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ABSTRACT

Soil properties are very crucial for civil engineers to differentiate one type 
of soil from another and to predict its mechanical behavior. However, it 
is not practical to measure soil properties at all the locations at a site. In 
this paper, an estimator is derived to estimate the unknown values for 
soil properties from locations where soil samples were not collected. The 
estimator is obtained by combining the concept of the ‘Inverse Distance 
Method’ into the technique of ‘Kriging’. The method of Lagrange Multipliers 
is applied in this paper. It is shown that the estimator derived in this paper 
is an unbiased estimator. The partiality of the estimator with respect to the 
true value is zero. Hence, the estimated value will be equal to the true value 
of the soil property. It is also shown that the variance between the estimator 
and the soil property is minimised. Hence, the distribution of this unbiased 
estimator with minimum variance spreads the least from the true value. 
With this characteristic of minimum variance unbiased estimator, a high 
accuracy estimation of soil property could be obtained. 

Keywords: Lagrange Multipliers, estimator, error, variance, soil properties

Applying the Method of Lagrange 
Multipliers to Derive an Estimator 

for Unsampled Soil Properties
Ng Set Foong1, Ch’ng Pei Eng2, Chew Yee Ming3 and Ng Kok Shien4

1,2,3Department of Computer and Mathematical Sciences
4Faculty of Civil Engineering

Universiti Teknologi MARA Pulau Pinang, 
Jalan Permatang Pauh, 13500 Permatang Pauh, 

Pulau Pinang, Malaysia
1Email: ngsetfoong061@ppinang.uitm.edu.my



16

Scientific Research Journal 

Introduction

Soil properties are important for many construction purposes such as 
reliability and risk analysis. Identifying the properties of soil can help a civil 
engineer to differentiate one soil from another and to predict its mechanical 
behavior. For example, color, unit weight, water content and grain size 
distribution are some of the descriptive properties of soil that are useful 
for differentiating one soil from another. In addition to this, mechanical 
properties such as strength, deformability and permeability are useful for 
predicting mechanical behavior of soil [1].

Soil properties should be established at every location. However, this 
is not practical in reality due to cost and time constraint. It is impossible 
to measure soil properties at all the locations. Hence, the soil properties 
obtained from a site investigation are always found scattered and limited 
in number. Sometimes, the unknown values of soil properties at locations 
not included in the sampling are needed for further analysis or decision 
making. Hence, the estimation of the unknown values becomes essential. 

In order to produce the estimation of the unknown values of the soil 
properties at a site, most classical statistical techniques concern only with 
the values of the samples collected from the site. However, geostatistics 
takes into account both the values and the location where the samples were 
collected [2]. One of the applications in geostatistics is to produce the best 
estimation of the unknown value at some location within a designated site. 
This technique is known as ‘Kriging’ [3]. Another estimation technique 
called ‘Inverse Distance Method’ also gives the estimation of the soil 
properties from locations where soil samples were not collected. In this 
paper, a statistical method that combines the concept of the ‘Inverse Distance 
Method’ into the technique of ‘Kriging’ is derived.

A Review of Kriging and Inverse Distance Method 

Suppose n soil samples are collected from n locations at a site.  The 
soil properties of interest are then measured from these soil samples. 
Suppose zi represents the value of the soil property of interest at location 
xi. Hence,  z1, z2, ... zn are the collected primary data on soil properties. The 
corresponding of the location of the soil samples are denoted by x1, x2, ..., 
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xn. Suppose we would like to estimate the unknown value of soil property 
z0 at unsampled location x0, then an estimator of  z0 is needed. Suppose 

A review on Kriging and inverse distance method 

Suppose n soil samples are collected from n locations at a site.  The soil properties of interest are then 
measured from these soil samples. Suppose iz represents the value of the soil property of interest at 

location ix . Hence, 1 2, , ... , nz z z are the collected primary data on soil properties. The corresponding 

of the location of the soil samples are denoted by 1 2, , ..., nx x x . Suppose we would like to estimate 

the unknown value of soil property 0z at unsampled location 0x , then an estimator of 0z is needed.

