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Employing Hybrid GPR-KNN with Diverse
Acquisition Functions for the Prediction of
Current Consumption in Aeronautical Ground
Lighting Systems
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Abstract— Numerous studies have explored runway visibility
prediction. However, relatively few have focused on predicting
nominal current output based on visibility, time, and acquisition
functions, as effective management of aeronautical lighting is
crucial for optimizing energy consumption and reducing
environmental impact. This study decisively targets optimizing
nominal current output of runway edge lights at Subang Airport
using advanced Machine Learning (ML) techniques, leveraging a
range of acquisition functions and comprehensive meteorological
data. A hybrid combination of Gaussian Process Regression,
which is particularly effective in accounting for data-specific
uncertainties and non-linear relationships, and Nearest Neighbor
Classifiers are utilized to accurately predict the nominal current
output based on predicted visibility and time. Both 5-fold cross-
validation and holdout validation were performed to ensure
robust evaluation. Model performance is assessed using key
metrics such as accuracy, precision, recall, and F1 score. The
findings explicitly demonstrate that the Expected Improvement
(EI) acquisition function outperformed others, which is the most
accurate in predicting the nominal current output in both
validation methods by achieving 99.62% accuracy. In conclusion,
this study presents a groundbreaking approach to predicting and
improving nominal output current for runway edge lights by
applying the EI acquisition function.

Index Terms— Acquisition Function, Aeronautical Ground
Lighting, GPR, KNN, Meteorological Data, Nominal Current
Output

I. INTRODUCTION

The absence of standardized guidelines regarding nominal
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current output in airport operations has emerged as a significant
issue in the rapidly evolving aviation field.

Effective monitoring and control of Aeronautical Ground
Lighting (AGL) systems are vital to ensure that these lights do
not operate at full power unnecessarily [1]. This practice is
crucial, as excessive lighting increases energy waste and
operational costs. Adjusting the intensity of lights within an
aerodrome lighting system is essential for maintaining safety
and efficiency, particularly in response to varying
environmental conditions. Factors such as background
brightness, which can fluctuate dramatically from day to night,
and visibility conditions, impacted by weather or time of day,
play a key role in determining the optimal lighting intensity [2].
Each country should take the initiative to develop and refine its
intensity-setting procedures as recommended by the
International Civil Aviation Organization (ICAO) to enhance
energy efficiency and safety [3]. By doing so, they can ensure
that lighting levels are appropriately calibrated, ultimately
supporting better operational practices in airport environments
while reducing unnecessary energy consumption.

Most research has focused on commercial spaces and Airport
Terminal Buildings (ATBs). A Machine Learning (ML) model
is vital for predicting energy consumption in airport buildings
[4]. ATBs consume a significant amount of electricity for
lighting, HVAC systems, and electronic equipment, as
mentioned by [5], posing challenges to energy management and
sustainability. Additionally, energy consumption varies with
weather conditions and passenger numbers, complicating
accurate predictions. However, runway lighting has unique
energy needs, have been overlooked.

A recent study emphasizes that airports are major energy
consumers, particularly in ATB, where the demand for HVAC
and lighting peaks [6]. To tackle this challenge, implementing
standardized energy management systems is essential for
monitoring and reducing energy use across airports. One
promising approach is adopting advanced ML models, which
can significantly enhance energy efficiency [7]. These systems
facilitate real-time adjustments to lighting based on occupancy
levels and weather conditions, thus optimizing energy
consumption. Moreover, airports can leverage ML to analyze
historical data to predict and optimize energy usage [8]. This
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capability allows for continuous monitoring and the ability to
make immediate adjustments, enabling informed decision-
making regarding energy efficiency upgrades and overall
management strategies.

External factors, such as air passenger traffic and weather
conditions, are crucial in shaping airport energy consumption
patterns [9]. As energy costs continue to rise and environmental
concerns grow, it has become increasingly important to
implement practices that effectively reduce energy use while
maintaining operational efficiency. Various ML techniques
have been employed to predict energy consumption. These
include hybrids of knowledge-based and ML models, as well as
specific algorithms such as Random Forest, XGBoost,
LightGBM, Support Vector Regression, Long Short-Term
Memory networks, and different types of Artificial Neural
Networks (ANN), including ANN-LR, ANN-RR, ANN-RF,
ANN-GB, ANN-DT, and ANN-ELM [10]-[13]. Utilizing these
advanced methodologies can improve energy management and
contribute to sustainable operations.

