Universiti Teknologi MARA
Cawangan Perlis

s urnal Intelek

Volume 20 Issue 2 (August) 2025

Examining the Effect of Data-Driven Technology Adoption Factor
Towards Smart Facilities Management in Public Sector

Mohd Rahimi A Rahman'!, Irwan Mohammad Ali?*, Wan Samsul Zamani Wan Hamdan® &
Mohd Najib Abdul Rashid*
! College of Built Environment, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia
234 College of Built Environment, Universiti Teknologi MARA, 32610 Seri Iskandar, Perak, Malaysia

Authors’ Email Address: 'm.rahimi.rahman@gmail.com, *irwan947 1 @uitm.edu.my,
‘wansa345@uitm.edu.my, *“mohdn613@uitm.edu.my

Received Date: 15 May 2025
Accepted Date: 10 July 2025
Revised Date: 14 July 2025
Published Date: 31 July 2025

*Corresponding Author

ABSTRACT

Facilities Management (FM) in public sector involves overseeing large-scale, complex infrastructures
that generate vast amounts of data especially. The integration of data-driven technologies (DDT), such
as the Internet of Things (loT), Cloud Computing, Big Data Analytics (BDA), and Artificial Intelligence
(A1) could utilize data towards Smart FM practice. However, the adoption of these DDT in government
FM practices are not fully realized due to individual and organizational challenges. Consequently, this
study aims to investigate the key determinants factors influencing DDT adoption in FM from both
individual and organizational perspective. Grounded in the Unified Theory of Acceptance and Use of
Technology (UTAUT) and the Technology-Organization-Environment (TOE) framework, this research
employs a deductive approach, using a structured questionnaire survey. A total of 216 responses from
Malaysian government FM practitioner were analysed by Structural Equation Modelling (SEM)
technique. Findings reveal that performance expectancy, effort expectancy, social influence, facilitating
conditions, technology readiness, and organizational support significantly influence DDT adoption
towards Smart FM, while environmental factors do not. The results provide valuable insights for
policymakers and FM practitioners seeking to enhance data-driven transformation in public sector
facilities management.

Keywords: Data-driven technology, Data Analytic, Facilities Management, Government, UTAUT-TOE.

INTRODUCTION

We are witnessing the fast development of digital and data-based technologies (DDT), leading to
changes in industries resulting in smarter decision-making, better operational efficiency and
management of resources (Parviainen et al., 2017). Government Facilities Management (FM) is one
such domain, dealing with large-scale, highly complex infrastructure that churns out tons of data on a
daily basis (Ensafi et al., 2023). The implementation of Internet of Things (IoT), Cloud Computing,
Big Data Analytics (BDA), Machine Learning (ML), Artificial Intelligence (Al) etc. offers a major
potential to innovate FM process towards data-driven approach.
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The adoption of DDT in FM can enhance performance by providing capability of real-time analytics,
predictive maintenance and support based on evidence decision-making (D’Orazio et al., 2022). For
example, Bouabdallaoui et al., (2021) highlight that by integrating IoT sensor with BDA and ML,
facilities managers can undertake predictive maintenance before complete failure occurs and thereby
extending the building assets using life and achieving long-term return on investment. Nevertheless,
despite the benefits offered by DDT, it full advantages from being driven by data in FM especially in
government sector have yet to be fully realized.

In the meantime, previous studies on technology adoption in FM is fragmented and heavily focus on
IoT and Building Information Modelling (BIM) rather than examining adoption as a holistic ecosystem
for data-driven decision making (Nortey et al., 2025). The technology adoption study also primarily
focusing on the private sector usage, which contribute for less understanding of the technology adoption
among the government FM practitioners’ (Nortey et al., 2025). It has also been reported that adoption
of DDT in the operation and maintenance (O&M) phase is not being explored as much as in earlier
phases of the facility lifecycle (Akbari et al., 2024). This is the gap that motivates additional research
into more general technology adoption frameworks that may assist with the effectiveness and the
efficiency of decision-making in FM.

While existing theories such as the Unified Theory of Acceptance and Use of Technology (UTAUT)
(Venkatesh et al., 2003) and the Technology-Organization-Environment (TOE) (Tornatzky & Fleischer,
1990) framework have been widely applied to study technology acceptance, few studies have integrated
these two theories to comprehensively investigate it from both individual and organization perspective.
The intention of the current research, thus, is to fill this gap by proposing and testing a conceptual
framework that explains DDT adoption in government FM.