Suppose 0ẑ represents the estimator.

A technique called ‘Kriging’ gives the estimation of the soil properties at unsampled 
locations. The term ‘Kriging’ is named by G. Matheron in honor of the South African mining 
engineer D.G. Kridge whose work on ore-grade estimation in the gold mines [4-6]. The estimation 
technique ‘Kriging’ gives the estimator, 0ẑ , as follows:

0 1
ˆ

=
= ∑n

i ii
z a z ,                           (1)

where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

ia = Kriging weight with the constraint 
1

1
=

=∑n
ii

a .

It is noted that the estimator, 0ẑ , is expressed as a linear combination of the surrounding 

primary data, 1, , nz z .

Another estimation technique called ‘Inverse Distance Method’ also gives the estimation of 
the soil properties at unsampled locations. The formula used for Inverse Distance Weighting,
described in Goh and Pai [7], is as below:

0ˆ [ /( ) ] /[1/( ) ]= + +p p
i i iz z d s d s ,                                           (2)

where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

id = distance between location of 0ẑ and iz
s = smoothing factor
p = weighting power, the most commonly used values are 1 and 2

From the formula for Inverse Distance Method, the estimated value 0ẑ is inverse proportional 

to id or 2
id . Hence, sample points nearer to the estimated point give greater weighting than those 

points further away. This technique is simple and cheap to compute. 

In the following section of this paper, a statistical method that combines the concept of the 
‘Inverse Distance Method’ into the technique of ‘Kriging’ is derived in order to obtain another 
technique that consists of the advantages of the above two mentioned techniques. 
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where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

ia = Kriging weight with the constraint 
1

1
=

=∑n
ii

a .
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where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

ia = Kriging weight with the constraint 
1

1
=

=∑n
ii

a .
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Suppose 0ẑ represents the estimator.

A technique called ‘Kriging’ gives the estimation of the soil properties at unsampled 
locations. The term ‘Kriging’ is named by G. Matheron in honor of the South African mining 
engineer D.G. Kridge whose work on ore-grade estimation in the gold mines [4-6]. The estimation 
technique ‘Kriging’ gives the estimator, 0ẑ , as follows:
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where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

ia = Kriging weight with the constraint 
1

1
=

=∑n
ii

a .
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where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

id = distance between location of 0ẑ and iz
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where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

ia = Kriging weight with the constraint 
1

1
=

=∑n
ii

a .
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where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

ia = Kriging weight with the constraint 
1

1
=

=∑n
ii

a .
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the concept of the ‘Inverse Distance Method’ into the technique of ‘Kriging’ 
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of the above two mentioned techniques. 
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Combining the concept of the ‘Inverse Distance Method’ into the technique of ‘Kriging’,
another estimator is derived, that is

*
0 1

ˆ
=

= ∑n i
ii

i

az z
d

, (3)

where *
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A review on Kriging and inverse distance method 

Suppose n soil samples are collected from n locations at a site.  The soil properties of interest are then 
measured from these soil samples. Suppose iz represents the value of the soil property of interest at 

location ix . Hence, 1 2, , ... , nz z z are the collected primary data on soil properties. The corresponding 

of the location of the soil samples are denoted by 1 2, , ..., nx x x . Suppose we would like to estimate 

the unknown value of soil property 0z at unsampled location 0x , then an estimator of 0z is needed.

Suppose 0ẑ represents the estimator.

A technique called ‘Kriging’ gives the estimation of the soil properties at unsampled 
locations. The term ‘Kriging’ is named by G. Matheron in honor of the South African mining 
engineer D.G. Kridge whose work on ore-grade estimation in the gold mines [4-6]. The estimation 
technique ‘Kriging’ gives the estimator, 0ẑ , as follows:
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where 0ẑ = estimated value at unsampled location 0x
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It is noted that the estimator, 0ẑ , is expressed as a linear combination of the surrounding 

primary data, 1, , nz z .

