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Abstract— Numerous studies have explored runway visibility 

prediction. However, relatively few have focused on predicting 

nominal current output based on visibility, time, and acquisition 

functions, as effective management of aeronautical lighting is 

crucial for optimizing energy consumption and reducing 

environmental impact. This study decisively targets optimizing 

nominal current output of runway edge lights at Subang Airport 

using advanced Machine Learning (ML) techniques, leveraging a 

range of acquisition functions and comprehensive meteorological 

data. A hybrid combination of Gaussian Process Regression, 

which is particularly effective in accounting for data-specific 

uncertainties and non-linear relationships, and Nearest Neighbor 

Classifiers are utilized to accurately predict the nominal current 

output based on predicted visibility and time. Both 5-fold cross-

validation and holdout validation were performed to ensure 

robust evaluation. Model performance is assessed using key 

metrics such as accuracy, precision, recall, and F1 score. The 

findings explicitly demonstrate that the Expected Improvement 

(EI) acquisition function outperformed others, which is the most 

accurate in predicting the nominal current output in both 

validation methods by achieving 99.62% accuracy. In conclusion, 

this study presents a groundbreaking approach to predicting and 

improving nominal output current for runway edge lights by 

applying the EI acquisition function.  

 
Index Terms— Acquisition Function, Aeronautical Ground 

Lighting, GPR, KNN, Meteorological Data, Nominal Current 

Output   

I. INTRODUCTION 

The absence of standardized guidelines regarding nominal 

current output in airport operations has emerged as a significant 

issue in the rapidly evolving aviation field.  

Effective monitoring and control of Aeronautical Ground 

Lighting (AGL) systems are vital to ensure that these lights do 

not operate at full power unnecessarily [1]. This practice is 

crucial, as excessive lighting increases energy waste and 

operational costs. Adjusting the intensity of lights within an 

aerodrome lighting system is essential for maintaining safety 

and efficiency, particularly in response to varying 

environmental conditions. Factors such as background 

brightness, which can fluctuate dramatically from day to night, 

and visibility conditions, impacted by weather or time of day, 

play a key role in determining the optimal lighting intensity [2]. 

Each country should take the initiative to develop and refine its 

intensity-setting procedures as recommended by the 

International Civil Aviation Organization (ICAO) to enhance 

energy efficiency and safety [3]. By doing so, they can ensure 

that lighting levels are appropriately calibrated, ultimately 

supporting better operational practices in airport environments 

while reducing unnecessary energy consumption. 

Most research has focused on commercial spaces and Airport 

Terminal Buildings (ATBs). A Machine Learning (ML) model 

is vital for predicting energy consumption in airport buildings 

[4]. ATBs consume a significant amount of electricity for 

lighting, HVAC systems, and electronic equipment, as 

mentioned by [5], posing challenges to energy management and 

sustainability. Additionally, energy consumption varies with 

weather conditions and passenger numbers, complicating 

accurate predictions. However, runway lighting has unique 

energy needs, have been overlooked.  

A recent study emphasizes that airports are major energy 

consumers, particularly in ATB, where the demand for HVAC 

and lighting peaks [6]. To tackle this challenge, implementing 

standardized energy management systems is essential for 

monitoring and reducing energy use across airports. One 

promising approach is adopting advanced ML models, which 

can significantly enhance energy efficiency [7]. These systems 

facilitate real-time adjustments to lighting based on occupancy 

levels and weather conditions, thus optimizing energy 

consumption. Moreover, airports can leverage ML to analyze 

historical data to predict and optimize energy usage [8]. This 
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capability allows for continuous monitoring and the ability to 

make immediate adjustments, enabling informed decision-

making regarding energy efficiency upgrades and overall 

management strategies. 

External factors, such as air passenger traffic and weather 

conditions, are crucial in shaping airport energy consumption 

patterns [9]. As energy costs continue to rise and environmental 

concerns grow, it has become increasingly important to 

implement practices that effectively reduce energy use while 

maintaining operational efficiency. Various ML techniques 

have been employed to predict energy consumption. These 

include hybrids of knowledge-based and ML models, as well as 

specific algorithms such as Random Forest, XGBoost, 

LightGBM, Support Vector Regression, Long Short-Term 

Memory networks, and different types of Artificial Neural 

Networks (ANN), including ANN-LR, ANN-RR, ANN-RF, 

ANN-GB, ANN-DT, and ANN-ELM [10]–[13]. Utilizing these 

advanced methodologies can improve energy management and 

contribute to sustainable operations. 

