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 Buoyancy-assisted hydrotherapy exercise has been shown to reduce 
joint loading and accelerate functional recovery. However, conventional 
marker or sensor-based approaches are costly and impractical for 
underwater use due to water interference and setup constraints when 
monitoring recovery progress monitoring. To overcome these 
challenges, a computer vision-based gait analysis model was trained for 
jogging sessions in hydrotherapy pools. In this study, 2D coordinates 
extracted using You Only Look Once (YOLO) 11m-pose served as the 
model input without noise filtration to validate their robustness. A 
comparison of hyperparameter optimization algorithms was conducted, 
with the combination of multivariate tree-structured Parzen estimators 
(MultiTPE) and Hyperband identified as the optimal approach. Two 
convolutional bidirectional long short-term memory architectures, i.e., 
single vs. multiple convolutional layers (CNNs) per pooling were 
applied and compared in multi-head and single-head regression settings. 
Result indicated that multi-CNNs per pooling with multi-task learning 
best exploit inter-parameter correlations. On a 45-sample test set, the 
model achieved an intraclass correlation coefficient (ICC) with two-way 
random effects, absolute agreement, single rater model of 0.8999, 
Pearson’s correlation coefficient (PCC) of 0.9066, mean absolute error 
(MAE) of 0.0954 s for swing, stance, and stride time, while 3.5141 
steps/min for cadence. The developed system thus achieves precise 
analysis for underwater leg movements. 

Keywords: 
Hydrotherapy 
Vision-based Gait Analysis 
Deep Learning 
Temporal Gait Parameters 
Hyperparameter Optimization 
 
DOI: 
10.24191/mij.v6i2.9665 
 

 

 

 

 
1* Corresponding author. E-mail address: tongbaocheng1117@gmail.com 

mailto:tongbaocheng1117@gmail.com


306 Tong and Khairuddin / Mathematical Sciences and Informatics Journal (2025) Vol. 6, No. 2 

https://doi.org/10.24191/mij.v6i2.9665

 

 ©Authors, 2025 

1. INTRODUCTION 

Gait analysis is the study of human locomotion (Badiye et al., 2022) and is important for assisting various 

clinical decisions. Rehabilitation, for example, benefits from gait analysis to enable continuous monitoring 

so essential adjustments can be made if required (Hulleck et al., 2022). Among rehabilitation techniques, 

hydrotherapy which offers constant hydrostatic pressure and reduced gravitational weight, is beneficial for 

promoting tissue healing, improving blood circulation, relieving pain and stiffness, and enhancing mobility 

and posture when compared to land-based exercise (Carere & Orr, 2016). These benefits make 

hydrotherapy particularly useful for patient with spinal cord injuries (Ellapen et al., 2018) and stroke 

patients (Silva et al., 2022).  

However, a continuous and efficient monitoring of hydrotherapy participants is limited because 

conventional sensor approaches are inapplicable due to hydrodynamics properties. For instance, 

optoelectronics methods are challenged by attenuation, refraction and reflection of electromagnetic waves 

crossing the air-water boundary, especially for the lower infrared wavelengths on which most commercial 

systems operate (Bernardina et al., 2016; Monoli et al., 2021). Electromyography (EMG) and ground 

reaction force (GRF) sensors are also constrained by subtle signal variations across the gait cycle, 

respectively due to water drag and buoyancy force (Barela et al., 2005). The approaches are also time 

consuming due to the need of calibration, which reflects the concern of increased wage expenditure, with 

the capture of gait is restricted only in laboratory settings due to portability concern (Ganguli, 2024; Simon, 

2004). Finally, yet importantly, the accessibility of gait analysis is limited in Malaysia, when the ratio of 

practising physiotherapist per 10,000 residents is only 1.14 (World Physiotherapy, 2024b), about one-third 

of world average (World Physiotherapy, 2024a). This indicates that an automated system which is capable 

to reduce the physiotherapist workloads and at the same time addressing the limitations of conventional 

approaches when are applied in underwater settings is highly demanding.  

