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Buoyancy-assisted hydrotherapy exercise has been shown to reduce
joint loading and accelerate functional recovery. However, conventional
marker or sensor-based approaches are costly and impractical for
underwater use due to water interference and setup constraints when
monitoring recovery progress monitoring. To overcome these
challenges, a computer vision-based gait analysis model was trained for
jogging sessions in hydrotherapy pools. In this study, 2D coordinates
extracted using You Only Look Once (YOLO) 11m-pose served as the
model input without noise filtration to validate their robustness. A
comparison of hyperparameter optimization algorithms was conducted,
with the combination of multivariate tree-structured Parzen estimators
(MultiTPE) and Hyperband identified as the optimal approach. Two
convolutional bidirectional long short-term memory architectures, i.e.,
single vs. multiple convolutional layers (CNNs) per pooling were
applied and compared in multi-head and single-head regression settings.
Result indicated that multi-CNNs per pooling with multi-task learning
best exploit inter-parameter correlations. On a 45-sample test set, the
model achieved an intraclass correlation coefficient (ICC) with two-way
random effects, absolute agreement, single rater model of 0.8999,
Pearson’s correlation coefficient (PCC) of 0.9066, mean absolute error
(MAE) of 0.0954 s for swing, stance, and stride time, while 3.5141
steps/min for cadence. The developed system thus achieves precise
analysis for underwater leg movements.
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1. INTRODUCTION

Gait analysis is the study of human locomotion (Badiye et al., 2022) and is important for assisting various
clinical decisions. Rehabilitation, for example, benefits from gait analysis to enable continuous monitoring
so essential adjustments can be made if required (Hulleck et al., 2022). Among rehabilitation techniques,
hydrotherapy which offers constant hydrostatic pressure and reduced gravitational weight, is beneficial for
promoting tissue healing, improving blood circulation, relieving pain and stiffness, and enhancing mobility
and posture when compared to land-based exercise (Carere & Orr, 2016). These benefits make
hydrotherapy particularly useful for patient with spinal cord injuries (Ellapen et al., 2018) and stroke
patients (Silva et al., 2022).

However, a continuous and efficient monitoring of hydrotherapy participants is limited because
conventional sensor approaches are inapplicable due to hydrodynamics properties. For instance,
optoelectronics methods are challenged by attenuation, refraction and reflection of electromagnetic waves
crossing the air-water boundary, especially for the lower infrared wavelengths on which most commercial
systems operate (Bernardina et al., 2016; Monoli et al., 2021). Electromyography (EMG) and ground
reaction force (GRF) sensors are also constrained by subtle signal variations across the gait cycle,
respectively due to water drag and buoyancy force (Barela et al., 2005). The approaches are also time
consuming due to the need of calibration, which reflects the concern of increased wage expenditure, with
the capture of gait is restricted only in laboratory settings due to portability concern (Ganguli, 2024; Simon,
2004). Finally, yet importantly, the accessibility of gait analysis is limited in Malaysia, when the ratio of
practising physiotherapist per 10,000 residents is only 1.14 (World Physiotherapy, 2024b), about one-third
of world average (World Physiotherapy, 2024a). This indicates that an automated system which is capable
to reduce the physiotherapist workloads and at the same time addressing the limitations of conventional
approaches when are applied in underwater settings is highly demanding.

By leveraging computer vision, 2D pose estimation models themselves are capable to extract raw
keypoints coordinates, but these coordinates alone have limited clinical value, in which case they still need
to be fed into a downstream module for various purposes, for example movement pattern classification,
spatiotemporal gait parameters derivation, and abnormal gait flagging. In other words, pose extraction alone
is not able yet to provide insight into that high-level interpretive metrics, but it must be integrated with an
analytics layer that can translate those joint trajectories into actionable metrics. In this study, among the
hydrotherapy exercise jogging was given focus as it can be performed effectively by individuals with
varying levels of fitness and experience (Wang et al., 2021). The key contribution of this study lies in
integrating pose-estimation outputs with a deep-learning predictive framework while systematically
evaluating model performance, architectural variations, and optimization strategies to derive clinically
meaningful gait parameters.