The literature shows that MLs can be used in many existing 

studies concentrating on ATB and general buildings. However, 

runway lighting has received significantly less attention 

regarding energy efficiency improvements. To address this gap, 

automation is essential for predicting lighting usage based on 

real-time factors, such as time of day and weather conditions 

[1], [14]. Effective management of AGL systems is critical in 

ensuring safety and operational efficiency within airport 

environments. Unfortunately, many current lighting systems 

operate on fixed schedules or rely on manual controls. This 

reliance often results in suboptimal lighting that fails to adapt 

to real-time environmental conditions. The lack of automation 

in lighting systems can lead to excessive energy consumption. 

This study introduces a novel approach centered on two key 

components to fulfill the objective of developing an automated 

AGL system: 

1) Improving the Gaussian Process Regression – K Nearest 

Neighbor (GPR-KNN) model by incorporating various 

acquisition functions, including Expected Improvement (EI), 

Expected Improvement Plus (EIP), Expected Improvement Per 

Second (EIPS), Expected Improvement Per Second Plus 

(EIPSP), and Lower Confidence Bound (LCB). These functions 

enhance the model’s predictive performance and sampling 

efficiency. 

2) Evaluating the chosen acquisition function’s effectiveness 

and integrating it into a comprehensive ML framework to build 

a robust model that accurately predicts nominal current output 

for practical applications. 

The research paper consists of Section I, which explains the 

previous studies, problem statements, objectives, scope of 

work, and novelty. The rest of the paper is organized as follows: 

Section II presents the methodology used to achieve the 

objectives of this study, Section III describes the results and 

discussion, and Section IV concludes the overall study. 

  

 

 

II. METHODOLOGY 

The methodology for this study is shown in Fig. 1, and details 

are explained below. 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

Fig. 1. Methodology for developing GPR-KNN model  

 

A. Study Area  

Subang Airport, or SZB, is located in Subang, Selangor, 

Malaysia, about 15 kilometers west of Kuala Lumpur. It has a 

favorable climate year-round, making it a good option for 

domestic and regional flights. Daily Meteorological Aerodrome 

Report (METAR) weather data from the National Oceanic and 

Atmospheric Administration (NOAA), was collected from 

January 1 to December 31, 2023, totaling 8,760 data points 

[15]. As stated by NOAA, METAR serves as the global 

standard coding system for hourly surface weather reports, 

highlighting its essential function in providing accurate weather 

data. Half of this data was used to train and validate a model, 

while the other half was used to verify it. 

Meteorological factors such as daily air temperature, dew 

point temperature, wind direction, wind speed, and pressure 

were used in the calculations. Details on the collected data are 

in Table I and were important for predicting runway visibility 

through modeling. To strengthen the simulation, data such as 

“VRB” for variable wind direction was replaced with the most 

common value, 0 [16]. This change helps convert unclear data 

into a format that ML algorithms can efficiently work with. 

Additionally, visibility values over 10,000 meters were labeled 

as 10 to create a uniform reference for analysis. These 
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improvements help the model perform better and increase the 

reliability of the research results. 

TABLE I . INFORMATION REGARDING THE VARIABLES USED IN THIS STUDY 

Features Unit 

Hourly Temperature (T) Degree Celsius (°C) 
Hourly Dew-point Temperature (Td) Degree Celsius (°C) 

Difference between Hourly Temperature and 

Dew-point Temperature (T-Td) 

Degree Celsius (°C) 

Hourly Wind Speed (WS) Knot (kt) 

Hourly Wind Direction (WD) Degree (°) 

Hourly Pressure (P) Hectopascal (hPa) 
Visibility (V) Kilometer (km) 

Current Consumption (CC) Ampere (A) 

 

B. Cross and Holdout Validation 

A cross-validation approach was used to create each 

algorithm, regardless of the data split for training and 

assessment [17], [18]. in this study, the folds were configured 

to 5, with 20% allocated for validation and 80% for training. 

This configuratoin aimed to mitigate overfitting and to ensure 

optimal model performance by avoiding an imbalanced dataset 

distribution [19]. An example of the stacking structure with the 

fold set to 5 is shown in Fig. 2. 