By leveraging computer vision, 2D pose estimation models themselves are capable to extract raw 

keypoints coordinates, but these coordinates alone have limited clinical value, in which case they still need 

to be fed into a downstream module for various purposes, for example movement pattern classification, 

spatiotemporal gait parameters derivation, and abnormal gait flagging. In other words, pose extraction alone 

is not able yet to provide insight into that high-level interpretive metrics, but it must be integrated with an 

analytics layer that can translate those joint trajectories into actionable metrics. In this study, among the 

hydrotherapy exercise jogging was given focus as it can be performed effectively by individuals with 

varying levels of fitness and experience (Wang et al., 2021). The key contribution of this study lies in 

integrating pose-estimation outputs with a deep-learning predictive framework while systematically 

evaluating model performance, architectural variations, and optimization strategies to derive clinically 

meaningful gait parameters. 

2. RELATED WORKS 

There have already a few past studies that have integrated AI into gait analysis, using various model input 

such as vision-based RGB cameras, and sensor-based sensors like depth sensors, wearable IMUs and 

surface electromyography (sEMG). Among the choices, many studies have leveraged 2D RGB camera 

inputs due to their accessibility and cost-effectiveness, with different approaches used to extract essential 

information from videos captured in predicting gait parameters. Kidziński et al. (2020) used OpenPose to 

extract landmarks and use CNN to classify the gait events; Lonini et al. (2022) fine-tuned ResNet 50 on 

DeepLabCut platform and used CNN to predict gait parameters directly; and Barzyk et al. (2024) developed 

deep learning models which respectively detects individual person, predicts his landmarks’ relative location 

to camera in 3D, and finally performs gait cycle detection. Despite of simple 2D RGB camera 

implementation, Boborzi et al. (2025) utilized an Azure Kinect with keypoints extracted using a 

combination of YOLO8 detection and Real-Time Multi-Person Pose Estimation (RTMPose), and 3D 
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skeleton reconstructed using the depth information. The authors then performed step detection using a gait 

event detection algorithm, and gait parameters were determined from the detected steps. Jing et al. (2023), 

on other hand, used Kinect, with 3D skeleton constructed using the built-in Kinect Body Tracking software 

development kit and using the Kinect data to classify gait events using Bi-LSTM.  

Similar patterns in how gait parameters are determined, either via calculation from classified gait 

events or direct prediction, can be observed with sensor-based approaches. Hartmann et al. (2025) used a 

single channel depth sensor as the only input to extract the required pose information and compared multiple 

approaches to classify gait events and estimate the gait parameters. Xu et al. (2025) used a BiTCN-BiGRU-

Cross-Attention model trained using IMUs data to predict heel strike and toe-off gait events. On the other 

hand, Verbiest et al. (2023) and Zadka et al. (2024) used IMUs as input features, paired with CNN and 

XGBoost models respectively, while Liu et al. (2024) used sEMG features to compare decision tree, random 

forest and XGBoost, all predicting gait parameters directly.  

For model validation and evaluation, most of the research are comparing their predicted gait 

parameters with gold-standard systems like optical motion capture, instrumented walkways, and inertial 

sensors, with metrics computed based on the comparison, while this research compared predicted results 

with annotated ground truth. The evaluation metrics that are used across the research includes MAE, RMSE 

and coefficient of determination (R2), which is a common practice in model performance evaluation as 

performed by Mohamad Razi et al. (2022) and Sani Abdul Rahman et al. (2023); with additional PCC and 

ICC(2,1) included to assess the reliability and consistency of the predicted outcomes against ground-truth 

measurements, thereby ensuring both accuracy and agreement in model performance evaluation. 

Although there are studies integrate computer vision and artificial intelligence for gait analysis, there 

is a gap of study when most of them do not validate the feasibility of such application for underwater 

settings. The limited available underwater pose data for the training of pose estimation model serves as the 

main research gap, as on-land pose data is easier to be obtained and hence gains more attention. 

Consequently, pose estimation models are trained based on on-land pose data thereby are lacked 

performance validation when they are applied for underwater pose estimation. Meanwhile, most 

aforementioned studies lack a systematic way in determining their models’ hyperparameter configuration, 

which is concerned to have sub-optimal performance. When some of them performed hyperparameter 

optimization (HPO), they dealt with low-dimensional search space, that the maximum search space 

dimension is not more than 9, in resource-extensive ways such as grid search as done by Hartmann et al. 

(2025), Kidziński et al. (2020), and Verbiest et al. (2023), which is unapplicable in high-dimensional search 

space because it is time and resource intensive. 

