
JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH https://doi.org/10.24191/jeesr.v27i1.019

157

Abstract— Intelligent Transportation Systems (ITS) highlights
the need for efficient Vehicle-to-Vehicle (V2V) and Vehicle-to-
Infrastructure (V2I) communication. This research establishes a
real-time telemetry framework based on Message Queuing
Telemetry Transport (MQTT) operating through WebSocket to
enable rapid data transmission between vehicle units, traffic light
units, and a web-based monitoring system. The system combines
GPS data processing, real-time vehicle tracking, and traffic light
status updates to display information through a web-based
monitoring system that integrates Google Maps API for map
interface. The backend of the web development utilizes GPS
coordinates to determine vehicle speed before storing structured
telemetry data in an online database by using InfluxDB, a time-
series database for historical analysis. Performance evaluation of
the telemetry system focuses on MQTT protocol efficiency,
WebSocket latency, and GPS integrity to ensure a robust and
reliable V2I telemetry system. Existent literature indicates that
MQTT communication protocol, particularly with QoS 1, ensures
efficient and reliable telemetry with minimal delay, it is expected
to deliver the benefit to this telemetry system. Additionally, the
study highlights that increased vehicle speeds correlate with
higher GPS positioning errors, necessitating improved filtering
techniques for enhanced positional accuracy. Given these
findings, this research explores the requirement for robust V2I
communication frameworks in ITS, paving the way for future
advancements through machine learning-based predictive
modeling, 5G connectivity, and edge computing for enhanced
processing efficiency. By addressing critical gaps in real-time
telemetry, this study offers a roadmap to the development of
scalable and efficient ITS solutions that support urban traffic
optimization.

Index Terms— GPS, intelligent transportation systems, telemetry,
MQTT, V2V, V2I, vehicle tracking.

I. INTRODUCTION

 Real-time communication in Intelligent Transportation
Systems (ITS) enhances traffic management and road safety by
enabling instant data transmission between vehicles and
infrastructure through Vehicle-to-Vehicle (V2V) and Vehicle-
to-Infrastructure (V2I) communication that allows vehicles

and traffic control systems to exchange telemetry data,
optimizing traffic flow and accident prevention. However, ITS
currently faces challenges in transmitting real-time telemetry
data due to network reliability issues and limitations in
integrating with traffic infrastructure. Mari et al. [2]
categorized traffic control systems into fixed-time and adaptive
operation, with adaptive systems requiring reliable and low-
latency connections to operate effectively. Sensor-based
controllers which power adaptive traffic management
experience rising communication errors as time progresses [7]
while static traffic control faces difficulties in adapting to
changing traffic patterns. Real-time ITS applications require
communication methods that deliver fast responses while
maintaining reliability which conventional methods struggle to
achieve.

Conventional ITS systems depend on cellular networks,
Wi-Fi, and DSRC for communication, yet these technologies
create performance challenges related to latency, scalability,
and reliability. The MQTT messaging protocol addresses these
challenges through its ability to provide low-latency and
reliable telemetry communication across any network [5].
Amelia et al. [1], Kaskatiiski and Boyanov [3], and Selimović
et al. [4] demonstrated MQTT efficiency in managing multiple
connections, delivering rapid messages, and scaling effectively
in large networks. The research of Živić et al. [5] and Gruener
et al. [6] demonstrated how MQTT delivers reliable low-
latency performance for ITS applications. The combination of
MQTT protocol features makes it an optimal solution for ITS
systems that need effective vehicle-to-traffic infrastructure
data exchange. Beyond MQTT’s role in ITS telemetry systems,
researchers have explored both web development
methodologies and vehicular communication technologies for
data visualization, vehicular positioning, and behavior
analysis. The authors Antunes and da Fonseca [8] developed a
flexible web framework that combined React and Node.js to
deliver real-time data visualization through GraphQL-based
data structure management. This research demonstrates how to
develop telemetry interfaces that scale for traffic monitoring
systems. Mendes et al. [9] investigated V2X communication
through 5G networks to show how hybrid 5G-GNSS systems
improve vehicular positioning accuracy and cooperative
driving performance. Shushkova et al. [10] developed an
algorithm to extract synthetic accelerometer and gyroscope
data from GPS readings which enhances driver behavior
analysis capabilities. Their approach delivers better tracking
results for vehicle systems that do not use motion sensors in
ITS applications.

Although prior studies have examined various aspects of

Telemetry Website for Vehicle-to-Vehicle and
Vehicle-to-Infrastructure Communication

Muhammad Hakimi Aiman Hadri, Fazlina Ahmat Ruslan and Juliana Johari*

This manuscript was submitted on 25th February 2025, revised on 19th
April 2025, accepted on 23rd April 2025, and published on 31st October 2025.
Muhammad Hakimi Aiman Hadri, Fazlina Ahmat Ruslan and Juliana Johari
are with the Faculty of Electrical Engineering, Universiti Teknologi MARA,
40450 Shah Alam, Selangor, Malaysia.

