

UNIVERSITI TEKNOLOGI MARA

**PHYTOCHEMICAL SCREENING
AND *IN VITRO* BIOLOGICAL
ACTIVITIES OF *Acmeila paniculata*
FLOWER AND LEAF EXTRACTS
BY CITRIC ACID
MONOHYDRATE/GLYCEROL
DEEP EUTECTIC SOLVENT**

RAJINA SHAHMIR SIVARAJ

Thesis submitted in fulfilment
of the requirements for the degree of
**Master of Science
(Applied Biology)**

Faculty of Applied Sciences

September 2025

ABSTRACT

Subang nenek, scientifically known as *Acmella paniculata*, is a flowering herb rich in various bioactive compounds. Traditionally, this plant has been conventionally extracted using organic solvents that are harmful to the environment. Recently, a green extraction method has used deep eutectic solvent (DES) as a solvent extractor. However, the potential of this extraction approach with DES requires further investigation. Therefore, the study aimed to characterise the physicochemical properties of a DES consisting of citric acid monohydrate, as the hydrogen bond acceptor (HBA) and glycerol, as the hydrogen bond donor (HBD) and to assess its efficiency through the phytochemical content and biological activities of *A. paniculata* flower and leaf extracts. The DES was created by mixing the HBA and HBD components, forming CA/Gly. The CA/Gly's physicochemical analysis included examination of functional groups, physical homogeneity, viscosity, pH, density, surface tension and solubility. A method of maceration-centrifugation was done, using CA/Gly to extract *A. paniculata*. A total of 0.02 g *A. paniculata* for flower and leaf parts was mixed with three concentrations of CA/Gly (50%, 60% and 70% v/v in water), respectively. Phytochemical screenings, total phenolic content (TPC) and total flavonoid content (TFC) were performed on the plant extracts. Further bioactivities were conducted to assess the plant extracts' antibacterial, antioxidant and anti-inflammatory properties. The FTIR and POM results confirmed that hydrogen bonding between the carboxyl and hydroxyl groups in CA/Gly prevents crystallisation which creates a homogenous eutectic solvent. Other physicochemical properties of DES remained stable across the three concentrations tested (50%, 60% and 70% CA/Gly), indicating strong intermolecular bonding. The phytochemical test showed that flavonoids, phenolics, terpenoids and steroids were present for all extracts. Leaf extracts exhibited the highest total phenolic content (1.81 ± 0.015 mg GAE/g to 2.16 ± 0.098 mg GAE/g) while flower extracts exhibited the highest total flavonoid content (20.48 ± 0.0036 mg QUE/g to 25.69 ± 0.036 mg QUE/g). Both plant parts extracted with 50% and 60% CA/Gly had the highest value of TPC and TFC. The antibacterial efficacy against four pathogens (*Escherichia coli*, *Salmonella* Typhimurium, *Bacillus subtilis* and *Staphylococcus aureus*) demonstrated susceptibility to most CA/Gly-*A. paniculata* extracts with inhibition zones ≥ 15 mm. The most notable antibacterial reaction was observed in 60% and 70% CA/Gly-*A. paniculata* extracts. The antioxidant activity in flower extracts ($75.24\pm1.05\%$ to $77.49\pm0.90\%$) showed higher free radical scavenging activity (RSA) than leaf extracts ($65.49\pm0.76\%$ to $69.73\pm0.76\%$). A slight trend of increased CA/Gly concentration led to an increased RSA value, especially in 60% and 70% CA/Gly-*A. paniculata* extracts. The anti-inflammatory activity was also stronger in flower extracts than in leaf extracts, with up to $95.21\pm0.65\%$ protein denaturation inhibition compared to $89.46\pm0.85\%$, respectively. Both 70% and 60% CA/Gly-*A. paniculata* extracts contributed in high anti-inflammation activity. In conclusion, the physicochemical behaviour of CA/Gly was successfully characterised, confirming its role as a eutectic solvent. The phytochemical results showed that CA/Gly effectively extracted phytocompounds from *A. paniculata*. The biological activity results indicated that CA/Gly exhibited strong antibacterial properties, while the flower part of *A. paniculata* showed prominent antioxidant and anti-inflammatory activities. The combination effects between CA/Gly and *A. paniculata* had augmented the bioactivities, making 60% CA/Gly-flower extract the optimal dose in plant extraction.