2. RELATED WORKS

There have already a few past studies that have integrated Al into gait analysis, using various model input
such as vision-based RGB cameras, and sensor-based sensors like depth sensors, wearable IMUs and
surface electromyography (SEMG). Among the choices, many studies have leveraged 2D RGB camera
inputs due to their accessibility and cost-effectiveness, with different approaches used to extract essential
information from videos captured in predicting gait parameters. Kidzinski et al. (2020) used OpenPose to
extract landmarks and use CNN to classify the gait events; Lonini et al. (2022) fine-tuned ResNet 50 on
DeepLabCut platform and used CNN to predict gait parameters directly; and Barzyk et al. (2024) developed
deep learning models which respectively detects individual person, predicts his landmarks’ relative location
to camera in 3D, and finally performs gait cycle detection. Despite of simple 2D RGB camera
implementation, Boborzi et al. (2025) utilized an Azure Kinect with keypoints extracted using a
combination of YOLOS detection and Real-Time Multi-Person Pose Estimation (RTMPose), and 3D
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skeleton reconstructed using the depth information. The authors then performed step detection using a gait
event detection algorithm, and gait parameters were determined from the detected steps. Jing et al. (2023),
on other hand, used Kinect, with 3D skeleton constructed using the built-in Kinect Body Tracking software
development kit and using the Kinect data to classify gait events using Bi-LSTM.

Similar patterns in how gait parameters are determined, either via calculation from classified gait
events or direct prediction, can be observed with sensor-based approaches. Hartmann et al. (2025) used a
single channel depth sensor as the only input to extract the required pose information and compared multiple
approaches to classify gait events and estimate the gait parameters. Xu et al. (2025) used a BITCN-BiGRU-
Cross-Attention model trained using IMUs data to predict heel strike and toe-off gait events. On the other
hand, Verbiest et al. (2023) and Zadka et al. (2024) used IMUs as input features, paired with CNN and
XGBoost models respectively, while Liu et al. (2024) used sEMG features to compare decision tree, random
forest and XGBoost, all predicting gait parameters directly.

For model validation and evaluation, most of the research are comparing their predicted gait
parameters with gold-standard systems like optical motion capture, instrumented walkways, and inertial
sensors, with metrics computed based on the comparison, while this research compared predicted results
with annotated ground truth. The evaluation metrics that are used across the research includes MAE, RMSE
and coefficient of determination (R?), which is a common practice in model performance evaluation as
performed by Mohamad Razi et al. (2022) and Sani Abdul Rahman et al. (2023); with additional PCC and
ICC(2,1) included to assess the reliability and consistency of the predicted outcomes against ground-truth
measurements, thereby ensuring both accuracy and agreement in model performance evaluation.

Although there are studies integrate computer vision and artificial intelligence for gait analysis, there
is a gap of study when most of them do not validate the feasibility of such application for underwater
settings. The limited available underwater pose data for the training of pose estimation model serves as the
main research gap, as on-land pose data is easier to be obtained and hence gains more attention.
Consequently, pose estimation models are trained based on on-land pose data thereby are lacked
performance validation when they are applied for underwater pose estimation. Meanwhile, most
aforementioned studies lack a systematic way in determining their models’ hyperparameter configuration,
which is concerned to have sub-optimal performance. When some of them performed hyperparameter
optimization (HPO), they dealt with low-dimensional search space, that the maximum search space
dimension is not more than 9, in resource-extensive ways such as grid search as done by Hartmann et al.
(2025), Kidzinski et al. (2020), and Verbiest et al. (2023), which is unapplicable in high-dimensional search
space because it is time and resource intensive.

3. METHODOLOGY

3.1 Dataset development

The dataset was developed by recording 450 underwater jogging clips using REDBUFFALO SPARK
waterproof monocular camera at 38402160 pixels, 30 Hz in University of Technology Malaysia Kuala
Lumpur's residence pool. The data set consists of 7 male adult participants, with their movement
unconstrained and unguided, and moments when participants turned their body to change direction or
temporarily moved out of frame were retained to validate the model robustness. The video length ranges
from 8.17 to 33.81 seconds (14.08 + 3.63 seconds), and the videos were broadly categorized into two
groups, i.e., Diagonal Jogging (DJ) and Lateral Jogging (LJ) based on their relative heading direction
toward camera throughout the video clip. Examples included in Fig. 1.
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Fig. 1. Examples of frames extracted from video clips recorded. (DJ: 1 & 2; LJ: 3& 4)

A frame-to-frame motion analysis was then performed to obtain the ground truths of average temporal
gait parameters: swing, stance, stride time and cadence for each video, with the reference foot used to
compute the gait parameters to be right foot without considering the variability between the legs. The
convention in determining the gait parameters, as shown in Table 1, follows what were described by Perry
& Burnfield (2024) and Prakash et al. (2018).

