al., 2022; Ramachander et al., 2021). The PKME20 blend at 500 bar and 23 CA bTDC achieves 

a heat release rate of 44.21 J/CA, 10.45% lower than pure diesel. This is due to PKME20's higher latent 

heat, lower calorific value, and viscosity, leading to larger fuel droplets and less efficient vaporization at 

partial loads. However, at full load, higher cylinder temperatures break these droplets into smaller 

fragments, improving combustion. Hydrogen's impact varies; it leans the fuel mix at lower loads, reducing 

heat release, while at higher loads, it boosts peak heat due to its high diffusivity. PKME20H10 consistently 

exhibits the highest heat release across all settings, benefiting from advanced injection timings for better 

air-fuel mixing and combustion efficiency. Higher pressures enhance the mixture and maximize heat 

release, as seen in steeper slopes on the heat release rate curve, indicating extended combustion phases. 

Increased injection pressures create finer spray droplets, accelerating the air-fuel mixture and reducing 

combustion initiation time, especially for hydrogen and biodiesel blends burning earlier. These blends at 

500 bar reach a maximum cylinder pressure of 56.5 J/CA, 20% higher than diesel, improving combustion 

but also posing challenges like fuel wall extinguishing (Loganathan et al., 2020; Akcay et al., 2021). 
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(a) (b) 

 

 
(c) 

Fig. 5. Heat release rate (HRR): (a) 400 bar, (b) 500 bar, and (c) 600 bar. 

Ignition delay  

Fig 6 illustrates how engine load influences ignition delay across various fuels. Higher cylinder 

temperatures at increased loads reduce ignition delays. PKME20, with its higher oxygen content, mixes 

more readily than other fuels, resulting in a 20% shorter delay than diesel at high loads. Conversely, 

hydrogen's higher auto-ignition temperature prolongs mixing time, complicating engine starts. The higher 

cetane number of pilot fuels extends combustion duration, affecting cylinder temperature and auto-ignition 

(Seelam et al., 2022; Vadlamudi et al., 2023b). PKME20H10 shows a 25% reduction in ignition delay 

compared to neat diesel, highlighting faster combustion readiness at full load. 

The present findings are consistent with previous observations by Akcay et al. (2021) and Jamrozik et 

al. (2020) who reported enhanced premixed combustion and increased cylinder pressure with hydrogen 

addition in diesel and biodiesel dual-fuel engines. In this study, PKME20H10 exhibited approximately 13% 

15% higher peak in-cylinder pressure than D100 at 500 bar, which aligns with the 10% - 14% improvement 

reported by Kanth et al. (2020) for hydrogen-enriched honge biodiesel. This enhancement confirms the 

superior flame propagation and heat release characteristics of hydrogen-assisted combustion. 
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Fig. 6. Ignition delay. 

Performance characteristics 

 Brake thermal efficiency 

Fig 7 highlights the impact of injection timings and pressures on Brake Thermal Efficiency (BTE) for 

PKME20, diesel, and hydrogen blended PKME20 (PKME20H10). At 400 bar and 230 CA bTDC, BTE is 

recorded at 26% for PKME20 and 25.4% for diesel. Increased pressures and optimal mixing, achieved 

through better atomization, elevate BTE; at 500 bar and 230 CA bTDC, PKME20 shows a BTE of 25.71%, 

diesel at 26.78%, and PKME20H10 reaches 28%. These results underscore the role of precise injection 

timing and higher pressure in enhancing thermal efficiency by improving the air-fuel mixture and 

combustion quality. However, as pressure escalates to 600 bar, despite faster combustion due to higher 

calorific value and burning speed of hydrogen in PKME20H10, BTE decreases slightly due to the extended 

time required to build pressure and the effects of higher viscosity and surface tension under different engine 

conditions (Farooq et al., 2024; Nibin et al., 2024; Vadlamudi et al., 2023b).  

  
(a) (b) 
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(c) 

Fig. 7. Variation of brake thermal efficiency (BTE): (a) 400 bar, (b) 500 bar, and (c) 600 bar. 