The literature shows that MLs can be used in many existing
studies concentrating on ATB and general buildings. However,
runway lighting has received significantly less attention
regarding energy efficiency improvements. To address this gap,
automation is essential for predicting lighting usage based on
real-time factors, such as time of day and weather conditions
[1], [14]. Effective management of AGL systems is critical in
ensuring safety and operational efficiency within airport
environments. Unfortunately, many current lighting systems
operate on fixed schedules or rely on manual controls. This
reliance often results in suboptimal lighting that fails to adapt
to real-time environmental conditions. The lack of automation
in lighting systems can lead to excessive energy consumption.

This study introduces a novel approach centered on two key
components to fulfill the objective of developing an automated
AGL system:

1) Improving the Gaussian Process Regression — K Nearest
Neighbor (GPR-KNN) model by incorporating various
acquisition functions, including Expected Improvement (EI),
Expected Improvement Plus (EIP), Expected Improvement Per
Second (EIPS), Expected Improvement Per Second Plus
(EIPSP), and Lower Confidence Bound (LCB). These functions
enhance the model’s predictive performance and sampling
efficiency.

2) Evaluating the chosen acquisition function’s effectiveness
and integrating it into a comprehensive ML framework to build
a robust model that accurately predicts nominal current output
for practical applications.

The research paper consists of Section I, which explains the
previous studies, problem statements, objectives, scope of
work, and novelty. The rest of the paper is organized as follows:
Section II presents the methodology used to achieve the
objectives of this study, Section III describes the results and
discussion, and Section I'V concludes the overall study.
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II. METHODOLOGY
The methodology for this study is shown in Fig. 1, and details

are explained below.
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Fig. 1. Methodology for developing GPR-KNN model

A. Study Area

Subang Airport, or SZB, is located in Subang, Selangor,
Malaysia, about 15 kilometers west of Kuala Lumpur. It has a
favorable climate year-round, making it a good option for
domestic and regional flights. Daily Meteorological Aerodrome
Report (METAR) weather data from the National Oceanic and
Atmospheric Administration (NOAA), was collected from
January 1 to December 31, 2023, totaling 8,760 data points
[15]. As stated by NOAA, METAR serves as the global
standard coding system for hourly surface weather reports,
highlighting its essential function in providing accurate weather
data. Half of this data was used to train and validate a model,
while the other half was used to verify it.

Meteorological factors such as daily air temperature, dew
point temperature, wind direction, wind speed, and pressure
were used in the calculations. Details on the collected data are
in Table I and were important for predicting runway visibility
through modeling. To strengthen the simulation, data such as
“VRB” for variable wind direction was replaced with the most
common value, 0 [16]. This change helps convert unclear data
into a format that ML algorithms can efficiently work with.
Additionally, visibility values over 10,000 meters were labeled
as 10 to create a uniform reference for analysis. These
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improvements help the model perform better and increase the
reliability of the research results.

TABLEI. INFORMATION REGARDING THE VARIABLES USED IN THIS STUDY
Features Unit
Hourly Temperature (T) Degree Celsius (°C)

Hourly Dew-point Temperature (Td) Degree Celsius (°C)

Difference between Hourly Temperature and Degree Celsius (°C)
Dew-point Temperature (T-Td)

Hourly Wind Speed (WS) Knot (kt)

Hourly Wind Direction (WD) Degree (°)

Hourly Pressure (P) Hectopascal (hPa)
Visibility (V) Kilometer (km)
Current Consumption (CC) Ampere (A)

B. Cross and Holdout Validation

A cross-validation approach was used to create each
algorithm, regardless of the data split for training and
assessment [17], [18]. in this study, the folds were configured
to 5, with 20% allocated for validation and 80% for training.
This configuratoin aimed to mitigate overfitting and to ensure
optimal model performance by avoiding an imbalanced dataset
distribution [19]. An example of the stacking structure with the
fold set to 5 is shown in Fig. 2.