This study also considered the holdout validation method. 

The holdout validation method allocates 25% of the total 

dataset for validation, while the remaining 75% is utilized for 

training the model [20], [21]. This methodology is particularly 

suitable for large datasets. It is vital to ensure that the model’s 

performance is evaluated accurately and devoid of any bias that 

may arise from the training data [22].  

This approach is particularly advantageous when working 

with large datasets, as it facilitates a comprehensive analysis of 

model effectiveness. By systematically partitioning the data, a 

thorough assessment of the trained models can be conducted, 

ensuring that their accuracy and reliability are evaluated 

rigorously prior to deployment in real-world applications. Such 

meticulous validation is essential to instill confidence in the 

performance of the models and their generalization capabilities. 

C. Selection of GPR-KNN 

In this study, the selection of GPR was based on [23]. From 

the paper, it has shown that GPR is the most accurate model 

used for visibility prediction in MATLAB. As for the selection 

of KNN, the justification was based on the paper [24], where it 

shows that KNN is the most reliable model for current 

consumption prediction. 

The proposed integrated model of GPR-KNN that 

incorporates various acquisition functions was developed using 

MATLAB R2024b, with the Regression Learner utilized for the 

GPR component and the Classification Learner Toolbox for the 

KNN component. Performance analysis was conducted through 

various metrics, including accuracy, precision, recall, and F1 

score. MATLAB R2024b was acquired directly from 

www.mathworks.com, with the associated license number 

being 41245384. The software operates on a computer equipped 

with an Intel Core i5-1235U CPU, which operates at 1.30 GHz, 

and has 16 GB of DDR4 RAM. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Cross validation with 5-fold validation 

 

D. Acquisition Function 

1) Expected Improvement (EI) 

The EI acquisition function plays a crucial role in Bayesian 

Optimization (BO) by guiding the sequential sampling process 

to find the optimum of complex objective functions [25]–[27]. 

The EI acquisition function is widely recognized for its 

essential role in BO, as it guides the sequential sampling 

process to approximate the complex objective function [25]–

[27]. It balances exploring unknown regions with exploiting 

known promising samples, making it a crucial component in 

optimization [27], [28]. The EI acquisition function in 

MATLAB utilizes a surrogate model, often based on a Gaussian 

process, to guide the optimization process by balancing 

exploration and exploitation [28], [29]. The EI acquisition 

function has been widely used to solve practical engineering 

problems due to its closed-form nature, effectively reducing 

sampling costs and improving optimization accuracy [28], [30]. 

 

2) Plus 

A key challenge is avoiding local minima when using BO to 

find the best solution. The acquisition function “plus” was used 

to address this. It adjusted their behavior to prevent over-

focusing on specific areas, thus promoting exploration. The 

algorithm checks for excessive concentration on particular 

spots. It modifies its approach to explore new territories if 

needed, with adjustments occurring up to five times. The 

Exploration Ratio plays a crucial role in balancing the 

exploration of new areas with revisiting known ones, enhancing 

the efficiency of the optimization process, and guiding the 

algorithm toward better solutions. 

 

3) Per Second 

When finding the best solution using computers, evaluation 

times can vary significantly. For instance, some areas take 

longer to assess with Support Vector Machines. To enhance 

efficiency, BO strategically considers evaluation times and 

makes informed decisions. By focusing on evaluations that 

promise the greatest improvement relative to time spent, BO 

optimizes resources, speeding up the search process and 

increasing the chances of finding the best solution. This 

approach balances precision and speed, guiding toward optimal 

results. 
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4) Lower Confidence Bound (LCB) 

The LCB acquisition function offers a refined strategy for 

decision-making under uncertainty in BO. It evaluates potential 

outcomes by focusing on options slightly below average, 

specifically, two standard deviations lower, acknowledging 

inherent prediction uncertainties. This method is akin to a 

cautious explorer identifying valuable opportunities while 

considering potential risks. It balances the excitement of 

exploration with careful uncertainty assessment, representing 

an intelligent strategy that navigates between embracing new 

possibilities and safeguarding against setbacks. 