ACKNOWLEDGEMENT

بِسْمِ اللَّهِ الرَّحْمَنِ الرَّحِيمِ

In the name of Allah s.w.t., the Most Merciful, the Most Compassionate. Alhamdulillah, all praises belong to the Almighty Allah s.w.t., the One who reigns supreme over the worlds and prayers. We praise Him for His infinite mercy, wisdom, grace and kindness for guiding us through His signs and revelations. Truly, there is no greater power or strength except for Allah s.w.t. May peace and blessings be upon His final Messenger, Muhammad s.a.w., the servant and messenger of Allah s.w.t, who brought the guidance of truth to mankind. Surely, Allah is Most Capable of everything (2:20). Firstly, I wish to thank Allah s.w.t. for giving me the opportunity, guidance and will to embark on my Master of Science in Applied Biology path successfully.

I wish to state my profound gratitude and heartfelt thanks to my supervisor, Dr Roziana Mohamed Hanaphi and co-supervisor, Dr Rizana Yusof for their unending patience, encouragement, knowledge, support, kindness and motivation throughout this long and challenging journey. My appreciation is also accorded to the lecturers and staff, Sir Azhar and Mrs. Nurul Huda at UiTM Perlis Branch, Arau for facilitating the required access, easing the availability of the facilities and assistance to achieve the needs of this thesis triumphantly. I would not have been able to complete this thesis without them successfully. A very special thanks to my colleagues named Mrs. Rohayu Ramli and friends named Siti Noor Atiyah Md Raffe and Mohammad Amin Wan Chik for extending a helping hand in enabling me to complete this thesis. I also need to acknowledge the help and assistance of Mr. Hashim in providing me with the plant samples.

Finally, I would like to dedicate this thesis to both my father and mother, I would not be here if it was not for their vision and determination to educate me. I dedicated this piece of victory and my education through this research journey to the both of you. Thank you very much for your helping hand and priceless support. Alhamdulillah.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	x
LIST OF FIGURES	xi
LIST OF PLATE	xii
LIST OF SYMBOLS	xiii
LIST OF ABBREVIATIONS	xiv
CHAPTER 1 INTRODUCTION	1
1.1 Research Background	1
1.2 Problem Statements	3
1.3 Research Objectives	4
1.4 Research Question	4
1.5 Significance of Study	5
1.6 Scope and Limitation	5
1.7 Hypothesis	7
1.8 Thesis Outline	7
CHAPTER 2 LITERATURE REVIEW	9
2.1 Traditional medicinal plants and their impact	9
2.2 The flowering shrub of <i>Acmella paniculata</i>	10
2.2.1 Taxonomy of the Asteraceae family	11
2.2.2 Phytochemicals of interest from <i>Acmella</i> species for extraction	12
2.2.3 The potential bioactivity of Asteraceae	16
2.3 Plant extraction methods	22
2.4 Solvent interactions with bioactive compounds of plants	26

CHAPTER 1

INTRODUCTION

1.1 Research Background

Plants have been utilized in traditional medicines for generations because of their beneficial bioactive compounds. The World Health Organisation (WHO) had estimated that more than 80% of the population in developing countries depend on traditional medicine for human health (Tran *et al.*, 2020). Furthermore, about one-third of the best-selling pharmaceutical products are derived from natural sources, such as plants and microorganisms (Elkordy *et al.*, 2021). In recent years, natural products have become pivotal therapeutic agents, especially in modern healthcare markets.

Hence, a crucial factor to note is the choice of plant material, as different plant species have varying phytoconstituents that respond differently to certain solvents. In this study, a local plant in Malaysia, known as *Acemella paniculata* was selected. This plant is relatively small in size and abundantly thrives in damp/moist environments or tropical rainforests (Rahim *et al.*, 2021). Locals would chew the flower and/or leaf parts to treat toothaches, mouth ulcers and other oral health issues (Shivananda *et al.*, 2023). Evidently, it has been documented that *A. paniculata* contains bioactive compounds with medicinal properties such as polyphenols (Rahim *et al.*, 2021).

This revelation highlights the increasing interest in extracting valuable metabolites from plant samples through various methods and solvent systems. The combination of solvent-method in plant extraction systems could possibly affect the effectiveness of the assay in extracting the plant compounds. The choice of a solvent is equally crucial, especially in solid-liquid extractions (maceration), as it essentially determines the interaction of plant compounds. The polarity of solvent can directly influence the extracted solutes because of the bonding interactions and the structure of chemical compounds (Lefebvre *et al.*, 2021). Thus, the choice of solvent is essential in the extraction of bioactive compounds from plant matrices.

The plant parts of *A. paniculata* have been utilised in conventional methods such as Soxhlet and maceration with organic solvents (Al Ragib *et al.*, 2020; Purushothaman *et al.*, 2018; Rani *et al.*, 2019). Although many studies documented plant compounds using organic solvents, minimal attention has been given to the solubility of compounds