This study also considered the holdout validation method.
The holdout validation method allocates 25% of the total
dataset for validation, while the remaining 75% is utilized for
training the model [20], [21]. This methodology is particularly
suitable for large datasets. It is vital to ensure that the model’s
performance is evaluated accurately and devoid of any bias that
may arise from the training data [22].

This approach is particularly advantageous when working
with large datasets, as it facilitates a comprehensive analysis of
model effectiveness. By systematically partitioning the data, a
thorough assessment of the trained models can be conducted,
ensuring that their accuracy and reliability are evaluated
rigorously prior to deployment in real-world applications. Such
meticulous validation is essential to instill confidence in the
performance of the models and their generalization capabilities.

C. Selection of GPR-KNN

In this study, the selection of GPR was based on [23]. From
the paper, it has shown that GPR is the most accurate model
used for visibility prediction in MATLAB. As for the selection
of KNN, the justification was based on the paper [24], where it
shows that KNN is the most reliable model for current
consumption prediction.

The proposed integrated model of GPR-KNN that
incorporates various acquisition functions was developed using
MATLAB R2024b, with the Regression Learner utilized for the
GPR component and the Classification Learner Toolbox for the
KNN component. Performance analysis was conducted through
various metrics, including accuracy, precision, recall, and F1
score. MATLAB R2024b was acquired directly from
www.mathworks.com, with the associated license number
being 41245384. The software operates on a computer equipped
with an Intel Core 15-1235U CPU, which operates at 1.30 GHz,

and has 16 GB of DDR4 RAM.
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Fig. 2. Cross validation with 5-fold validation

D. Acquisition Function

1) Expected Improvement (EI)

The EI acquisition function plays a crucial role in Bayesian
Optimization (BO) by guiding the sequential sampling process
to find the optimum of complex objective functions [25]-[27].
The EI acquisition function is widely recognized for its
essential role in BO, as it guides the sequential sampling
process to approximate the complex objective function [25]—
[27]. It balances exploring unknown regions with exploiting
known promising samples, making it a crucial component in
optimization [27], [28]. The EI acquisition function in
MATLAB utilizes a surrogate model, often based on a Gaussian
process, to guide the optimization process by balancing
exploration and exploitation [28], [29]. The EI acquisition
function has been widely used to solve practical engineering
problems due to its closed-form nature, effectively reducing
sampling costs and improving optimization accuracy [28], [30].

2) Plus

A key challenge is avoiding local minima when using BO to
find the best solution. The acquisition function “plus” was used
to address this. It adjusted their behavior to prevent over-
focusing on specific areas, thus promoting exploration. The
algorithm checks for excessive concentration on particular
spots. It modifies its approach to explore new territories if
needed, with adjustments occurring up to five times. The
Exploration Ratio plays a crucial role in balancing the
exploration of new areas with revisiting known ones, enhancing
the efficiency of the optimization process, and guiding the
algorithm toward better solutions.

3) Per Second

When finding the best solution using computers, evaluation
times can vary significantly. For instance, some areas take
longer to assess with Support Vector Machines. To enhance
efficiency, BO strategically considers evaluation times and
makes informed decisions. By focusing on evaluations that
promise the greatest improvement relative to time spent, BO
optimizes resources, speeding up the search process and
increasing the chances of finding the best solution. This
approach balances precision and speed, guiding toward optimal
results.
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4) Lower Confidence Bound (LCB)

The LCB acquisition function offers a refined strategy for
decision-making under uncertainty in BO. It evaluates potential
outcomes by focusing on options slightly below average,
specifically, two standard deviations lower, acknowledging
inherent prediction uncertainties. This method is akin to a
cautious explorer identifying valuable opportunities while
considering potential risks. It balances the excitement of
exploration with careful uncertainty assessment, representing
an intelligent strategy that navigates between embracing new
possibilities and safeguarding against setbacks.