 

E. Nominal Current Consumption  

The electrical power for AGL circuits, especially in series 

configurations, is efficiently supplied by Constant Current 

Regulators (CCRs). These essential devices play a crucial role 

in maintaining consistent light output over long distances, such 

as aerodrome runways. CCRs are engineered to deliver a stable 

current output, even amidst input voltage or load resistance 

fluctuations. In aviation, ensuring uniform lighting conditions 

is vital for pilots during critical phases like take-off, landing, 

and taxiing. These regulators are adept at producing a constant 

current output, which remains stable regardless of circuit load 

or voltage changes from the power source. The current 

consumption of CCRs is classified into five distinct steps, as 

summarized in Table II [31]. This classification system allows 

for careful selection of lighting intensity, with options ranging 

from 2.8 amperes to 6.6 amperes and a tolerance of ±0.1 

amperes. 

TABLE II. NOMINAL CURRENT OUTPUT RANGE 

Current 

step 

Nominal output                 

(RMS Amperes) 

Nominal output         

(RMS Amperes) 

5 6.60 6.50 - 6.70 
4 5.20 5.10 – 5.30 

3 4.10 4.00 – 4.20 

2 3.40 3.30 – 3.50 
1 2.80 2.70 – 2.90 

 

F. Model Performance Evaluation 

Since the main objective of this study is to predict the 

nominal current output, the performance assessment of the 

trained models focused solely on the final output, which is the 

classification model. This involved evaluating several key 

metrics: accuracy, precision, recall, and F1 Score [22], [32]. 

Each metric provides unique insights into the model’s 

effectiveness and contributes to a comprehensive understanding 

of its performance. 

Accuracy evaluates the model’s accuracy by assessing the 

ratio of true outcomes (positives and negatives) to the total 

number of cases analyzed. In contrast, precision zeroes in on 

the quality of positive predictions, measuring the ratio of true 

positive cases to all instances identified as positive. This metric 

is especially crucial in scenarios where the consequences of 

false positives are significant. 

Recall assesses how well a model can recognize all relevant 

instances by measuring the ratio of true positives to the total 

number of positive cases, including both true and false 

negatives. This metric is crucial in situations where it is 

important to identify as many positive cases as possible, even if 

it means allowing for some false positives. The F1 Score is a 

harmonic mean that combines precision and recall, yielding a 

single metric that addresses both aspects. This metric is 

especially beneficial in scenarios with imbalanced class 

distributions or when one of the metrics (precision or recall) is 

given more importance. 

The following equations as in (1) until (4) are utilized [22], 

where True Positives (TP) refer to instances that are correctly 

identified as belonging to the target class, True Negatives (TN) 

indicate instances accurately identified as not belonging to the 

target class, False Positives (FP) represent instances incorrectly 

classified as belonging to the target class, False Negatives (FN) 

describe instances that are incorrectly identified as not 

belonging to the target class. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑜𝑡𝑎𝑙 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
                                              (1) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                             (2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                                   (3) 

𝐹1 𝑆𝑐𝑜𝑟𝑒 =
2∗𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛∗𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                                              (4) 

III. RESULTS AND DISCUSSION 

Table III presents the results for each acquisition function 

based on cross-validation and holdout validation. 

TABLE III. RESULT FOR EACH ACQUISITION FUNCTION BASED ON TYPE OF 

VALIDATION 

Validation 
Acq. 

Function 
Accuracy Precision Recall 

F1 
Score 

Cross 

EIPSP 97.17% 93.90% 95.33% 94.58% 

EI 99.41% 98.18% 99.45% 98.79% 

EIP 99.41% 98.18% 99.45% 98.79% 

EIPS 95.46% 92.17% 93.46% 92.79% 

LCB 96.76% 93.09% 93.71% 93.39% 

Holdout 

EIPSP 96.62% 93.36% 96.55% 94.80% 

EI 99.73% 99.71% 99.79% 99.75% 

EIP 94.79% 94.65% 92.83% 93.70% 
EIPS 97.63% 97.61% 95.51% 96.50% 

LCB 94.61% 92.26% 93.38% 92.79% 

A. Analysis of Cross-Validation Results 

EIPSP achieves a commendable accuracy of 97.17%, with a 

precision of 93.90% and a recall of 95.33%, resulting in an F1 

score of 94.58%. While its performance is moderate, it 

effectively balances time efficiency and prediction reliability. 