Table 1. Description of temporal gait parameter

Temporal Gait

Description
Parameter P

Frame number difference between when right knee starts to flex Tyex and when right tibia is

Swing time perpendicular to floor T..

Frame number difference between when right heel is in contact with ground Ty and when right toe is

Stance time Lo
in initial contact Tiee.

Stride time Sum of swing time and stance time.

Cadence Number of steps per minute (spm).

3.2 Experiment setup

Captured clips were resized to 960540 pixels to accelerate the inference speed of pose estimation
models, while BlazePose full model from Mediapipe (Lugaresi et al., 2019) and YOLO11m-pose from
Ultralytics (Jocher et al., 2023) are compared in 25 randomly selected videos in term of Euclidean distance
difference (EDD) between manually labelled and predicted 2D-coordinates of lower-body keypoints:
bilateral hips, knees and ankles. Lower body joints were only compared and included in model training as
Hartmann et al. (2025) found out including only best contributing features obtain the best prediction result.
After comparison the model with better performance was used to extract the lower-body keypoints’ 2D-
coordinates for the remaining videos as the input features to the deep learning algorithm. Linear
interpolation on missing data was only performed without noise filtration.

The CNN-BiLSTM network was built using Keras library (Watson Matthew et al., 2024), with HPO
performed using Optuna library (Akiba et al., 2019). Three types of comparisons were performed
throughout HPO: first is HPO algorithms comparison which involved Gaussian Process (GP), Univariate
Tree-structured Parzen Estimator with Hyperband (UniTPE + Hyperband) and Multivariate Tree-structured
Parzen Estimator with Hyperband (MultiTPE + Hyperband); second is CNN stacking method comparison
between single CNN and multiple CNNs before each pooling layer; and last is model learning paradigm
comparison between single-task learning (STL) and multi-task learning (MTL). Table 2 summarizes the 15
hyperparameters to be optimized with respective boundaries.
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Table 2. Optuna HPO search space

Category Hyperparameter Suggest type Boundary
Sliding window size Integer [70, 250], step=10
Data level Sliding window stride Integer [1,5]
Batch size Categorical 32,64,128
Number of 1D-CNNss stacks Integer [1,3]
Number of filters Integer [32, 128], step=32
Number of kernels Categorical 3,5,7
1D-CNNs . .
Pool size Categorical 2,5
CNN dropout rate Float [0.0, 0.5], step=0.1
Use of batch normalization layer Categorical 0,1
Number of LSTM layers Integer [1,3]
. Number of LSTM units Integer [32, 128], step=32
Bi-LSTM
Dropout rate Float [0.0, 0.5], step=0.1
Dense units Integer [32, 128], step=32
o Learning rate Float [log 1x107, log 1x107]
Optimizer .
Weight decay Float [log 1x10°, log 1x107%]

In HPO and as the parameter required by Optuna, the GP used n_startup trial=45, following the
default setting of Keras Tuner, that 3xdimensionality of hyperparameter space is used (Watson Matthew et
al., 2024). In contrast, UniTPE + Hyperband and MultiTPE + Hyperband used n_startup trial=75,
min_recource=1, max_resource= “auto”, and reduction_factor=3 to have a recommended Hyperband
bracket number of 5 (Li et al., 2016).

Throughout this research, the prediction pipeline followed the flow described in Fig. 2, and the
configuration listed in Table 3 was used. The comparisons to determine best model training strategy began
by setting single CNN per pooling layer with MTL to determine the best HPO algorithm in terms of the
least value of loss function obtained, where each algorithm was given 70 trials and a maximum of 100
epochs per trial for the 15-dimensional mixed-type HPO problem. After that, the best HPO algorithm was
used to determine the better CNN stacking method under MTL settings, and finally comparison between
MTL and STL was performed using the better CNN stacking method. These two comparisons were
performed under stratified 10-fold cross-validation to estimate model generalization. Fig. 3 visualizes the
comparison hierarchy.