E. Nominal Current Consumption

The electrical power for AGL circuits, especially in series
configurations, is efficiently supplied by Constant Current
Regulators (CCRs). These essential devices play a crucial role
in maintaining consistent light output over long distances, such
as aerodrome runways. CCRs are engineered to deliver a stable
current output, even amidst input voltage or load resistance
fluctuations. In aviation, ensuring uniform lighting conditions
is vital for pilots during critical phases like take-off, landing,
and taxiing. These regulators are adept at producing a constant
current output, which remains stable regardless of circuit load
or voltage changes from the power source. The current
consumption of CCRs is classified into five distinct steps, as
summarized in Table II [31]. This classification system allows
for careful selection of lighting intensity, with options ranging
from 2.8 amperes to 6.6 amperes and a tolerance of +0.1
amperes.

TABLE II. NOMINAL CURRENT OUTPUT RANGE
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instances by measuring the ratio of true positives to the total
number of positive cases, including both true and false
negatives. This metric is crucial in situations where it is
important to identify as many positive cases as possible, even if
it means allowing for some false positives. The F1 Score is a
harmonic mean that combines precision and recall, yielding a
single metric that addresses both aspects. This metric is
especially beneficial in scenarios with imbalanced class
distributions or when one of the metrics (precision or recall) is
given more importance.

The following equations as in (1) until (4) are utilized [22],
where True Positives (TP) refer to instances that are correctly
identified as belonging to the target class, True Negatives (TN)
indicate instances accurately identified as not belonging to the
target class, False Positives (FP) represent instances incorrectly
classified as belonging to the target class, False Negatives (FN)
describe instances that are incorrectly identified as not
belonging to the target class.

TP+TN

Accuracy = ———— (1)

Total Predictions
. TP

Precision = 2)

TP+FP
TP
Recall = 3)
TP+FN

2xPrecision*Recall
F1 Score = = ecsionrects (4)

Precision+Recall

III. RESULTS AND DISCUSSION

Table III presents the results for each acquisition function
based on cross-validation and holdout validation.

Current Nominal output Nominal output
step (RMS Amperes) (RMS Amperes)
5 6.60 6.50 - 6.70 TABLE III. RESULT FOR EACH ACQUISITION FUNCTION BASED ON TYPE OF
4 5.20 5.10-5.30 VALIDATION
3 4.10 4.00-4.20
2 3.40 3.30-3.50 o Acq. - F1
| 520 570 —2.90 Validation Function Accuracy  Precision  Recall Score
EIPSP 97.17% 93.90%  95.33%  94.58%
EI 99.41% 98.18%  99.45%  98.79%
F. Model Performance Evaluation Cross EIP 99.41%  98.18%  99.45%  98.79%
0, 0, 0, 0,
Since the main objective of this study is to predict the fgs 32"7‘202 gi‘(l);;z gg‘;‘?oﬁ gizg;‘:
nominal current output, the performance assessment of the EIPSP 96.62%  9336% _ 96.55% _ 94.80%
trained models focused solely on the final output, which is the EI 99.73%  99.71%  99.79%  99.75%
classification model. This involved evaluating several key Holdout EIP 94.79%  94.65%  92.83%  93.70%
. . . EIPS 97.63% 97.61%  95.51%  96.50%
metrics: accuracy, precision, recall, and F1 Score [22], [32]. LCB 0461%  92.26%  9338%  92.79%

Each metric provides unique insights into the model’s
effectiveness and contributes to a comprehensive understanding
of its performance.

Accuracy evaluates the model’s accuracy by assessing the
ratio of true outcomes (positives and negatives) to the total
number of cases analyzed. In contrast, precision zeroes in on
the quality of positive predictions, measuring the ratio of true
positive cases to all instances identified as positive. This metric
is especially crucial in scenarios where the consequences of
false positives are significant.

Recall assesses how well a model can recognize all relevant

A. Analysis of Cross-Validation Results

EIPSP achieves a commendable accuracy of 97.17%, with a
precision of 93.90% and a recall of 95.33%, resulting in an F1
score of 94.58%. While its performance is moderate, it
effectively balances time efficiency and prediction reliability.
In contrast, EI stands out with an exceptional accuracy of
99.41%, precision of 98.18%, recall of 99.45%, and an
impressive F1 score of 98.79%, making it ideal for highly
reliable processes. EIP matches EI’s metrics perfectly, boasting
an identical accuracy, precision, recall, and F1 score. It is
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equally beneficial for dependable cross-validation. EIPS shows
moderate performance with an accuracy of 95.46%, precision
of 92.17%, recall of 93.46%, and an F1 score of 92.79%. Its
computational efficiency suits resource-limited contexts.
Lastly, LCB has a respectable accuracy of 96.76%, with a
precision of 93.09% and a recall of 93.71%, yielding an F1
score of 93.39%.