In contrast, EI stands out with an exceptional accuracy of 

99.41%, precision of 98.18%, recall of 99.45%, and an 

impressive F1 score of 98.79%, making it ideal for highly 

reliable processes. EIP matches EI’s metrics perfectly, boasting 

an identical accuracy, precision, recall, and F1 score. It is 
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equally beneficial for dependable cross-validation. EIPS shows 

moderate performance with an accuracy of 95.46%, precision 

of 92.17%, recall of 93.46%, and an F1 score of 92.79%. Its 

computational efficiency suits resource-limited contexts. 

Lastly, LCB has a respectable accuracy of 96.76%, with a 

precision of 93.09% and a recall of 93.71%, yielding an F1 

score of 93.39%.  

B. Analysis of Holdout Validation Results 

EIPSP achieves an accuracy of 96.62%, with a precision of 

93.36%, a recall of 96.55%, and an F1 score of 94.80%. It 

balances computational efficiency with slightly reduced 

predictive metrics, which is ideal for resource-optimized 

scenarios. In contrast, EI excels with an accuracy of 99.73%, 

boasting precision (99.71%), recall (99.79%), and an F1 score 

(99.75%), making it the top choice for high-precision 

applications. EIP shows commendable performance at 94.79% 

accuracy, precision of 94.65%, recall of 92.83%, and F1 score 

of 93.70%. It emphasizes robustness and is suitable for 

reliability-focused situations. EIPS delivers a well-rounded 

accuracy of 97.63%, precision of 97.61%, recall of 95.51%, and 

F1 score of 96.50%. It merges computational efficiency with 

good predictive accuracy, making it adaptable for various 

applications. Finally, LCB has an accuracy of 94.61%, a 

precision of 92.26%, a recall of 93.38%, and an F1 score of 

92.79%.  

C.  Choosing the Best Model 

The higher the accuracy, precision, recall, and F1 Score, the 

better the results are. The models are ranked in Table IV, based 

on the performance score (β) that is defined in as in (5).  Higher 

values of β signify better model performance: 

𝛽 = 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 + 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 + 𝐹1 𝑠𝑐𝑜𝑟𝑒            (5)                                               

TABLE IV. RANKING BASED ON THE PERFORMANCE SCORE 

Validation Acquisition function Performance score 

Holdout 

Cross 
Cross 

Holdout 

EI 398.98% 

EI 395.83% 
EIP 395.83% 

EIPS 387.25% 

Holdout EIPSP 381.33% 
Cross EIPSP 380.98% 

Cross LCB 376.95% 

Holdout EIP 375.97% 
Cross EIPS 373.88% 

Holdout LCB 373.04% 

 

Holdout validation shows exceptional values for EI, 

achieving a remarkable score of 398.98%. This demonstrates 

the method's ability to effectively produced high-quality 

outcomes with specific acquisition strategies. In contrast, cross-

validation yields slightly lower results, with EI and EIP scoring 

395.83%. While not as high as holdout validation, the 

consistent performance across multiple folds enhances 

confidence in these acquisition functions’ reliability and 

robustness. Both methods highlight EI’s strong performance, 

showcasing its effectiveness in balancing exploration and 

exploitation, which is crucial for predicting predictive models. 

The findings align with previous research suggesting that EI 

adeptly manages the trade-off between exploring unknown 

areas and exploiting known promising regions [28]. EI’s 

performance in noisy environments is noteworthy, as it 

maintains computational efficiency without requiring complex 

optimization processes, making it suitable for challenging 

settings. 

 

 
Fig. 3. Confusion matrix for GPR-KNN (EI) 

 

The confusion matrix shown in Fig. 3 indicates that GPR-

KNN model using the EI acquisition function in holdout 

validation shows exceptional classification performance across 

four nominal current output classes: 3.4, 4.1, 5.2, and 6.6. 

Specifically, the model achieved correct classifications of 253, 

351, 52, and 436 instances for each respective class, resulting 

in a minimal number of misclassifications, where only three 

occurring between classes 4.1 and 3.4. Consequently, the 

overall classification accuracy is approximately 99.73%, which 

is consistent with the accuracy reported in the accompanying 

performance analysis. 

Furthermore, the model demonstrated perfect recall for 

classes 3.4, 5.2, and 6.6, and near-perfect recall for class 4.1. 

This performance underscores the model's robustness in 

addressing both minority and majority classes, despite the 

inherent class imbalance present in the dataset. Notably, the 

model exhibited zero-error performance for the higher-demand 

classes 5.2 and 6.6, which are critical for ensuring operational 

safety, thereby highlighting its practical reliability for real-

world applications. These findings underscore the GPR-KNN 

model’s strong generalization ability, high discriminative 

power, and operational suitability for automated AGL systems. 