Based on UTAUT and TOE as theoretical backgrounds, the study aims to identify the factors of
paramount importance and its effect on FM performance. A quantitative research design is used to
gather data from 216 government FM practitioners and the latter analysed using Structural Equation
Modelling (SEM) in SmartPLS 4.0. The evidence will generate empirical knowledge on the drivers
and barriers to adoption, enabling practical guidance for government FM policy makers, FM
professionals and technology providers in progressing the Smart FM transformation in government FM.

LITERATURE REVIEW
Role of Data-Driven Technologies in Smart Facilities Management

Facilities Management (FM) is known as a multidisciplinary field that brings together people,
places, and processes to help organizations meet their goals (Brian Atkin & Adrian Brooks, 2015; Gii
Amaratunga, 2001; ISO, 2017). It’s a complex and evolving area that involves handling a wide range
of data such as asset records, maintenance schedules, energy consumption and space planning. As a
result, FM practices particularly in the government sector are being called upon to become smarter,
more responsive, and data centric (Abu Bakar & Nizam Kamaruzzaman, 2023). This transformation
has been largely driven by the integration of data-driven technologies, which are crucial to the
development and implementation of Smart FM.

Smart FM refers to the digitization and automation of FM processes using interconnected
systems, real-time data, and intelligent analytics to enhance decision-making, service delivery, and
resource utilization (Hou, 2023; Olimat et al., 2023). As shown in Figure 1, Smart FM should consist
of five essential characteristics which is intelligence (learning capability), responsive (automation,
reactive), adaptability (flexible, scalability. interoperability), sustainability (energy efficiency, resource
optimization) and connectivity (integration, real-time communication). Smart FM is rooted in data-
driven technologies, which enable inform decision-making across all levels of FM function which is
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operational, tactical and strategic (Akhlaghi & Then, 1992). The key enabling technologies involved in
Smart FM include the IoT, Cloud Computing, BDA, BIM, Digital Twin (DT), Al).

The IoT forms the backbone of Smart FM by enabling real-time data capture through sensors
and smart devices across physical assets (Zhuang et al., 2023). For instance, IoT sensor in building
provide a solution for real-time monitoring on environmental conditions like temperature and humidity,
track the performance of systems such as Heating, Ventilation and Air Conditioning (HVAC), and
safety surveillance (Dahanayake & Sumanarathna, 2022; Sarkar, 2021). While cloud computing
provides flexible storage for dynamic IoT sensor data and allows remote access and collaboration to
scale smart systems as needed (Lau et al., 2013). BIM and DT provide virtual models of facilities that
support diagnostics, simulations, and optimizations throughout a building's lifecycle (Chen et al., 2018).
Meanwhile, big data analytics, machine learning, and artificial intelligence transform raw data into
meaningful insights through processing large volumes of varied data to uncover inefficiencies and
recommend improvements (Razali et al., 2020; Samatas et al., 2021). Together through integration,
these approaches enable a proactive, data-driven approach to facilities management decision-making
rather than relying on intuition alone (Yang & Bayapu, 2020).

Despite widespread reporting of such technological benefits, its adoption in FM especially
within the public sector in Malaysia towards data-centric approach faces significant challenges. For
example, current government FM practice still relies on legacy technology such as CMMS and BAS
(Abu Bakar & Nizam Kamaruzzaman, 2023), which often contains incomplete data and lack of real-
time updated for decision support (Razali et al., 2020). Similarly, while the government introduce
Immovable Asset Management System (mySPATA) to facilitate asset and maintenance data collection,
it cannot be fully used due to challenges with system integration, poor record management and non-
centralized information (JPAK, 2018; Razali et al., 2020). Furthermore, outdated infrastructure,
constrained budgets, regulatory barriers, limited digital skills, and low readiness to innovate becomes a
challenge for the DDT adoption in FM (Abu Bakar & Nizam Kamaruzzaman, 2023; Zhan et al., 2023).
Therefore, it is essential to identify the key drivers and barriers influencing DDT adoption in FM. These
finding will play a critical role in supporting the development of strategic framework for integrating
DDT into FM towards Smart FM practices in government sector.