B. Analysis of Holdout Validation Results

EIPSP achieves an accuracy of 96.62%, with a precision of
93.36%, a recall of 96.55%, and an F1 score of 94.80%. It
balances computational efficiency with slightly reduced
predictive metrics, which is ideal for resource-optimized
scenarios. In contrast, EI excels with an accuracy of 99.73%,
boasting precision (99.71%), recall (99.79%), and an F1 score
(99.75%), making it the top choice for high-precision
applications. EIP shows commendable performance at 94.79%
accuracy, precision of 94.65%, recall of 92.83%, and F1 score
of 93.70%. It emphasizes robustness and is suitable for
reliability-focused situations. EIPS delivers a well-rounded
accuracy of 97.63%, precision of 97.61%, recall of 95.51%, and
F1 score of 96.50%. It merges computational efficiency with
good predictive accuracy, making it adaptable for various
applications. Finally, LCB has an accuracy of 94.61%, a
precision of 92.26%, a recall of 93.38%, and an F1 score of
92.79%.

C. Choosing the Best Model

The higher the accuracy, precision, recall, and F1 Score, the
better the results are. The models are ranked in Table IV, based
on the performance score (f) that is defined in as in (5). Higher
values of B signify better model performance:

B = Accuracy + Precision + Recall + F1 score (5)

TABLE IV. RANKING BASED ON THE PERFORMANCE SCORE

Validation Acquisition function Performance score
Holdout El 398.98%
Cross EI 395.83%
Cross EIP 395.83%
Holdout EIPS 387.25%
Holdout EIPSP 381.33%
Cross EIPSP 380.98%
Cross LCB 376.95%
Holdout EIP 375.97%
Cross EIPS 373.88%
Holdout LCB 373.04%

Holdout validation shows exceptional values for EI,
achieving a remarkable score of 398.98%. This demonstrates
the method's ability to effectively produced high-quality
outcomes with specific acquisition strategies. In contrast, cross-
validation yields slightly lower results, with EI and EIP scoring
395.83%. While not as high as holdout validation, the
consistent performance across multiple folds enhances
confidence in these acquisition functions’ reliability and
robustness. Both methods highlight EI’s strong performance,
showcasing its effectiveness in balancing exploration and

exploitation, which is crucial for predicting predictive models.
The findings align with previous research suggesting that EI
adeptly manages the trade-off between exploring unknown
areas and exploiting known promising regions [28]. EI’s
performance in noisy environments is noteworthy, as it
maintains computational efficiency without requiring complex
optimization processes, making it suitable for challenging
settings.

Confusion Matrix for GPR-KNN (El)

True Class

52 52

6.6

34 4.1 5.2
Predicted Class

Fig. 3. Confusion matrix for GPR-KNN (EI)

The confusion matrix shown in Fig. 3 indicates that GPR-
KNN model using the EI acquisition function in holdout
validation shows exceptional classification performance across
four nominal current output classes: 3.4, 4.1, 5.2, and 6.6.
Specifically, the model achieved correct classifications of 253,
351, 52, and 436 instances for each respective class, resulting
in a minimal number of misclassifications, where only three
occurring between classes 4.1 and 3.4. Consequently, the
overall classification accuracy is approximately 99.73%, which
is consistent with the accuracy reported in the accompanying
performance analysis.

Furthermore, the model demonstrated perfect recall for
classes 3.4, 5.2, and 6.6, and near-perfect recall for class 4.1.
This performance underscores the model's robustness in
addressing both minority and majority classes, despite the
inherent class imbalance present in the dataset. Notably, the
model exhibited zero-error performance for the higher-demand
classes 5.2 and 6.6, which are critical for ensuring operational
safety, thereby highlighting its practical reliability for real-
world applications. These findings underscore the GPR-KNN
model’s strong generalization ability, high discriminative
power, and operational suitability for automated AGL systems.