The ROC curve analysis in Fig. 4 shows the GPR-KNN 

model utilizing the EI acquisition function indicates remarkable 

classification performance across all evaluated target classes. 

The model achieved high area under the curve (AUC) values, 

specifically registering 0.9982 for class 3.4, 0.9958 for class 

4.1, and a perfect score of 1.0000 for both classes 5.2 and 6.6. 

These results affirm to the model's exceptional discriminative 



JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.27 OCT 2025 

177 

 

capability, exhibiting minimal overlap between positive and 

negative class distributions. 

 

 
 

Fig. 4. ROC curve for GPR-KNN (EI) 

 

The positioning of the model's operating points near the ideal 

upper-left corner of the ROC space underscores the robustness 

of the threshold settings. This positioning reinforces the model's 

ability to achieve a high true positive rate while effectively 

suppressing false positives. Notably, the slightly reduced AUC 

for class 4.1 indicates some degree of boundary ambiguity in 

relation to class 3.4, which correlates with minor 

misclassifications observed in the confusion matrix. 

These findings demonstrate that the optimized model 

possesses outstanding sensitivity, specificity, and operational 

reliability. This underscores its potential as a highly effective 

decision-support tool for the optimization of AGL systems 

under varying meteorological conditions. 

Fig. 5 shows the minimum classification error plot for the 

model that provides essential insights into the hyperparameter 

optimization process. A notable decline in classification error 

occurs during the initial five iterations, decreasing from 

approximately 0.008 to a stabilized plateau between 0.0025 and 

0.003. This trend indicates a rapid convergence and effective 

exploration of the hyperparameter space. 

The consistent alignment between the estimated and observed 

minimum classification errors throughout the optimization 

process substantiates the robustness and predictive reliability of 

the surrogate model employed within the Bayesian  

framework. Importantly, the optimal hyperparameter 

configuration was identified early, specifically around the 

fourth or fifth iteration, resulting in minimized computational 

overhead while maximizing model performance. The findings 

of this study shows that the optimal hyperparameter 

configuration for the model occurs when the number of 

neighbors is two, the distance metric employed is the Jaccard, 

and the distance weighting method utilized is the squared 

inverse. These parameters collectively enhance the model's 

performance and reliability in analysis. 

 

  
Fig. 5. Minimum classification error plot for GPR-KNN (EI) 

 

These findings underscore the significance of BO in fine-

tuning complex ML models. Not only does it facilitate high 

classification accuracy, but it also ensures operational 

efficiency, attributes that are essential for the deployment of 

predictive systems in real-world AGL systems. 

IV. VERIFICATION OF MODEL 

To assess the model’s robustness and ability to generalize, 

the model was rigorously evaluated using the unseen fifty 

percent of the collected dataset, comprising 4,380 data points in 

total, as shown in Fig. 1. The findings from this comprehensive 

verification phase are meticulously detailed in Table V, 

highlighting the model’s performance and reliability. 

TABLE V. VERIFICATION RESULTS 

Validation Acquisition function Verification 

Holdout EI 99.62% 

 

A verification score of 99.62% highlights the model’s 

exceptional performance on unseen data, underscoring its 

ability to make highly accurate predictions. This remarkable 

score illustrates that most predictions generated for the 

verification set are correct, showing that the model really 

understands the complicated patterns found in the data. Such an 

impressive achievement also suggests minimal variation in 

performance across diverse subsets, indicating a well-rounded 

and reliable model. This level of accuracy mitigates concerns 

regarding overfitting and reinforces the confidence in the 

model’s capability to generalize effectively to new, unseen 

data. It reflects that the model is not merely memorizing the 



Jamaludin et.al.: Employing Hybrid GPR-KNN with Diverse Acquisition Functions for the Prediction of Current Consumption in Aeronautical Ground Lighting Systems 

 

178 

 

training examples but genuinely capturing the relationships 

embedded within the data distribution, showcasing its potential 

for real-world applications.  