The BTE of PKME20H10 exceeded that of pure diesel by 4% - 5%, particularly at 500 bar and 23° CA 

bTDC, which reflects the synergistic combustion of biodiesel oxygen and hydrogen’s high diffusivity. 

Similar results were reported by Tayari & Abedi (2019) and Mohite et al. (2024b), who observed 3% - 6% 

improvement in efficiency with microalgae- and algae-derived biodiesel–hydrogen blends. These 

comparisons affirm that the current PKME20H10 blend offers higher efficiency than both neat diesel and 

conventional biodiesel blends due to improved atomization and shorter ignition delay. 

Brake specific fuel consumption 

Brake-specific fuel consumption (BSFC) trends spanning injection timings and pressures are shown in 

Fig 8. As load increases, BSFC falls for all test fuels, regardless of injection timing or pressure. BSFC is 

0.29 kg/kWh for the PKME20H10 version at 90% load, 23 CA bTDC injection timing, and 500 bar 

injection pressure. However, BSFC is 0.33 kg/kWh for PKME20 at the same load. Compared to diesel, 

PKME20H10 has a 6.45% lower BSFC and PKME20 a 6% higher one. Increased injection pressure 

improves air-fuel mixture efficiency, lowering BSFC in the PKME20H10 version. To compensate for 

PKME20H10's slower evaporation, fuel injection is increased. Hydrogen-rich fuels have lower BSFC due 

to higher flame speed, wider flammability range, and shorter quenching distance. BSFC improves when 

injection pressure hits 600 bar due to inefficient air-fuel diffusion. Injecting fuel at lower cylinder 

temperatures and changing the injection time from 23 to 25 CA bTDC reduces combustion efficiency and 

BSFC (Nithya et al., 2023; Runyon et al., 2024; Liao et al., 2023). 

A comparative reduction of 6.4% in BSFC for PKME20H10 over D100 correlates well with the 5% - 

7% reduction reported by Jabbr & Koylu (2019) for hydrogen-diesel dual-fuel engines. The improvement 

is attributed to hydrogen’s rapid flame propagation and uniform energy release, confirming that the fuel 

blend used in the present study performs competitively with prior hydrogen-enriched biodiesel systems. 
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(a) (b) 

 

 
(c) 

Fig. 8. Variation of brake-specific fuel consumption (BSFC): (a) 400 bar, (b) 500 bar, and (c) 600 bar. 

Emission characteristics 

Unburnt hydrocarbon emission 

Fig 9 illustrates how injection timings and pressures influence unburnt hydrocarbon emissions using 

PKME20, diesel, and a hydrogen-biodiesel mix (PKME20H10). At 500 bar, optimal air-fuel mixing 

significantly lowers unburnt hydrocarbons, while at 600 bar, suboptimal combustion increases them. 

Advanced timing at lower pressures effectively reduces emissions; however, at pressures above 600 bar, 

emissions rise due to less efficient combustion. The addition of hydrogen, known for its higher calorific 

value and broad flammability range, consistently lowers unburnt hydrocarbons across all pressures. 

Enhanced injection timing improves combustion efficiency and reduces hydrocarbon emissions, with 

PKME20H10 and PKME20 showing 34 ppm and 40 ppm, respectively at 500 bar, significantly 

outperforming diesel (Vadlamudi et al., 2023a; Liao et al., 2023). 
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(a) (b) 

 

 
(c) 

Fig. 9. Variation of unburnt hydrocarbon emissions (UHC): (a) 400 bar, (b) 500 bar, and (c) 600 bar. 