Regularization
. p Bi-LSTM layers
Input Data preprocessing CNN layers stacking and Optimization - Output
R Layers stacking —
2 ¢ e Bi-LSTM layer .
2D monocular videos yers Dense layer with RelLU
with HeNormal ST
kernel and activation function and
“NN layers with ReL.U ernel 1
Linear interpolation on CNN l«‘.\u‘j with Rdll Batch i o rhoponal recurrent HeNormal initialization
: activation function, and S - : BN
missing data 1 normalization HH aliz
Y - HeNormal kernel - HE nitialization
. aye
Resized 10 960 x 540 initialization
pixels Y :; Output layer with linear
Segment data points activation function, and
from 12 features into , , , predictions are
—¥ fixed-size windows and | ! | 1D max pooling layers & Dropout layer i |denormalized to obtain true| |
Extraction of X and ¥ repeat padding is used fo| | values
coordinates for 6 joints il the gaps of wi ;
ill the gaps of windows aver
using a 2D pose Dropout layer
estimation model

Fig. 2. Block diagram of the prediction pipeline
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Table 3. Configuration used for model training

Model training configuration Setting
Train-validation-test data splitting ratio 81:9:10
Loss function Mean squared error (MSE)

Optimizer

Normalization method

Pooling type

Early stopping

Reduced learning rate on plateau

Adaptive Moment Estimation with Decoupled Weight Decay (ADAMW)

Maximum normalization

Maximum pooling

Patience of 10 epochs based on validation root mean squared error

50%, patience of 5 epochs based on validation root mean squared error

HPO comparison using
---{ single CNN-pool block |-,
and MTL

Multivariate TPEs
Hyperband pruner

Best HPO
algorithm

Univariate TPEs
Hyperband pruner

Gaussian process
No pruner

CNN Iaycrs stacking
method comparison
using the best TTPO
algorithm and MTL

Leaming paradigm
comparison under 10-
fold stratified cross

validation using

Single CNN-pool
block

Multiple CNN
layers per pool

Fig. 3. Visualization of the hierarchy of comparisons

4. RESULTS AND DISCUSSION

the best HPO algorithm I
and
CNN stacking method

|| Best CNN layers
' stacking method

Best model training
strategy

Fig. 4 shows an example of the pipeline's output, in which the input videos are saved as copies with the
predicted results displayed at the bottom. Meanwhile, the combination of pose estimator model of
YOLOI11m-pose, HPO algorithm of MultiTPE + Hyperband, CNN stacking method of multiple CNNs per
pooling layer, and output structure of multi-head output was identified to perform the best, with a test set
evaluation result of R? score of 0.8208; average ICC(2,1) of 0.8999, average PCC of 0.9066, and average
MAE and RMSE of 0.0954 seconds and 0.1418 seconds, respectively, for swing, stance, and stride time.
Meanwhile, MAE and RMSE for cadence are 3.5141 and 4.9464 spm respectively. Breakdown of the result

is as shown in Table 4.

Fig. 4. Examples of the pipeline’s output extracted using YOLOv11m-pose are also displayed to aid verification, as
inaccurately extracted keypoints would degrade prediction quality
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Table 4. Detailed model performance evaluated on test set of 45 video clips

Temporal gait parameter MAE RMSE PCC ICC(2,1) R? score
Swing time (seconds) 0.0758 0.0946 0.9323 0.9315

Stance time (seconds) 0.0974 0.1580 0.8342 0.8138 0.8208
Stride time (seconds) 0.1130 0.1729 0.9078 0.9027