To further analyze the impact of the model, a detailed 

analysis on the total current consumption for every hour has 

been conducted, as shown in Table VI. For 22 out of 24 hours, 

the total predicted current consumption matches the measured 

values, yielding a difference of 0 A. These findings indicate that 

the model has effectively captured the underlying patterns and 

temporal variations in current consumption, achieving near-

perfect predictive accuracy. Only at 0500 and 0700 hours are 

there deviations between the total predicted and actual values. 

At 0500, the model underpredicts by 10.5 A, which is good for 

lowering the current consumption. However, at 0700, the model 

overpredicts by 28.8 A. These minor deviations could be due to 

transient fluctuations or anomalies in the current consumption 

that the model, trained on the general patterns, did not capture 

perfectly. 

TABLE VI. ANALYSIS OF TOTAL CURRENT CONSUMPTION BASED ON TIME  

Time 
Actual Total Current 

Consumption (A) 

GPR-KNN Total 

Current Prediction (A) 

Difference 

(A) 

0:00 681.5 681.5 0 

1:00 645.1 645.1 0 

2:00 572.4 572.4 0 
3:00 504.1 504.1 0 

4:00 534 534 0 

5:00 596.2 585.7 10.5 
6:00 629.9 629.9 0 

7:00 746.7 775.5 -28.8 

8:00 1010.8 1010.8 0 
9:00 952 952 0 

10:00 1026.2 1026.2 0 

11:00 1077.2 1077.2 0 
12:00 999.8 999.8 0 

13:00 1036.4 1036.4 0 

14:00 1263.4 1263.4 0 
15:00 1087 1087 0 

16:00 1120.4 1120.4 0 

17:00 1065.2 1065.2 0 
18:00 1152.2 1152.2 0 

19:00 1045.6 1045.6 0 

20:00 833.4 833.4 0 
21:00 781.7 781.7 0 

22:00 631.9 631.9 0 

23:00 793.6 793.6 0 

 

 
Fig. 5. Comparison chart for actual total current consumption 

and predicted total current consumption from 0:00 Until 

23:00 during verification phase.  

From Fig. 5, it can be observed that the total current 

consumption values fluctuate in a manner that is typical for 

energy usage over a day, with lower total consumption in the 

early morning hours, rising gradually through the morning, 

peaking during midday and early afternoon, and then tapering 

off towards the evening. For instance, at midnight (0000), the 

total consumption is 681.5 A, followed by a steady decrease to 

504.1 A by 0300 hour, and then a gradual increase, reaching a 

peak of 1263.4 A at 1400 hour. Such trends suggest that the 

underlying processes driving current consumption are likely 

tied to daily human activity patterns and operational schedules 

of industrial or commercial equipment. From the figure, it can 

be deduced that the GPR-KNN hybrid model with EI 

acquisition function has an impressive overall performance, 

with a near-perfect alignment between actual measurements 

and predicted values across most hours of the day. The model’s 

exceptional accuracy, demonstrated by zero differences for 

most of the time points, speaks to the effectiveness of the hybrid 

approach in capturing both global trends and local variations in 

current consumption. There are minor deviations at 0500 and 

0700 hours that could be improved. However, these differences 

are small and do not significantly affect overall performance.  

V. CONCLUSION 

This study presents an innovative algorithm that significantly 

enhances AGL systems through the integration of GPR and 

KNN with EI acquisition function. This robust combination not 

only improves predictive accuracy but also optimizes lighting 

performance by factoring in critical elements such as time of 

day and prevailing weather conditions, as articulated in 

reference [1]. Remarkably, this approach attained a verification 

accuracy of 99.62%, underscoring the efficacy of the proposed 

model. The effective implementation of the EI function plays a  

pivotal role in balancing exploration and exploitation using BO, 

thus enabling the model to discern complex patterns within 

extensive datasets. Moreover, continuous monitoring and 

iterative model enhancement are paramount to ensuring 

consistent and reliable performance across varying 

environmental contexts. This research signifies a substantial 

advancement in predicting current consumption within AGL 

systems, effectively mitigating power waste and laying a strong 

foundation for future advancements in ML. The hybrid GPR-

KNN model, improved by the EI acquisition function, has 

demonstrated significant potential for real-time energy 

monitoring and load forecasting. Nonetheless, ongoing research 

remains essential to adapt to the dynamic nature of operational 

conditions. Ultimately, the findings of this study are critical in 

boosting advancements in predictive analytics and operational 

efficiency, for a smarter and more sustainable energy future. 
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