Carbon monoxide emission 

A scarcity of oxygen or a reduction in temperature inside the cylinder helps prevent carbon monoxide 

from converting into carbon dioxide after getting oxidized. The advancement in the timing of injection 

leads to enhancements of CO emissions as seen from the results. Since most fuel is used in pre-mixture 

combustion, advanced injection timing lowers bulk cylinder temperatures and CO2 oxidation (Gültekin et 

al., 2024; Panda et al., 2025). At 600 bar, injection pressure increases CO emissions, whereas at 500 bar, 

finer atomization improves combustion. Advanced injection timing for PKME20, diesel, and PKME20H10 

increases CO emissions at 600 pressure. Improper air-fuel mixture compromises combustion efficiency, 

primarily affecting CO emissions (Seelam et al., 2022; Vadlamudi et al., 2023a, 2023b). Raising injection 

pressure (Fig 10) to 500 bar from 400 bar enhances combustion, reducing CO levels. The PKME20H10 

blend achieves complete combustion, lowering CO emissions by 16% at 23 CA bTDC and 500 bar 

injection pressure, potentially resulting in reduced CO2 emissions due to higher oxygen content. Hydrogen 

inclusion in the blend further reduces both CO and CO2 emissions, as hydrogen's diffusivity and reduced 

carbon intake enhance combustion efficiency.  
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(a) (b) 

 
(c) 

Fig. 10. Variation of CO: (a) 400 bar, (b) 500 bar, and (c) 600 bar. 

The pronounced decrease in UHC (≈45%) and CO (≈16%) emissions for PKME20H10 relative to 

diesel agrees with the experimental outcomes of Loganathan et al. (2020) and Vadlamudi et al. (2025), who 

documented significant reductions in incomplete combustion species with biodiesel–hydrogen mixtures. 

This correspondence validates that hydrogen addition promotes complete oxidation by expanding the 

flammability range and enhancing air–fuel mixing. 

Smoke opacity 

With an increase in injection pressure, the smoke opacity levels were observed to be decreased (Fig 

11). As per the observed pattern, with the increase in fuel injection timing, smoke opacity levels decreased. 

Lesser fuel rich zones were observed due to the uniformity in air fuel mixture caused by better atomization 

of fuel. Thus, the formation of soot also decreased significantly. Moreover, the availability of spare time 

during the mixing of air and fuel also causes a reduction in soot formation. At 23 CA bTDC and 500 bar, 

the levels of smoke were 28.7% lesser than diesel at higher loads. The smoke opacity reduces significantly 

at higher injection pressure due to uniformity in the air-fuel mixture, and is caused by the introduction of 

hydrogen which has a higher diffusivity. The smoke opacity rises above the pressure of 600 bar, subject to 

the delay in injection at higher injection pressure. 
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(a) (b) 

 

 
(c) 

Fig. 11. Variation of smoke: (a) 400 bar, (b) 500 bar, and (c) 600 bar. 

Oxides of nitrogen 

An improved combustion is achieved due to a negligible rise in NOx emissions at advanced injection 

timings and a better mixture of the air and fuel during the combustion (Fig 12). This is mainly due to the 

elevated temperature of the combustion cylinder, that raises the rate of Nox emission produced. High 

injection pressure causes this combustion type with high NOx and cylinder temperature. At 23 CA bTDC 

and 500 bar, PKME20 and PKME20H10 have greater NOx levels (7.25% and 10.3%, respectively) than 

pure diesel. NOx emissions increase due to a rise in temperature inside the cylinder caused by hydrogen’s 

higher calorific value in addition to a change in injection pressure from 400 to 500 bar. The pilot injection 

pressure rises to a maximum when the internal temperature of the cylinder is higher, and the combustion 

takes place much quicker. The decline in temperature is more in the case of 600 bar injection pressure as 

compared to 500 bar due to partial combustion (Akcay et al., 2021; Vadlamudi et al., 2025). 
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(a) (b) 

 

 
(c) 

Fig. 12. Variation of NOX: (a) 400 bar, (b) 500 bar, and (c) 600 bar. 

Although NOx emissions increased by about 10% for PKME20H10 compared to D100, this behavior 

is consistent with Arslan & Kahraman (2022) and Mohite et al. (2024b), who also reported a similar NOx 

rise due to elevated combustion temperatures in hydrogen-assisted biodiesel operation. Nonetheless, the 

concurrent 28.7% reduction in smoke opacity underscores the clean combustion advantage of the proposed 

blend. The balance achieved between NOx increase and reductions in CO, HC, and smoke confirms the 

environmental suitability of hydrogen–biodiesel fuels. 