Energy &
Environmental

Data

Financial & ‘
Budget Data

Figure 1: Concept of Smart FM Enable by Data-Driven Technology Adoption (Source: Author)
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Theoretical Technology Adoption Review

To adopt the data-driven technology (DDT) in FM towards Smart FM practice in government,
it is essential to understand on the key factors that influence both FM practitioner and organizations in
accepting and utilizing technology. To fulfil this objective, this study suggests two widely recognized
model which is the Unified Theory of Acceptance and Use of Technology (UTAUT) and the
Technology-Organization-Environment (TOE) framework as the underpinning theory in this study.
UTAUT is introduced by Venkatesh et al., (2003), explain on how individual accept and use technology
based on four core construct which is performance expectancy, effort expectancy, social influence, and
facilitating conditions. It also consists of two outcome variables (behavioural intention and use
behaviour) along with several moderating factors like gender, age, experience, and voluntariness of use
(Venkatesh et al., 2003).

Despite offering valuable insight into user behaviour, UTAUT primarily focuses on individual
acceptance rather than adequately take broader organizational context into consideration. (Xue et al.,
2023). Due this limitation, this study proposed an integration of TOE framework to brings in an
organizational lens for more comprehensive understanding. TOE is developed by Tornatzky and
Fleischer in 1990 is a widely recognized and influential theoretical framework that seeks to explain the
adoption and implementation of technology within organizations (Tornatzky & Fleischer, 1990). It
considers three primary contexts that influence technological adoption at an organizational level:
technological aspects such as complexity and compatibility; organizational factors like leadership
support and resource availability; and external pressures from regulations and industry trends
(Tornatzky & Fleischer, 1990). Alatawi et al., (2012) and Baker, (2012) also suggest the TOE
framework should integrate other adoption theories to include individual contexts and thus enrich the
theoretical perspectives.

Therefore, this research proposes integrating the UTAUT theory and the TOE framework to
provide a robust and comprehensive theoretical foundation for studying this topic. A conceptual
framework has been developed based on this integration, as shown in Figure 2. It comprises 28 attributes
grouped under seven independent variables and 5 dependent variables related to Smart FM outcomes.
Seven hypotheses (H1-H7) are formulated from this framework to examine how different factors
influence the adoption of DDT in FM. This integrated approach offers a well-rounded view of the key
influences on intention to adopt DDT in government contexts, supporting the transition towards more
data-driven Smart FM practices.

Performance
Expectancy Smart FM
Effort Intelligence
Expectancy

T Responsive

Social Influence

Data-Driven /

Technology Adoption Adaptable

in FM -

Facilitating
Conditions

4 Connectivity

Technology
Readiness
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Figure 2: Conceptual Framework for Data-Driven Technology Adoption in FM
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Table 1: Summary of Factors Affecting Data-Driven Adoption in FM

Theory/ Determinants Factor Attributes Source
Framework
Performance Expectancy: Efficiency, reliability, (Adama & Michell, 2018;
Degree to which individual believes |functionality, Dowelani & Ozumba, 2022;
that using a particular technology will |effectiveness Ghayth Elghdban et al., 2020;
help them enhance their job Hassanain et al., 2024;
performance Konanahalli et al., 2022;
Nortey et al., 2025)
Effort Expectancy: Ease of use, clarity, (Adama & Michell, 2018;
Degree of ease associated with the |learnability, simplicity Dowelani & Ozumba, 2022;
use of the system or technology Ghayth Elghdban et al., 2020;
UTAUT Nortey et al., 2025)
(Venkatesh et - - -
al., 2003) Social Influence: Peer influence, (Adama & Michell, 2018;
Degree to which an individual perceived norms, Baharetha et al., 2023;
perceives that important others organizational pressure, |Dowelani & Ozumba, 2022;
believe one should us the new expert influence Ghayth Elghdban et al., 2020)
technology.
Facilitating Conditions: Policies & guidelines, (Adama & Michell, 2018; Ali
Degree to which an individual technical support, IT etal., 2022; Brous et al., 2017,
believes that organizational and knowledge, training & Dowelani & Ozumba, 2022;
technical infrastructure exists to education Hassanain et al., 2024)
support the use of the system
Technology Context: Interoperability, Data (Al Hadwer et al., 2021;
Refers to both the internal and Quality & Security, cost, |Ghayth Elghdban et al.,
external technology relevant to an IT infrastructure 2020; Hou, 2023;
organization. Konanahalli et al., 2022;
Nortey et al., 2025)
TOE Organizational Context: Top management (Ahmed et al., 2017; Ali et
Refers to internal characteristics and |support, organization al., 2022; Ghayth Elghdban
(Tornatzky & f the organizations that structure, financial & et al., 2020; Hassanain et
Fleischer, 1990) resources o g . > . y ’
influence its technology adoption resources, innovation al., 2024)
culture
Environment Context: Competitive pressure, (Ahmed et al., 2017; Ali et
Refers external factors related to an  |stakeholder expectation, |al., 2022; Ghayth Elghdban
organization business ecosystem regulatory & compliance, |et al., 2020; Hou, 2023)
government support