3. METHODOLOGY 

3.1 Dataset development 

The dataset was developed by recording 450 underwater jogging clips using REDBUFFALO SPARK 

waterproof monocular camera at 3840×2160 pixels, 30 Hz in University of Technology Malaysia Kuala 

Lumpur's residence pool. The data set consists of 7 male adult participants, with their movement 

unconstrained and unguided, and moments when participants turned their body to change direction or 

temporarily moved out of frame were retained to validate the model robustness. The video length ranges 

from 8.17 to 33.81 seconds (14.08 ± 3.63 seconds), and the videos were broadly categorized into two 

groups, i.e., Diagonal Jogging (DJ) and Lateral Jogging (LJ) based on their relative heading direction 

toward camera throughout the video clip. Examples included in Fig. 1. 
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Fig.  1. Examples of frames extracted from video clips recorded. (DJ: 1 & 2; LJ: 3& 4) 

A frame-to-frame motion analysis was then performed to obtain the ground truths of average temporal 

gait parameters: swing, stance, stride time and cadence for each video, with the reference foot used to 

compute the gait parameters to be right foot without considering the variability between the legs. The 

convention in determining the gait parameters, as shown in Table 1, follows what were described by Perry 

& Burnfield (2024) and Prakash et al. (2018). 

Table 1. Description of temporal gait parameter 

Temporal Gait 

Parameter 
Description 

Swing time 
Frame number difference between when right knee starts to flex Tflex and when right tibia is 

perpendicular to floor T⊥. 

Stance time 
Frame number difference between when right heel is in contact with ground Theel and when right toe is 

in initial contact Ttoe. 

Stride time Sum of swing time and stance time. 

Cadence Number of steps per minute (spm). 

3.2 Experiment setup 

Captured clips were resized to 960×540 pixels to accelerate the inference speed of pose estimation 

models, while BlazePose full model from Mediapipe (Lugaresi et al., 2019) and YOLO11m-pose from 

Ultralytics (Jocher et al., 2023) are compared in 25 randomly selected videos in term of Euclidean distance 

difference (EDD) between manually labelled and predicted 2D-coordinates of lower-body keypoints: 

bilateral hips, knees and ankles. Lower body joints were only compared and included in model training as 

Hartmann et al. (2025) found out including only best contributing features obtain the best prediction result. 

After comparison the model with better performance was used to extract the lower-body keypoints’ 2D-

coordinates for the remaining videos as the input features to the deep learning algorithm. Linear 

interpolation on missing data was only performed without noise filtration.  

The CNN-BiLSTM network was built using Keras library (Watson Matthew et al., 2024), with HPO 

performed using Optuna library (Akiba et al., 2019). Three types of comparisons were performed 

throughout HPO: first is HPO algorithms comparison which involved Gaussian Process (GP), Univariate 

Tree-structured Parzen Estimator with Hyperband (UniTPE + Hyperband) and Multivariate Tree-structured 

Parzen Estimator with Hyperband (MultiTPE + Hyperband); second is CNN stacking method comparison 

between single CNN and multiple CNNs before each pooling layer; and last is model learning paradigm 

comparison between single-task learning (STL) and multi-task learning (MTL). Table 2 summarizes the 15 

hyperparameters to be optimized with respective boundaries. 

 

 

 



309 Tong and Khairuddin / Mathematical Sciences and Informatics Journal (2025) Vol. 6, No. 2 

https://doi.org/10.24191/mij.v6i2.9665

 

 ©Authors, 2025 

Table 2. Optuna HPO search space 

Category Hyperparameter Suggest type Boundary 

Data level 

Sliding window size Integer [70, 250], step=10 

Sliding window stride Integer [1, 5] 

Batch size Categorical 32, 64, 128 

1D-CNNs 

Number of 1D-CNNs stacks Integer [1, 3] 

Number of filters Integer [32, 128], step=32 

Number of kernels Categorical 3, 5, 7 

Pool size Categorical 2, 5 

CNN dropout rate Float [0.0, 0.5], step=0.1 

Use of batch normalization layer Categorical 0, 1 

Bi-LSTM 

Number of LSTM layers Integer [1,3] 