Another estimation technique called ‘Inverse Distance Method’ also gives the estimation of 
the soil properties at unsampled locations. The formula used for Inverse Distance Weighting,
described in Goh and Pai [7], is as below:
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where 0ẑ = estimated value at unsampled location 0x

iz = measured value of the soil property of interest at location ix

id = distance between location of 0ẑ and iz
s = smoothing factor
p = weighting power, the most commonly used values are 1 and 2

From the formula for Inverse Distance Method, the estimated value 0ẑ is inverse proportional 
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id . Hence, sample points nearer to the estimated point give greater weighting than those 

points further away. This technique is simple and cheap to compute. 

In the following section of this paper, a statistical method that combines the concept of the 
‘Inverse Distance Method’ into the technique of ‘Kriging’ is derived in order to obtain another 
technique that consists of the advantages of the above two mentioned techniques. 
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In order to obtain the values of ia , 1, 2, ...,=i n , the variance of 

error ( 0r ) between the estimator *
0ẑ  and the 0z  is minimised. The variance 

of error is given by: 
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where Cov( . , . ) represents the covariance function between the two 
variables.
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The derivation of equation (4) is shown below:
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unknown ia .  The unknown ia  can be obtained by: 

i)	 minimising the variance of error ( 0r ),
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ii)	 subject to the constraint 
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.
		

The method of Lagrange Multipliers is applied to solve the above 
mentioned optimisation problem and it is presented in the following section.  
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The Method of Lagrange Multipliers

As presented in the previous section, the unknown ia  can be obtained 
by 

i)	 minimizing the variance of error ( 0r ),  
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Thus, the gradient of 1 2( , ,..., )nf a a a  is given by another 1×n  vector
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Hence, by using the method of Lagrange Multipliers, we obtained 
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where λ  is a Lagrange Multiplier.
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Including the constraint 
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aDVANTAGEs OF THE ESTIMATOR

The estimator that is derived in this paper has the following advantages: 
the estimator is unbiased and the variance of the error is minimised. The 
unbiased estimator enables the bias to be equal to zero, that is bias = 

*
0 0ˆE( ) 0− =z z , where 0z  is the soil property at location 0x  and *

0ẑ  is the 

estimated value derived from the estimator at location 0x . In other words, 
when the bias is zero, the estimated value will be equal to the true value of 
the soil property. The derivation has been shown in the paper. Hence, this 
unbiased characteristic gives satisfactory estimation of the soil property. 
Figure 1 shows the difference between an unbiased estimator and a biased 
estimator.
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The estimator derived from this paper possesses the desired characteristic of minimum 
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CONCLUSION

In practical, soil properties are rarely measured at all the locations at a site. However, the unknown 
values of soil properties at unsampled locations are sometimes essential for advanced analysis. In this 
paper, an estimator is derived to estimate the unknown value of unsampled location. It is obtained by 
combining the concept of the ‘Inverse Distance Method’ into the technique of ‘Kriging’. The 
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The estimator derived from this paper possesses the desired 
characteristic of minimum variance unbiased estimator. Hence, we may 
obtain higher accuracy of the estimation.
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Conclusion

In practical, soil properties are rarely measured at all the locations at a site. 
However, the unknown values of soil properties at unsampled locations 
are sometimes essential for advanced analysis. In this paper, an estimator 
is derived to estimate the unknown value of unsampled location. It is 
obtained by combining the concept of the ‘Inverse Distance Method’ into the 
technique of ‘Kriging’. The derivation of the estimator involves statistical 
method and mathematical technique. In terms of statistical method, the 
concept of unbiased estimator is used, that is bias is equal to zero. With 
this characteristic, the estimated value from the estimator will be equal 
to the true value of the soil property. Another statistical method used in 
developing the estimator is the concept of minimum variance. Minimum 
variance enables the distribution of the estimator closest to the true value of 
the soil property. With these two constraints in developing the new estimator, 
a mathematical technique, the method of Lagrange Multipliers, is applied 
to solve this optimization problem. Hence, a minimum variance unbiased 
estimator is developed. Using this estimator to produce estimation for soil 
properties at unsampled locations, the effect of inadequate site investigation 
could be reduced.
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