Artificial neural network strategy 

Artificial neural networks (ANNs) learn from data via a structured process. This training involves 

building the network and applying both feed-forward and back-propagation techniques. In feed-forward, 

neuron outputs are determined based on input strengths (Dahake et al., 2024; Liao et al., 2023). In the back 

propagation method to improve the model performance, the network weights are updated with respect to 

minimization of mean squared error (MSE). This process of improving of the network performance is 

continued for several iterations through adjusting the weights during the training program. The MATLAB 

platform was used in this case of study to utilize the ANN solver for modelling. In this study, the total 

dataset is divided randomly in three parts by 70%, 15% and 15% respectively, for training, validation, and 

testing of the trained network. Selecting the right training rule is crucial for adjusting network weights, 
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aiming to reduce the error between actual and predicted outputs. This research adopts the Levenberg-

Marquardt backpropagation for its fast convergence. It utilizes the log-sigmoid function for activation due 

to its smooth differentiability. To scale inputs and outputs, a logistic sigmoid function is employed. The 

study minimizes error using the mean squared error (MSE) loss function (Pitchaiah et al., 2023; Wang et 

al., 2023).       

In this study, statistical models for various output factors in order to simulate engine system reaction 

in terms of performance, emissions, and combustion characteristics were developed. The engine response 

or output parameters that were taken into consideration for the development of the ANN model were BSFC, 

BTE, NOx, smoke, UHC, and CO, while the control factors considered for this study were load, injection 

timing, injection pressure, diesel, biodiesel, and hydrogen share. The models' forecasting accuracy was 

evaluated using correlation, MAPE (Mean Absolute Percentage Error) for absolute error, and RRSE (Root 

Relative Squared Error) for relative error, as described by the equations. The outcomes of the ANN analyses 

across various output parameters are depicted in Figs 13(a-f). 

 MAPE = 
1

𝑚
∑ (|

𝑒𝑛−𝐴𝑝𝑛

𝑒𝑛
|)𝑚

𝑛=1 × 100 (1) 

 

 

 
RRSE = √

∑ (𝐴𝑝𝑛−𝑒𝑛)
2𝑚

𝑛=1

∑ (𝑒𝑛−𝑒𝑎𝑣)
2𝑚

𝑛=1
 (2) 

 
where:  

m : number of experimentations 

en : experimental values 

Apn : ANN predicted values of output and 

Apav : average of experimental values of output 

ANN performance model evaluation 

The ANN-based BSFC (Fig 13(a)) model showed high precision with MAPE and RRSE errors at 0.13 

and 0.1, respectively. Additionally, the ANN model for BTE (Fig 13(b)) displayed a strong correlation (R 

= 0.998), highlighting its accurate predictive performance. A closer examination of BTE's model indicated 

significantly reduced MAPE and RRSE values, confirming the model's exceptional forecasting capability 

for engine performance parameters. 

ANN emissions model evaluation 

The ANN model's NOx predictions, with low MAPE and RRSE values in Fig 13(c), highlight its 

precision. Similarly, smoke predictions by the model showed a high R value in Fig 13(d), underscoring its 

accuracy. The model's reliability was confirmed by MAPE and RRSE values of 0.22 and 0.25, respectively, 

in Fig 14. The UHC model, with a high R value shown in Fig 13(e), and low error rates in Fig 14, 

demonstrated its accurate emission forecasting. The CO emission model, revealing a 0.995 R value in Fig 

13(f) and low errors in Fig 14, further validated the ANN model's predictive strength across various 

emissions. 
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(a) (b) 

  
(c) (d) 

 

  
(e) (f) 

Fig. 13. Predicted vs targeted value: (a) BSFC, (b) BTE, (c) NOx, (d) smoke, (e) UHC and (f) CO. 
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Fig. 14. MAPE and RRSE error values of developed ANN metamodels. 