Hypothesis 1: There is significant impact of the “Performance Expectancy” factor on DDT adoption for
Smart FM practice in the government sector. This factor is defined by attributes such as user efficiency
improvement, reliability, functionality, and effectiveness.

Hypothesis 2: There is significant impact of the “Effort Expectancy” factor on DDT adoption for Smart
FM practice in the government sector. This factor is defined by attributes such ease of use, clarity,
learnability, and simplicity.

Hypothesis 3: There is significant impact of the “Social Influence” factor on DDT adoption for Smart
FM practice in the government sector. This factor is defined by attributes such as peer influence,
perceived norms, organizational pressure, and expert influence.

Hypothesis 4: There is significant impact of the “Facilitating Conditions” factor on DDT adoption for
Smart FM practice in the government sector. This factor is defined by attributes such as policies &
guidelines, technical support, IT knowledge, training & education.
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Hypothesis 5: There is significant impact of the “Technology Readiness” factor on DDT adoption for
Smart FM practice in the government sector. This factor is defined by attributes such as interoperability,
data quality & security, cost, IT infrastructure.

Hypothesis 6: There is significant impact of the “Organizational Support” factor on DDT adoption for
Smart FM practice in the government sector. This factor is defined by attributes such as top management
support, organization structure, financial & resources, innovation culture.

Hypothesis 7: There is significant impact of the “External Environment” factor on DDT adoption for
Smart FM practice in the government sector. This factor is defined by attributes such as competitive
pressure, stakeholder expectation, regulatory & compliance, government support.

METHODOLOGY

This study adopts a quantitative research approach to explore the factors influencing DDT
adoption in government FM. A purposive sampling method was employed by specifically targeting a
respondent who are directly involved in government FM practices. Therefore, FM practitioner under
Public Works Department (JKR) were selected, as this department is the biggest technical government
agency in Malaysia responsible for managing government building maintenance through FM contract
(JPA, 1974; Myeda & Pitt, 2014). Based on data provided by JKR’s Asset Management Department,
the total population is estimated at 375 individuals, comprising both JKR officers (Grade J29 and above)
and FM contractors actively engaged in government FM projects. To determine the appropriate sample
size, the web-based Raosoft calculator was used with parameters set at a 5% margin of error, 95%
confidence level, and 50% response distribution, resulting in a recommended minimum sample size of
191 respondents.

A structured questionnaire using a 5-point Likert scale was then developed based on conceptual
framework as illustrated on Figure 2. Each construct such as Performance Expectancy or Technology
Readiness was primarily adapted from established UTAUT (Venkatesh et al., 2003) and TOE
(Tornatzky & Fleischer, 1990) frameworks. Based on these constructs, measurement items were
identified through an extensive literature review on DDT adoption determinants in FM field and
validated by 3 FM practitioner expert to finalise the research instrument. A pilot study involving 33
respondents was conducted to evaluate the clarity and reliability of the measurement items. By
analysing using SPSS software, the internal consistency of the instrument was confirmed with a
Cronbach’s Alpha of 0.951 which indicate excellent reliability. All items were retained, with slight
wording modifications made for better understanding.