Number of LSTM units Integer [32, 128], step=32 

Dropout rate Float [0.0, 0.5], step=0.1 

Dense units Integer [32, 128], step=32 

Optimizer 
Learning rate Float [log 1×10-5, log 1×10-3] 

Weight decay Float [log 1×10-6, log 1×10-3] 

In HPO and as the parameter required by Optuna, the GP used n_startup_trial=45, following the 

default setting of Keras Tuner, that 3×dimensionality of hyperparameter space is used (Watson Matthew et 

al., 2024). In contrast, UniTPE + Hyperband and MultiTPE + Hyperband used n_startup_trial=75, 

min_recource=1, max_resource= “auto”, and reduction_factor=3 to have a recommended Hyperband 

bracket number of 5 (Li et al., 2016). 

Throughout this research, the prediction pipeline followed the flow described in Fig. 2, and the 

configuration listed in Table 3 was used. The comparisons to determine best model training strategy began 

by setting single CNN per pooling layer with MTL to determine the best HPO algorithm in terms of the 

least value of loss function obtained, where each algorithm was given 70 trials and a maximum of 100 

epochs per trial for the 15-dimensional mixed-type HPO problem. After that, the best HPO algorithm was 

used to determine the better CNN stacking method under MTL settings, and finally comparison between 

MTL and STL was performed using the better CNN stacking method. These two comparisons were 

performed under stratified 10-fold cross-validation to estimate model generalization. Fig. 3 visualizes the 

comparison hierarchy. 

 

 

Fig.  2. Block diagram of the prediction pipeline 
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Table 3. Configuration used for model training 

Model training configuration Setting 

Train-validation-test data splitting ratio 81:9:10 

Loss function Mean squared error (MSE) 

Optimizer Adaptive Moment Estimation with Decoupled Weight Decay (ADAMW) 

Normalization method Maximum normalization 

Pooling type Maximum pooling 

Early stopping Patience of 10 epochs based on validation root mean squared error 

Reduced learning rate on plateau 50%, patience of 5 epochs based on validation root mean squared error 

 

 

Fig.  3. Visualization of the hierarchy of comparisons 

4. RESULTS AND DISCUSSION 

Fig. 4 shows an example of the pipeline's output, in which the input videos are saved as copies with the 

predicted results displayed at the bottom. Meanwhile, the combination of pose estimator model of 

YOLO11m-pose, HPO algorithm of MultiTPE + Hyperband, CNN stacking method of multiple CNNs per 

pooling layer, and output structure of multi-head output was identified to perform the best, with a test set 

evaluation result of R2 score of 0.8208; average ICC(2,1) of 0.8999, average PCC of 0.9066, and average 

MAE and RMSE of 0.0954 seconds and 0.1418 seconds, respectively, for swing, stance, and stride time. 

Meanwhile, MAE and RMSE for cadence are 3.5141 and 4.9464 spm respectively. Breakdown of the result 

is as shown in Table 4.  

 

 

Fig.  4. Examples of the pipeline’s output extracted using YOLOv11m-pose are also displayed to aid verification, as 
inaccurately extracted keypoints would degrade prediction quality 
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Table 4. Detailed model performance evaluated on test set of 45 video clips 

Temporal gait parameter MAE RMSE PCC ICC(2,1) R2 score 

Swing time (seconds) 0.0758 0.0946 0.9323 0.9315 

0.8208 
Stance time (seconds) 0.0974 0.1580 0.8342 0.8138 

Stride time (seconds) 0.1130 0.1729 0.9078 0.9027 

Cadence (spm) 3.5141 4.9464 0.9520 0.9513 

The validity and reliability of the developed system for temporal gait parameter measurement 

demonstrated a high degree of agreement and reliability with the ground truth annotated by the rater, proved 

by high PCC) and ICC values. Specifically, the system achieved excellent reliability, with  ICC values 

greater than or equals to 0.90 (Koo & Li, 2016), and excellent positive correlation, with PCC values greater 

than or equals to 0.9 (Mukaka, 2012), for three of the four parameters: cadence (ICC=0.9513, PCC=0.9520), 

swing time (ICC=0.9315, PCC=0.9323), and stride time (ICC=0.9027, PCC=0.9078). These results are 

comparable with, and in several cases surpass values reported in past literature employing different 

approaches in determining the gait parameters. For instance, the cadence PCC of 0.9520 and ICC of 0.9513 

are competitive with the results obtained by Barzyk et al. (2024) who reported to have cadence ICC of 

0.9870, and significantly exceeding the PCC of 0.79 found by Kidziński et al. (2020) and the 0.91 by Liu 

et al. (2024). The consistent performance of the developed model across multiple parameters confirms its 

capability for relative measurement, indicating its efficacy in tracking changes in gait over time, which is 

critical for longitudinal clinical assessment. 