Selection of the best fuel strategy 

The fuel strategy for D100, PKME20, and PKME20H10 for 6 different BP levels of 1 kW to 3.5 kW 

at 400, 500, and 600 bar injection pressure, 21 CA bTDc, 22 CA bTDC, 23 CA bTDC was studied. A 

total of 162 experiments were performed in this study. These datasets were then utilized to develop 

metamodels for each output factors using Artificial neural network. A total of 162 distinct experimental 

test combinations were derived from the matrix of three fuels (D100, PKME20, PKME20H10), three 

injection pressures (400, 500, and 600 bar), three injection timings (21°, 23°, and 25° CA bTDC), and six 

load conditions (1.0 kW – 3.5 kW). Each test point represents an independent operating condition, and the 

steady-state results were averaged from three repeated runs to ensure reliability. After that, the NSGA II 

algorithm was used to explore the sets of input factors that have the potential to provide optimal desired 

responses. The maximization of BTE and minimization of BSFC, as well as emission profiles of UHC, 

smoke, and NOx have been encapsulated in terms of mathematical problems in Equations 3 and 4, 

respectively.  

𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒 [
𝐵𝑇𝐸
𝐵𝑆𝐹𝐶

] = 𝑓𝐴𝑁𝑁(𝐵𝑇𝐸) 
(3) 

 

 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 [
𝑈𝐻𝐶
𝑆𝑀𝑂𝐾𝐸
𝑁𝑂𝑥

] = 𝑓𝐴𝑁𝑁(𝐵𝑆𝐹𝐶, 𝑈𝐻𝐶, 𝑆𝑀𝑂𝐾𝐸,𝑁𝑂𝑥) (4) 

 

 

The parametric configuration of NSGA II used in this study is demonstrated in Table 5. The NSGA II 

performed a computational study with 50 populations and 100 generations. However, all the solutions as 

shown in Table 6 represent optimal solutions from which selecting one optimal solution is a difficult task 

(Wang et al., 2023). For this reason, TOPSIS has been applied to these solutions to find the best 

compromised solution (Zeng et al., 2023). Table 5 presents the Pareto-optimal results obtained from the 

ANN–NSGA-II optimization process. Each dataset corresponds to a unique combination of injection 

timing, injection pressure, and load conditions for the three tested fuels. The optimal ranked solution (Rank 

1) corresponds to the PKME20H10 fuel at 3.5 kW load, 512 bar injection pressure, and 25° CA bTDC 

injection timing, representing the most balanced trade-off between performance and emissions. 
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Table 5. NSGA II parametric configuration 

Parameter Values 

No of population 50 

No of generations 100 

Parent selection strategy Binary tournament selection 

Mutation 0.02 

Cross over 0.7 

 

Table 6. Decision table for TOPSIS based on performance index (rank) 