The final data collection was conducted and distributed online via Google Forms, resulting in
218 responses. A normality test revealed two outliers, which were subsequently removed, leaving 216
valid responses. As the data did not meet normality assumptions, Partial Least Squares Structural
Equation Modelling (PLS-SEM) was employed for analysis (J. F. Hair et al., 2017). PLS-SEM is
suitable for non-normally distributed data and enables robust analysis of complex relationships (Chin,
1998), making it an appropriate method for examining the adoption of DDT in FM.
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RESULT AND DISCUSSION

Respondent Demographic Profile

Table 2: Respondent Demographic Profile

Valid Cumulative
Category Frequency

Percent Percent
Certificate 14 6.5% 6.5%
Diploma 28 13.0% 19.5%
e Bachelor’'s degree 119 55.1% 74.6%
Qualification Master’'s degree 48 22.2% 96.8%
Doctor of Philosophy (PhD) 7 3.2% 100.0%
Total 216 100.0%
Facilities Manager 15 6.9% 6.9%
Maintenance Supervisor/ Verifier 16 7.4% 14.3%
Operation Manager 3 1.4% 15.7%
Asset Manager 5 2.3% 18.0%
Engineer (Civil/ Electrical/ Mechanical) 82 38.0% 56.0%
Position Architect / Landscape Architect 8 3.7% 59.7%
Surveyor (Quantity Sr./ Building Sr./ Land Sr.) 33 15.3% 75.0%
Assistant or Technician (Engineer/ Architect/ Surveyor) 46 21.3% 96.3%
Information Technology (IT) Officer 6 2.8% 99.1%
Others 2 0.9% 100.0%
Total 216 100%
Less than 1 year 44 20.4% 20.4%
1—-3years 43 19.9% 40.3%
. 4 — 6 years 38 17.6% 57.9%
FM Experiences 7 _ g vears 29 13.4% 71.3%
More than 10 years 62 28.7% 100.0%
Total 216 100

A full overview the demographic profile of the respondents is shown in Table 1. It indicates a
highly educated sample, with 55.1% holding at least a bachelor’s degree (119 respondents), including
22.2% with master’s degrees (48 respondents) and 3.2% (7 respondents) with PhDs. In terms of
position, the majority of respondents (59.3%) occupy technical roles, such as engineers, technicians,
and surveyors, while 6.9% and 7.4% hold managerial and supervisory positions, respectively. While
for FM experience, it shows that the most common respondents experience level in facilities
management or building maintenance field is more than 10 years, accounting for 28.7% (62
respondents). The second-largest group is less than 1 year, at 20.4% (44 respondent) and the group with
the fewest respondents is 7 — 9 years, with only 13.4% (29 respondent). This indicates a relatively
balanced distribution of experience levels across the categories. A significant portion (over a quarter)
of respondents have more than 10 years of experience, indicating a highly experienced subset. This
diverse and well-qualified sample provides a robust foundation for exploring the adoption of data-
driven technologies across varying levels of expertise and roles within the FM in government sector.

Relationship Assessment by Structural Equation Modelling

To achieve the objective of this study which is to investigate the impacts of DDT adoption
factor in improving the FM performance, PLS-SEM have been used as a technique to analyse complex
relationships between observed and latent (unobserved) variables. It combines aspects of factor analysis
and path analysis to test and estimate causal relationships among variables. The analysis was carried
out in two stages which measurement model analysis and the structural model analysis. The results and
findings can be discussed as follows:
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Measurement Model Assessment

The measurement model evaluates how well the observed variables (indicators) measure the
latent constructs (unobserved variables) (Bollen & Lennox, 1991). This stage focuses on assessing the
reliability and validity of the constructs. To assess the reliability and internal consistency of the
constructs in this study, Cronbach’s Alpha (CA) and Composite Reliability (CR) have been tested, and
the result is show as in Table 2 below.

Table 3: Internal Consistency Reliability

Determinant Factor Cronbach's Alpha Composite Reliability

(rho_c)
Performance Expectancy 0.847 0.897
Effort Expectancy 0.841 0.893
Social Influence 0.812 0.877
Facilitating Condition 0.811 0.876
Technology Readiness 0.896 0.928
Organizational Support 0.915 0.940
External Environment 0.845 0.896

The results shows that all constructs exhibit strong reliability which above the recommended
threshold of 0.70 for both CA and CR (J. Hair et al., 2010). High internal consistency across all
constructs is shown by the Cronbach’s Alpha values range from 0.811 to 0.915. Similarly, CR values
exceeding the 0.70 threshold which range 0.876 to 0.940, confirms that the latent constructs are well-
represented by their respective indicators (Fornell & Larcker, 1981). Organizational Support
demonstrate the highest reliability (o = 0.915, CR = 0.940), suggesting a strong consistency among the
others constructs. Technology Readiness also exhibit an excellent reliability (o = 0.896, CR = 0.928)
which indicating robust measurement of the construct. Meanwhile, the lowest CA (0.811) and CR
(0.876) is a Facilitating Condition factor, but the value still falls well within acceptable limits.