Cadence (spm) 3.5141 4.9464 0.9520 0.9513

The validity and reliability of the developed system for temporal gait parameter measurement
demonstrated a high degree of agreement and reliability with the ground truth annotated by the rater, proved
by high PCC) and ICC values. Specifically, the system achieved excellent reliability, with ICC values
greater than or equals to 0.90 (Koo & Li, 2016), and excellent positive correlation, with PCC values greater
than or equals to 0.9 (Mukaka, 2012), for three of the four parameters: cadence (ICC=0.9513, PCC=0.9520),
swing time (ICC=0.9315, PCC=0.9323), and stride time (ICC=0.9027, PCC=0.9078). These results are
comparable with, and in several cases surpass values reported in past literature employing different
approaches in determining the gait parameters. For instance, the cadence PCC of 0.9520 and ICC of 0.9513
are competitive with the results obtained by Barzyk et al. (2024) who reported to have cadence ICC of
0.9870, and significantly exceeding the PCC of 0.79 found by Kidzinski et al. (2020) and the 0.91 by Liu
et al. (2024). The consistent performance of the developed model across multiple parameters confirms its
capability for relative measurement, indicating its efficacy in tracking changes in gait over time, which is
critical for longitudinal clinical assessment.

Apart from relative agreement measured by ICC and PCC values, the absolute accuracy of the system,
which is measured using MAE, also demonstrated clinical utility. The cadence measurement achieved an
MAE of 3.51 spm, which is superior to the mean error of 3.88 spm reported by Lonini et al. (2022).
Similarly, the stance time MAE of 0.0974 s was lower than the mean error of 0.12 s published by Lonini et
al. (2022). These small MAE values for two fundamental parameters confirm the system's high level of
calibration and low systematic bias. Although the stride time RMSE of 0.1729 s was notably higher than
RMSE of 0 s, achieved by Boborzi et al. (2025), the stride time ICC of 0.9027 still confirms excellent
reliability, suggesting the value may be influenced by a few larger, non-systematic errors which are
penalized more heavily by the metric, and are most probably caused by completely wrong detection of
landmarks coordinates in certain frames due to the water disturbances and sudden lightning change.

A particularly noteworthy finding is the exceptionally high reliability observed for swing time
(ICC=0.9315, PCC=0.9323) which significantly surpasses the moderate reliability values reported across
the cited literature, including the PCC of 0.66 (Lonini et al., 2022) and the ICC of 0.663 (Boborzi et al.,
2025). This high agreement suggests the system's event detection algorithm is highly robust in precisely
identifying the toe-off and heel-strike events that define the swing phase. Conversely, the stance time
showed the lowest ICC of 0.8138 among the reliable parameters and lagged behind the PCC of 0.93 as
reported by Lonini et al. (2022). Stance time which is defined by the period between two complex load-
bearing events is inherently challenging to capture accurately without a force plate. The slightly lower ICC
may reflect the authors’ fine-tuned ResNet 50 captures the subtle movement artifacts during weight transfer
or push-off better, which is beneficial because minimal variability was introduced in the stance time
calculation.

For the HPO algorithm comparison, GP obtained MSE of 0.11341; UniTPE + Hyperband obtained
0.004987; followed by MultiTPE + Hyperband which obtained the least MSE of 0.004981. It was expected
that GP performs worse in mixed-type search space and in high-dimensional search space, whose number
of hypermeters equals and more than 15. It was also validated that UniTPE + Hyperband performs worse
than MultiTPE + Hyperband, as univariate TPE cannot capture the interaction effects across
hyperparameters, since it assumes independence across hyperparameters and models the joint density as a
product of one-dimensional kernel density estimators. Although there was no significant difference of MSE
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values between UniTPE + Hyperband and MultiTPE + Hyperband, a larger difference is expected in
scenarios with higher hyperparameter search space dimensionality. Nevertheless, under the same settings
of Hyperband as pruner, MultiTPE + Hyperband pruned unpromising trials more aggressively when
compared to UniTPE + Hyperband, as shown in Table 5.

Table 5. Comparison between UniTPE + Hyperband and MultiTPE + Hyperband in term of pruned trials

Number of

HPO algorithm Trlgl at pruned trials Number of_ total Numbe_r of total
optimal . pruned trials trials
before optimal
UniTPE + Hyperband 1420 82 96 166
MultiTPE + Hyperband 157" 109 145 215

The difference may be due to how different Optuna models the univariate TPE and multivariate TPE’s
kernel density estimation, where univariate TPE determines each kernel’s bandwidth based on the local gap
to respective nearest neighbours in the sorted data; while multivariate TPE uses a global, single kernel
bandwidth based on the formula:

0=02xnV@+ xR (1)

o: kernel bandwidth

n: number of past observations

d: dimensionality of hyperparameter search space
R: parameter range normalization term

For that reason, multivariate TPE tends to have comparatively smaller bandwidth of joint density of
good trials, indicating that there will be potentially more trials falls outside the promising region, and the
pruner, Hyperband immediately eliminates them based on their unpromising intermediate values, hence
more pruned trials. The stacking of multiple CNNs before each pooling layer achieved better result because
pooling layers are destructive and by stacking up multiple CNNs can help learning complex features of
input vector. In terms of model learning paradigm, MTL constantly obtained better result compared to STL,
in both stratified 10-fold cross validation and test set evaluation, except for swing time when evaluated
using stratified 10-fold cross validation, as shown in Table 6 and Table 7.

Table 6. Comparison between MTL and STL when evaluated using stratified 10-fold cross validation

Model learning paradigm Swing time MAE Stance time MAE Stride time MAE Cadence MAE
MTL 0.0713 0.0942 0.1109 3.6807
STL 0.0692 0.1008 0.1144 3.8628

Table 7. Comparison between MTL and STL when evaluated on test set of 45 video clips

Model learning paradigm Swing time MAE Stance time MAE Stride time MAE Cadence MAE
MTL 0.0758 0.0974 0.1130 3.5141
STL 0.0774 0.1121 0.1304 3.7939

This may be mainly due to the sharing of hidden layers, which is beneficial when the predicted tasks
are closely related, as task correlation can be learnt. Through the sharing also the essential features might
be amplified with noises suppressed and harder task can eavesdrop on the internal representation when one
task can learn particular feature more readily. These promote learning and accuracy of the model, while
with multiple objectives stochastic gradient descent will follow a path in parameter space that balances all
tasks rather than overfitting on a single task, hence better generalization.

In the lower-body keypoints EDD comparison, BlazePose full model achieved an average EDD of
35.22 + 16.94 pixels, where YOLO1 1m-pose achieved an average EDD of 11.52 + 2.89 pixels when they

were evaluated on 25 random video clips; indicating YOLO1 Im-pose constantly predicts more accurate.
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Although both models utilize top-down approach, the key difference is that BlazePose separates the
inference pipeline into detection which uses a lightweight face detector, then followed by pose estimation
performed using a pose tracker network based on the detected region of interest (ROI); while YOLO11m-
pose features the combined detection and pose estimation as a single-stage head on top of its detection
model which is trained on full-body boxes, making it independent on the presence of facial views. In
contrast, BlazePose identifies the ROI based on the facial views, the absence of facial views especially
when videos were captured underwater might misguided the ROI and this might be the root cause of having
worse performance compared to YOLO1 Im-pose.

5. CONCLUSION

This research validated the feasibility of underwater gait analysis by incorporating computer vision with
deep learning method, under a scenario which requires only minimal data preprocessing, that is, only linear
interpolation for missing data was performed without input data noise filtration and removal of undesired
frames. Comparisons on HPO algorithms, CNN stacking method and model learning paradigms were also
performed, with the result indicating that the configuration of MultiTPE + Hyperband, stacking of multiple
CNNs before pooling and MTL settings performs the best. In the case of 2D pose estimation model
comparison, YOLO1 1m-pose shows better estimation accuracy for not relying on facial views to determine
the ROL.

For the future directions, there are few aspects to be considered. Firstly, the dataset should be
expanded by including participants of various health conditions and ages to introduce diverse gait patterns,
thereby improves model generalizability and supports more inclusive analysis for targeted rehabilitation
protocol. Moreover, multiple raters should also be involved in determining gait parameters to mitigate
subjectivity, as there is no gold-standard system for gait analysis in underwater settings. Stride-level gait
parameter annotation should also be adopted instead of per-video level annotation to have real-time gait
analysis enabled and the granularity of gait prediction enhanced. Noise filtration methods such as
Butterworth high-pass filter, median filter, and gaussian filter may be applied to reduce input noise, which
is potential to ease the model training and obtain better prediction accuracy. Furthermore, although stacking
of multiple CNNs before each pooling is proved to perform better, the number of CNNs stacking was
predetermined to be two as recommended, which may require further studies to validate the optimal number
of CNNs stacks for this specific task.
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