The ROC curve analysis in Fig. 4 shows the GPR-KNN
model utilizing the EI acquisition function indicates remarkable
classification performance across all evaluated target classes.
The model achieved high area under the curve (AUC) values,
specifically registering 0.9982 for class 3.4, 0.9958 for class
4.1, and a perfect score of 1.0000 for both classes 5.2 and 6.6.
These results affirm to the model's exceptional discriminative
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capability, exhibiting minimal overlap between positive and
negative class distributions.

ROC Curve for GPR-KNN (EI)
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Fig. 4. ROC curve for GPR-KNN (EI)

The positioning of the model's operating points near the ideal
upper-left corner of the ROC space underscores the robustness
of the threshold settings. This positioning reinforces the model's
ability to achieve a high true positive rate while effectively
suppressing false positives. Notably, the slightly reduced AUC
for class 4.1 indicates some degree of boundary ambiguity in
relation to class 3.4, which correlates with minor
misclassifications observed in the confusion matrix.

These findings demonstrate that the optimized model
possesses outstanding sensitivity, specificity, and operational
reliability. This underscores its potential as a highly effective
decision-support tool for the optimization of AGL systems
under varying meteorological conditions.

Fig. 5 shows the minimum classification error plot for the
model that provides essential insights into the hyperparameter
optimization process. A notable decline in classification error
occurs during the initial five iterations, decreasing from
approximately 0.008 to a stabilized plateau between 0.0025 and
0.003. This trend indicates a rapid convergence and effective
exploration of the hyperparameter space.

The consistent alignment between the estimated and observed
minimum classification errors throughout the optimization
process substantiates the robustness and predictive reliability of
the surrogate model employed within the Bayesian

framework. Importantly, the optimal hyperparameter
configuration was identified early, specifically around the
fourth or fifth iteration, resulting in minimized computational
overhead while maximizing model performance. The findings
of this study shows that the optimal hyperparameter

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.27 OCT 2025

configuration for the model occurs when the number of
neighbors is two, the distance metric employed is the Jaccard,
and the distance weighting method utilized is the squared
inverse. These parameters collectively enhance the model's
performance and reliability in analysis.

<1073 Minimum Classification Error Plot for GPR-KNN (El)
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Fig. 5. Minimum classification error plot for GPR-KNN (EI)

These findings underscore the significance of BO in fine-
tuning complex ML models. Not only does it facilitate high
classification accuracy, but it also ensures operational
efficiency, attributes that are essential for the deployment of
predictive systems in real-world AGL systems.

IV. VERIFICATION OF MODEL

To assess the model’s robustness and ability to generalize,
the model was rigorously evaluated using the unseen fifty
percent of the collected dataset, comprising 4,380 data points in
total, as shown in Fig. 1. The findings from this comprehensive
verification phase are meticulously detailed in Table V,
highlighting the model’s performance and reliability.

TABLE V. VERIFICATION RESULTS

Validation Acquisition function Verification

Holdout EI 99.62%

A verification score of 99.62% highlights the model’s
exceptional performance on unseen data, underscoring its
ability to make highly accurate predictions. This remarkable
score illustrates that most predictions generated for the
verification set are correct, showing that the model really
understands the complicated patterns found in the data. Such an
impressive achievement also suggests minimal variation in
performance across diverse subsets, indicating a well-rounded
and reliable model. This level of accuracy mitigates concerns
regarding overfitting and reinforces the confidence in the
model’s capability to generalize effectively to new, unseen
data. It reflects that the model is not merely memorizing the
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training examples but genuinely capturing the relationships
embedded within the data distribution, showcasing its potential
for real-world applications.