Table 4: Convergent Validity of Constructs

Average Variance Composite

Determinant Factor Extracted (AVE) Cronbach's Alpha Reliability (rho_c)
Performance Expectancy 0.685 0.847 0.897
Effort Expectancy 0.677 0.841 0.893
Social Influence 0.640 0.812 0.877
Facilitating Condition 0.639 0.811 0.876
Technology Readiness 0.762 0.896 0.928
Organizational Support 0.797 0.915 0.940
External Environment 0.683 0.845 0.896

For validity test, a convergent validity test has been carried out and the results shown on Table
4. The Average Variance (AVE) value indicates all determinant factors meet the AVE threshold of 0.50
(J. Hair et al., 2010). This confirming that the constructs explain more than 50% of the variance in their
indicators. Organizational Support (AVE = 0.797, CR = 0.940) and Technology Readiness (AVE =
0.762, CR = 0.928) demonstrate the highest levels of convergent validity and reliability among the
constructs, while Social Influence (AVE =0.640, CR =0.877) and Facilitating Condition (AVE =0.639,
CR = 0.876) show slightly lower but still acceptable validity. Overall, from the results, it indicates that
the measurement model is well-constructed and effectively captures the underlying latent variables in
the study. This confirms that the selected indicators reliably represent their respective constructs.
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Table 5: Discriminant Validity of Constructs

Determinant Factors AVE PE EE Sl FC TR OoSs EX

Performance Expectancy 0.685  0.828*

Effort Expectancy 0.677 0.823*

Social Influence 0.640 0.800*

Facilitating Condition 0.639 0.799*

Technology Readiness 0.762 0.873*

Organizational Support 0.797 0.893*

External Environment 0.683 0.826*

Construct validation was further conducted using a discriminant validity test and the results is
shown on Table 4. Through the Fornell-Larcker Criterion method, it confirms that each construct in the
study is distinct from the others (Fornell & Larcker, 1981). A result shows strong discriminant validity
by the square root of the AVE for each determinant factor (bold diagonal values) is greater than its
correlations with other constructs. For instance, Performance Expectancy has a square root AVE of
0.828, which is higher than its correlations with Effort Expectancy (0.823), and the same trend is
observed across all constructs (FC, TR, OS, EX). This confirms that each construct is empirically
distinct, ensuring that the model accurately captures the unique aspects of DDT adoption in government
facilities management. Thus, the model demonstrates strong discriminant validity, supporting its
reliability and robustness for further analysis.

Structural Model Assessment
After model measurement assessment have been caried out, this study proceeds a further step

involves evaluating the path coefficients of all DDT adoption determinants by comparing their beta (j3)
values across different paths. The result of assessment is shown on Table 5 below:

Table 5: Results of Hypothesis Test

Hypothesis Relationship Coefl:i?:titt;nt B t-value P-value Interpretation

Performance Expectancy ->

H1 DDT Adoption in FM

0.182 3.494 0.000 Supported

Effort Expectancy ->

H2 DDT Adoption in FM

0.266 5.121 0.000 Supported

Social Influence ->
H3 DDT Adoption in FM 0.107 2.700 0.003 Supported

Facilitating Condition ->

H4 DDT Adoption in FM 0.131 2.609 0.005 Supported
H5 E%C{‘gﬂggﬁoiﬁidmsw 0.322 5592 0.000 Supported
He ggfﬂzig‘t’igﬁ' Support -> 0.105 1996 0023  Supported
H7 External Environment -> 0.045 1.284 0.100 Not