Gen. No BTE BSFC UHC SMOKE NOX Rank 

1 25.39 0.26 27.91 46.44 1001.84 40 

2 22.30 0.34 21.87 30.68 948.01 16 

3 27.67 0.24 19.60 46.46 1185.39 32 

4 25.96 0.33 21.00 49.09 1035.39 24 

5 20.95 0.15 28.64 47.95 906.27 34 

6 21.66 0.36 22.93 52.56 942.26 23 

7 26.15 0.25 26.90 46.68 1009.61 42 

8 20.67 0.34 26.30 37.94 1023.65 46 

9 20.93 0.35 25.74 48.25 1001.58 37 

10 21.26 0.36 27.41 41.89 956.12 29 

11 30.12 0.12 15.55 24.42 756.80 1 

12 20.72 0.36 24.11 47.38 931.26 18 

13 26.83 0.35 29.19 37.40 990.71 47 

14 26.26 0.25 22.03 31.41 899.70 3 

15 21.14 0.14 25.87 48.21 892.95 28 

16 23.56 0.3 28.29 46.70 988.11 44 

17 21.54 0.35 21.82 37.01 879.95 2 

18 26.85 0.15 26.58 48.16 984.36 39 

19 24.09 0.35 23.24 36.13 995.94 20 

20 20.79 0.34 21.44 47.84 946.50 8 

21 21.45 0.17 25.84 48.40 994.14 35 

22 20.82 0.32 21.95 51.39 962.23 22 

23 27.80 0.22 23.05 37.56 1005.32 30 

24 21.07 0.25 23.20 46.02 969.58 17 

25 20.47 0.32 20.99 50.68 905.70 10 

26 20.82 0.23 22.73 47.31 985.13 21 

27 20.86 0.34 24.80 48.46 920.86 27 

28 20.86 0.22 28.96 25.99 988.83 49 

29 23.52 0.37 18.53 48.13 976.32 12 

30 24.89 0.34 22.44 51.65 973.28 31 

31 30.09 0.15 26.91 46.86 1003.23 41 

32 21.56 0.21 22.49 49.11 910.35 9 

33 21.48 0.13 29.04 50.81 990.00 50 

34 25.32 0.15 23.39 49.93 856.92 7 
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35 20.78 0.34 28.58 50.65 962.64 48 

36 20.88 0.33 21.67 48.02 946.27 11 

37 23.92 0.36 22.83 51.37 789.58 4 

38 20.56 0.35 23.39 49.67 924.23 19 

39 26.92 0.16 24.93 48.00 933.41 26 

40 21.19 0.25 22.52 46.96 923.61 6 

41 20.93 0.18 26.15 47.51 982.36 36 

42 22.00 0.34 26.60 41.99 1020.59 45 

43 20.82 0.35 27.20 47.18 1003.04 43 

44 22.10 0.23 21.06 46.94 1080.15 25 

45 21.01 0.25 27.49 47.32 968.81 38 

46 20.79 0.35 23.02 46.88 955.24 15 

47 26.08 0.35 25.52 49.96 814.52 14 

48 22.18 0.17 22.85 50.74 907.71 13 

49 21.06 0.22 26.21 48.91 944.30 33 

50 21.38 0.21 27.34 36.70 887.50 5 

 

The input conditions for Table 6 are derived from a multi-variable experimental matrix combining three 

fuel types (D100, PKME20, PKME20H10), three injection pressures (400, 500, and 600 bar), and three 

injection timings (21°, 23°, and 25° CA bTDC), tested across six brake power levels (1 kW – 3.5 kW). 

These combinations yielded 162 experiments to develop ANN-based metamodels for engine outputs, which 

were then optimized using NSGA-II. The TOPSIS method was applied to identify the best compromise 

solution from these Pareto-optimal outputs, focusing on maximizing BTE and minimizing BSFC, NOx, 

UHC, and smoke.  

The optimal solution identified in Table 5, ranked first using the TOPSIS method, corresponds to a 

brake thermal efficiency (BTE) of 30.12%, brake-specific fuel consumption (BSFC) of 0.12 kg/kWh, 

unburnt hydrocarbon (UHC) emissions of 15.55 ppm, smoke opacity of 24.42%, and nitrogen oxide (NOx) 

emissions of 756 ppm. These values were achieved under the input conditions of 3.5 kW brake power (BP), 

25° crank angle before top dead center (CA bTDC) injection timing, and 512 bar injection pressure using 

the PKME20H10 fuel blend (20% palm kernel biodiesel, 70% diesel, and 10 lpm hydrogen). The selection 

of 3.5 kW as the optimal BP is significant as it represents the highest load tested, where engine parameters 

are most strained, making efficiency and emission improvements most impactful. The advanced injection 

timing (25° CA bTDC) allows for better air-fuel mixing, promoting complete combustion, while the 

elevated injection pressure (512 bar) ensures fine fuel atomization, enhancing the overall combustion 

process. Hydrogen’s high diffusivity and calorific value further improve combustion quality, contributing 

to lower emissions and better efficiency. This combination of inputs yields a balanced trade-off between 

performance enhancement and emission reduction, validating the hybrid optimization strategy (ANN + 

NSGA-II + TOPSIS) employed in the study. 