Apart from relative agreement measured by ICC and PCC values, the absolute accuracy of the system, 

which is measured using MAE, also demonstrated clinical utility. The cadence measurement achieved an 

MAE of 3.51 spm, which is superior to the mean error of 3.88 spm reported by Lonini et al. (2022). 

Similarly, the stance time MAE of 0.0974 s was lower than the mean error of 0.12 s published by Lonini et 

al. (2022). These small MAE values for two fundamental parameters confirm the system's high level of 

calibration and low systematic bias. Although the stride time RMSE of 0.1729 s was notably higher than 

RMSE of 0 s, achieved by Boborzi et al. (2025), the stride time ICC of 0.9027 still confirms excellent 

reliability, suggesting the value may be influenced by a few larger, non-systematic errors which are 

penalized more heavily by the metric, and are most probably caused by completely wrong detection of 

landmarks coordinates in certain frames due to the water disturbances and sudden lightning change. 

A particularly noteworthy finding is the exceptionally high reliability observed for swing time 

(ICC=0.9315, PCC=0.9323) which significantly surpasses the moderate reliability values reported across 

the cited literature, including the PCC of 0.66 (Lonini et al., 2022) and the ICC of 0.663 (Boborzi et al., 

2025). This high agreement suggests the system's event detection algorithm is highly robust in precisely 

identifying the toe-off and heel-strike events that define the swing phase. Conversely, the stance time 

showed the lowest ICC of 0.8138 among the reliable parameters and lagged behind the PCC of 0.93 as 

reported by Lonini et al. (2022). Stance time which is defined by the period between two complex load-

bearing events is inherently challenging to capture accurately without a force plate. The slightly lower ICC 

may reflect the authors’ fine-tuned ResNet 50 captures the subtle movement artifacts during weight transfer 

or push-off better, which is beneficial because minimal variability was introduced in the stance time 

calculation. 

For the HPO algorithm comparison, GP obtained MSE of 0.11341; UniTPE + Hyperband obtained 

0.004987; followed by MultiTPE + Hyperband which obtained the least MSE of 0.004981. It was expected 

that GP performs worse in mixed-type search space and in high-dimensional search space, whose number 

of hypermeters equals and more than 15. It was also validated that UniTPE + Hyperband performs worse 

than MultiTPE + Hyperband, as univariate TPE cannot capture the interaction effects across 

hyperparameters, since it assumes independence across hyperparameters and models the joint density as a 

product of one-dimensional kernel density estimators. Although there was no significant difference of MSE 
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values between UniTPE + Hyperband and MultiTPE + Hyperband, a larger difference is expected in 

scenarios with higher hyperparameter search space dimensionality. Nevertheless, under the same settings 

of Hyperband as pruner, MultiTPE + Hyperband pruned unpromising trials more aggressively when 

compared to UniTPE + Hyperband, as shown in Table 5.  

Table 5. Comparison between UniTPE + Hyperband and MultiTPE + Hyperband in term of pruned trials 

HPO algorithm 
Trial at 

optimal 

Number of 
pruned trials 

before optimal 

Number of total 

pruned trials 

Number of total 

trials 

UniTPE + Hyperband 142nd 82 96 166 

MultiTPE + Hyperband 157th 109 145 215 

The difference may be due to how different Optuna models the univariate TPE and multivariate TPE’s 

kernel density estimation, where univariate TPE determines each kernel’s bandwidth based on the local gap 

to respective nearest neighbours in the sorted data; while multivariate TPE uses a global, single kernel 

bandwidth based on the formula: 

 

𝜎 = 0.2 × 𝑛−1/(𝑑+4) × 𝑅                                                           (1) 

 