DDT Adoption in FM Supported
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These values beta () values represent the hypothesized relationships between variables. A
higher B value signifies a stronger impact of DDT adoption determinants (independent variables)
towards Smart FM practice (dependent variable) (Chin, 1998). Hair et al (2010) suggest that path
coefficients should exceed 0.10 to indicate a meaningful effect within the model (J. Hair et al., 2010).
To ensure the robustness of the results, this study is conducted through a non-parametric bootstrapping
technique, as recommended by (Chin, 1998). The path coefficient analysis revealed that six out of seven
hypothesized relationships significantly influence the adoption of DDT in government FM. Technology
Readiness (p = 0.322, p < 0.001) emerged as the strongest predictor, followed by Effort Expectancy (B
=0.266, p <0.001), Performance Expectancy (p =0.182, p <0.001), Facilitating Conditions (f =0.131,
p = 0.005), Social Influence (B =0.107, p = 0.003), and Organizational Support (f = 0.105, p = 0.023),
all of which were statistically significant. These findings highlight that both personal and organizational
elements such as how easy the technology is to use, the benefits it offers, the resources available, and
the support from within the organization play a key role in encouraging the adoption of DDT. However,
external factors like government policies or industry standards are found to be less impactful, as shown
by the non-significant result for External Environment ( = 0.045, p = 0.100).

Hypothesis Results

A meaningful insight into what drives the adoption of DDT in government FM can be seen
from the results of hypothesis testing. From out of the seven proposed hypotheses, six of them were
supported with strong statistical evidence and showing significant relationships with p-values below
0.05. This means that these factors are important in shaping FM practitioners’ willingness to embrace
new technologies, and these findings are consistent with both the UTAUT and TOE models.

For example, Performance Expectancy (H1) had a positive and significant influence (f =0.182,
p = 0.000), indicating that when practitioners believe that using DDT will help them perform their jobs
better, they are more inclined to adopt these tools. Effort Expectancy (H2) exhibited a stronger influence
(B =0.266, p = 0.000), emphasizing that the perceived ease of using DDT significantly contributes to
its acceptance. These findings reflect that perceived usefulness and user-friendliness are critical in
driving individual acceptance, consistent with the foundational constructs of UTAUT.

Social Influence (H3) also showed a significant but weaker effect (f = 0.107, p = 0.003),
indicating that peer and managerial support moderately encourages practitioners to adopt DDT.
Facilitating Conditions (H4), with a path coefficient of 0.131 (p = 0.005), further highlight the
importance of accessible resources, infrastructure, and technical support in enabling adoption. These
results demonstrate that both social and organizational enablers contribute meaningfully to technology
acceptance.

Technology Readiness proved to be the most influential factor, underscoring how critical
technological infrastructure and preparedness within organizations are for fostering adoption. Similarly,
Organizational Support significantly impacts adoption as well, demonstrating that encouragement from
leadership as well as committed resources and assistance mechanisms are important catalysts. These
results align nicely with the organizational and technological dimensions of the TOE framework,
specifically within public sector contexts.

Surprisingly, the External Environment was found to be an insignificant determinant, indicating
that external elements like regulations, customer expectations, or industry trends have minimal bearing
on DDT adoption among government facilities management. This is consistent with previous research
on analogous public sector settings. It may reflect how centralized decision-making is within
government agencies where internal policies and priorities often outweigh outside pressures. Overall,
the conclusions emphasize focusing on internal preparedness and organizational backing to successfully
propel data-driven transformation within government facilities management practices.
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CONCLUSION

This study sheds light on several pivotal determinants that greatly encourage the adoption of
digital design technologies in facilities management organizations within the public sector. Out of the
seven proposed hypotheses, six received empirical support, demonstrating that elements such as
expected performance improvements, minimal effort requirements, social motivators, facilitating
conditions, technological preparedness, and organizational backing all positively affect facilities
professionals' willingness to embrace digital design technologies. Technological readiness emerged as
the leading factor which emphasizing the necessity of robust tech infrastructure, skilled workers, and
comprehensive preparedness within FM groups. Expected effort and expected performance also
surfaced as strong drivers, suggesting practitioners are more prone to adopt such technologies when
they are user-friendly and evidently boost job output.

Conversely, the external environment variable lacked statistical significance, proposing that
exterior pressures like regulatory demands, client requirements, or industry developments may have
less immediate influence on government FM practitioners' adoption choices compared to internal
organizational and individual factors. These results emphasize the need for policymakers and FM
leaders to prioritize internal enablers such as providing technical training, strengthening organizational
support, and demonstrating tangible performance benefits to drive successful adoption of data-driven
technologies in public sector FM practices. Future research could explore additional contextual factors
and conduct longitudinal studies to assess long-term adoption trends.
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