To further analyze the impact of the model, a detailed
analysis on the total current consumption for every hour has
been conducted, as shown in Table VI. For 22 out of 24 hours,
the total predicted current consumption matches the measured
values, yielding a difference of 0 A. These findings indicate that
the model has effectively captured the underlying patterns and
temporal variations in current consumption, achieving near-
perfect predictive accuracy. Only at 0500 and 0700 hours are
there deviations between the total predicted and actual values.
At 0500, the model underpredicts by 10.5 A, which is good for
lowering the current consumption. However, at 0700, the model
overpredicts by 28.8 A. These minor deviations could be due to
transient fluctuations or anomalies in the current consumption
that the model, trained on the general patterns, did not capture
perfectly.

TABLE VI. ANALYSIS OF TOTAL CURRENT CONSUMPTION BASED ON TIME

Time Actual Tota! Current GPR—KNN Total Difference
Consumption (A) Current Prediction (A) (A)
0:00 681.5 681.5 0
1:00 645.1 645.1 0
2:00 572.4 572.4 0
3:00 504.1 504.1 0
4:00 534 534 0
5:00 596.2 585.7 10.5
6:00 629.9 629.9 0
7:00 746.7 775.5 -28.8
8:00 1010.8 1010.8 0
9:00 952 952 0
10:00 1026.2 1026.2 0
11:00 1077.2 1077.2 0
12:00 999.8 999.8 0
13:00 1036.4 1036.4 0
14:00 1263.4 1263.4 0
15:00 1087 1087 0
16:00 1120.4 1120.4 0
17:00 1065.2 1065.2 0
18:00 1152.2 1152.2 0
19:00 1045.6 1045.6 0
20:00 833.4 833.4 0
21:00 781.7 781.7 0
22:00 631.9 631.9 0
23:00 793.6 793.6 0
1400
1200
1000
T 800
E 600
3 400
200
0
2888888888888 3s88888s¢8¢8
W0 BHR SRR eSS AE RS R et R EANR
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e Actual current consumption — ss=GPR-KNN prediction Difference

Fig. 5. Comparison chart for actual total current consumption
and predicted total current consumption from 0:00 Until
23:00 during verification phase.
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From Fig. 5, it can be observed that the total current
consumption values fluctuate in a manner that is typical for
energy usage over a day, with lower total consumption in the
early morning hours, rising gradually through the morning,
peaking during midday and early afternoon, and then tapering
off towards the evening. For instance, at midnight (0000), the
total consumption is 681.5 A, followed by a steady decrease to
504.1 A by 0300 hour, and then a gradual increase, reaching a
peak of 1263.4 A at 1400 hour. Such trends suggest that the
underlying processes driving current consumption are likely
tied to daily human activity patterns and operational schedules
of industrial or commercial equipment. From the figure, it can
be deduced that the GPR-KNN hybrid model with EI
acquisition function has an impressive overall performance,
with a near-perfect alignment between actual measurements
and predicted values across most hours of the day. The model’s
exceptional accuracy, demonstrated by zero differences for
most of the time points, speaks to the effectiveness of the hybrid
approach in capturing both global trends and local variations in
current consumption. There are minor deviations at 0500 and
0700 hours that could be improved. However, these differences
are small and do not significantly affect overall performance.

V. CONCLUSION

This study presents an innovative algorithm that significantly
enhances AGL systems through the integration of GPR and
KNN with EI acquisition function. This robust combination not
only improves predictive accuracy but also optimizes lighting
performance by factoring in critical elements such as time of
day and prevailing weather conditions, as articulated in
reference [1]. Remarkably, this approach attained a verification
accuracy of 99.62%, underscoring the efficacy of the proposed
model. The effective implementation of the EI function plays a
pivotal role in balancing exploration and exploitation using BO,
thus enabling the model to discern complex patterns within
extensive datasets. Moreover, continuous monitoring and
iterative model enhancement are paramount to ensuring
consistent and reliable performance across varying
environmental contexts. This research signifies a substantial
advancement in predicting current consumption within AGL
systems, effectively mitigating power waste and laying a strong
foundation for future advancements in ML. The hybrid GPR-
KNN model, improved by the EI acquisition function, has
demonstrated significant potential for real-time energy
monitoring and load forecasting. Nonetheless, ongoing research
remains essential to adapt to the dynamic nature of operational
conditions. Ultimately, the findings of this study are critical in
boosting advancements in predictive analytics and operational
efficiency, for a smarter and more sustainable energy future.
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