σ: kernel bandwidth 

n: number of past observations 

d: dimensionality of hyperparameter search space 

R: parameter range normalization term 

For that reason, multivariate TPE tends to have comparatively smaller bandwidth of joint density of 

good trials, indicating that there will be potentially more trials falls outside the promising region, and the 

pruner, Hyperband immediately eliminates them based on their unpromising intermediate values, hence 

more pruned trials. The stacking of multiple CNNs before each pooling layer achieved better result because 

pooling layers are destructive and by stacking up multiple CNNs can help learning complex features of 

input vector. In terms of model learning paradigm, MTL constantly obtained better result compared to STL, 

in both stratified 10-fold cross validation and test set evaluation, except for swing time when evaluated 

using stratified 10-fold cross validation, as shown in Table 6 and Table 7. 

Table 6. Comparison between MTL and STL when evaluated using stratified 10-fold cross validation 

Model learning paradigm Swing time MAE Stance time MAE Stride time MAE Cadence MAE 

MTL 0.0713 0.0942 0.1109 3.6807 

STL 0.0692 0.1008 0.1144 3.8628 

Table 7. Comparison between MTL and STL when evaluated on test set of 45 video clips 

Model learning paradigm Swing time MAE Stance time MAE Stride time MAE Cadence MAE 

MTL 0.0758 0.0974 0.1130 3.5141 

STL 0.0774 0.1121 0.1304 3.7939 

This may be mainly due to the sharing of hidden layers, which is beneficial when the predicted tasks 

are closely related, as task correlation can be learnt. Through the sharing also the essential features might 

be amplified with noises suppressed and harder task can eavesdrop on the internal representation when one 

task can learn particular feature more readily. These promote learning and accuracy of the model, while 

with multiple objectives stochastic gradient descent will follow a path in parameter space that balances all 

tasks rather than overfitting on a single task, hence better generalization. 

In the lower-body keypoints EDD comparison, BlazePose full model achieved an average EDD of 

35.22 ± 16.94 pixels, where YOLO11m-pose achieved an average EDD of 11.52 ± 2.89 pixels when they 

were evaluated on 25 random video clips; indicating YOLO11m-pose constantly predicts more accurate. 
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Although both models utilize top-down approach, the key difference is that BlazePose separates the 

inference pipeline into detection which uses a lightweight face detector, then followed by pose estimation 

performed using a pose tracker network based on the detected region of interest (ROI); while YOLO11m-

pose features the combined detection and pose estimation as a single-stage head on top of its detection 

model which is trained on full-body boxes, making it independent on the presence of facial views. In 

contrast, BlazePose identifies the ROI based on the facial views, the absence of facial views especially 

when videos were captured underwater might misguided the ROI and this might be the root cause of having 

worse performance compared to YOLO11m-pose. 

5. CONCLUSION 

This research validated the feasibility of underwater gait analysis by incorporating computer vision with 

deep learning method, under a scenario which requires only minimal data preprocessing, that is, only linear 

interpolation for missing data was performed without input data noise filtration and removal of undesired 

frames. Comparisons on HPO algorithms, CNN stacking method and model learning paradigms were also 

performed, with the result indicating that the configuration of MultiTPE + Hyperband, stacking of multiple 

CNNs before pooling and MTL settings performs the best. In the case of 2D pose estimation model 

comparison, YOLO11m-pose shows better estimation accuracy for not relying on facial views to determine 

the ROI. 

For the future directions, there are few aspects to be considered. Firstly, the dataset should be 

expanded by including participants of various health conditions and ages to introduce diverse gait patterns, 

thereby improves model generalizability and supports more inclusive analysis for targeted rehabilitation 

protocol. Moreover, multiple raters should also be involved in determining gait parameters to mitigate 

subjectivity, as there is no gold-standard system for gait analysis in underwater settings. Stride-level gait 

parameter annotation should also be adopted instead of per-video level annotation to have real-time gait 

analysis enabled and the granularity of gait prediction enhanced. Noise filtration methods such as 

Butterworth high-pass filter, median filter, and gaussian filter may be applied to reduce input noise, which 

is potential to ease the model training and obtain better prediction accuracy. Furthermore, although stacking 

of multiple CNNs before each pooling is proved to perform better, the number of CNNs stacking was 

predetermined to be two as recommended, which may require further studies to validate the optimal number 

of CNNs stacks for this specific task. 
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