Table 7 presents a comparative validation of the optimal solution derived from the computational study 

against actual experimental results. The optimal parameters, 3.5 kW brake power, 25° CA bTDC injection 

timing, and 512 bar injection pressure using the PKME20H10 fuel blend, were experimentally tested to 

confirm the accuracy of the predicted outputs. The table lists six key engine response parameters: BTE, 

BSFC, UHC, smoke, NOx, and CO. For each parameter, the computational and experimental values are 

compared, and the percentage error is calculated. The deviations for all parameters lie below 5%, indicating 

strong agreement between the ANN-NSGA-II-TOPSIS model and real-world engine behavior. For 

example, BTE showed a negligible deviation of 0.07%, while BSFC had a slight variation of -2.5%. 
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Similarly, emissions such as UHC, smoke, and NOx deviated by only 2.9%, 3.56%, and 3.67% respectively, 

validating the robustness of the optimization model. Although the CO value wasn’t computed in the ANN 

model, its experimental value (0.09%) supports the overall emission reduction trend. This table not only 

confirms the predictive accuracy of the artificial intelligence-driven optimization approach but also 

strengthens confidence in applying such hybrid strategies for real-time engine calibration, enabling a 

reliable and efficient shift toward greener fuel technologies. 

Table 7. Deviation of computational data from actual experimental value 

Sl No Responses Computational value (C) Experimental value (E) Error (%) = (C-E) × 100/C 

1 BTE 30.12 30.10 0.07 

2 BSFC 0.12 0.11 -2.5 

3 UHC 15.55 15.11 2.9 

4 Smoke 24.42 23.55 3.56 

5 NOx 756.80 729 3.67 

6 CO - 0.09 - 

 

In comparison with conventional optimization techniques, the proposed hybrid ANN–NSGA-II–

TOPSIS model demonstrates superior adaptability and prediction accuracy for nonlinear engine behavior. 

While RSM has been widely applied for parametric optimization, its polynomial-based models often 

underperform when handling high-dimensional or strongly coupled variables such as injection timing, 

pressure, and fuel blend ratio (Wang et al., 2023). Classical GA and PSO methods, though capable of 

exploring global optima, rely on randomly generated populations and do not inherently incorporate learned 

system behavior. In contrast, ANN captures the underlying nonlinear mapping between input and output 

responses, providing accurate surrogate models that guide the NSGA-II search process. The inclusion of 

TOPSIS further refines multi-objective decision-making by identifying the most balanced solution among 

the Pareto front. This integrated strategy results in improved predictive accuracy (R > 0.99) and lower 

MAPE (< 3%) compared with the single optimization approaches reported in earlier hydrogen–biodiesel 

optimization studies (Mohite et al., 2024b; Kanth et al., 2020; Akcay et al., 2021). 

 

CONCLUSIONS 

This study evaluates injection timing and pressure effects on performance and emissions of hydrogen-

enriched PKME20 in engines via ANN–NSGA-II–TOPSIS optimization. The research aimed to identify 

an optimal operating strategy that maximizes thermal efficiency while minimizing exhaust emissions. The 

experimental findings, reinforced through computational optimization, revealed that the optimal 

combination of 3.5 kW load, an injection timing  of 25 CA bTDC, and an injection pressure of 512 bar  

achieved a BTE of 30.1% and a BSFC of 0.123 kg/kWh, along with notable emission reductions, including 

a 10% decrease in CO, a 45% reduction in unburnt hydrocarbons, and a 17% reduction in smoke opacity 

compared with diesel baseline operation   

The study’s novelty lies in coupling a data-driven ANN model with multi-objective optimization to 

derive precise control parameters for hydrogen-biodiesel combustion. This approach effectively bridges 

experimental and computational domains, offering a replicable framework for clean-fuel optimization in 

advanced diesel systems. While the results confirm hydrogen’s potential to enhance combustion and 

efficiency, a moderate increase in NOx emissions remains a limitation that warrants further mitigation 

through EGR or after-treatment integration. Future research may extend this hybrid methodology to multi-

cylinder engines, transient operating conditions, and alternative gaseous fuels such as HHO or ammonia 

blends to validate scalability. 
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In summary, this study establishes PKME20H10 as a promising green alternative to diesel and 

demonstrates the capability of hybrid AI-based optimization in achieving a sustainable balance between 

engine performance, fuel economy, and emission control. 
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