*Corresponding author
Email address: juliana893@uitm.edu.my

1985-5389/© 2023 The Authors. Published by UiTM Press. This is an open
access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.27 OCT 2025

158

ITS and communication technologies, these papers mainly
focused on independent elements such as traffic algorithms,
communication protocols, data visualization, and positioning
techniques. Research regarding the MQTT protocol mostly
examines its performance against HTTP and CoAp alternatives
and broker performance across various operational parameters.
While these studies demonstrate MQTT's low-latency and
scalable capabilities, its integration into real-time ITS
telemetry systems remains insufficient in the existing literature
and lacks comprehensive implementation frameworks. For
ITS-related papers, studies that propose fully integrated
systems—combining real-time data exchange, visualization,
and long-term data handling—remain relatively uncommon.
The current research on web frameworks for traffic monitoring
focuses on frontend scalability but lacks integration with live
V2X data streams. The domain lacks proper utilization of real
traffic data such as Google Map API and cloud-based time-
series storage solutions like InfluxDB. The literature shows a
significant research gap because there is a requirement for a
single telemetry system that combines MQTT over
WebSockets with modern web and database technologies to
achieve effective V2V and V2I communication within ITS
environments.

In the context of integrating ITS telemetry systems into the
current technology, several challenges need to be resolved—
especially the communication network. Widely available
cellular networks are susceptible to congestion in dense urban
environments. Wi-fi has a limited range and does not meet
reliability standards for ITS settings. DSRC, while specialized
for vehicular communication, has limitations in range and
interoperability [9]. These limitations will limit the long-term
progression of real-time telemetry systems in dynamic traffic
environments. In response, adopting MQTT over Websockets
provides the fundamental communication method that enables
low-latency, scalable, and reliable communication across
various network infrastructures. These limitations highlight the
significance of this research, which incorporates recent
advancements in ITS telemetry communication and web
development methodologies to develop a real-time telemetry
system using MQTT over WebSockets for efficient GPS
tracking and traffic coordination. The system leverages
MQTT’s low-latency and high-reliability data exchange,
ensuring continuous vehicular telemetry communication in
ITS environments. Additionally, InfluxDB, a time-series
database, is integrated to store and manage historical telemetry
data, enabling efficient retrieval and analysis of vehicle
movement trends. The system provides real-time traffic
monitoring and coordination through a web platform
integrating Google Maps API, facilitating dynamic
visualization of vehicle movements and traffic light status
while achieving both low latency and precise telemetry
updates.

This work presents a novel real-time telemetry system that
leverages the MQTT messaging protocol over WebSockets to
enable efficient GPS tracking and traffic coordination. The
system integrates InfluxDB, a time-series database, for
managing historical telemetry data and utilizes the Google

Maps API for real-time visualization of vehicle movements
and traffic light status on a web platform. This combination of
technologies aims to achieve low-latency and precise telemetry
updates, enabling dynamic traffic monitoring and improved
responsiveness to changing traffic conditions. The key
contribution of this research is the specific integration of
MQTT over WebSockets with InfluxDB and the Google Maps
API, offering a robust and scalable solution for real-time data
exchange in ITS, ultimately contributing to safer and more
efficient transportation networks.

II. METHODOLOGY

A. System Architecture
The telemetry system enables vehicles and infrastructure to

exchange data in real-time through MQTT over WebSocket
connections. The system connects vehicles to traffic light
infrastructure to share data in real-time, which assists in the
advancement of smart traffic control systems. The system
includes six main structures.

1) Vehicle Units
Vehicle units gather GPS data in real-time and send it

through onboard MQTT clients. Each vehicle sends its position
and movement data via MQTT topics, which other system
components can access to get updated information.

2) Traffic Light Units
Traffic light controllers receive control commands from the

control system which will be used to determine the traffic light
status and timer based on the control algorithm for traffic
management.

3) MQTT Broker
The MQTT broker acts as a central distribution point that

establishes data communication in real-time via subscriber and
publisher topic structure. The system lets vehicles send
telemetry updates to establish traffic lights and the web
platform communication.

4) Database Storage
The Storage system adopts InfluxDB as its preferred time-

series database solution as it specializes in handling telemetric
data in real-time. The database stores vehicle movement paths
alongside speed changes and traffic light activity for historical
data analysis.

5) Telemetry Web Platform
The web platform shows vehicle and traffic updates in real-

time for monitoring purposes. Through WebSockets, the
system fetches live telemetry data from the MQTT broker to
show vehicle data and traffic updates in real-time.

6) Data Processing Module
A Node.js system processes raw GPS data before sending it

to storage or transmission. The system reads National Marine

Hadri et.al.:Telemetry Website for Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communication

159

Electronics Association (NMEA) format sentences to convert
coordinate values into decimal degrees and calculate vehicle
speed using Haversine while preparing JSON data for MQTT
broker and database integration.

Fig. 1. Communication flow.

In Figure 1, the system starts when vehicles send GPS data
through the MQTT broker, which then sends it to the data
processing module for preparation before storage or display.
Traffic light units operate through control algorithms that give
commands for signal changes and are displayed on the Web
Platform.

Fig. 2. Communication framework.

The system communication framework, as in Figure 2

demonstrates the real-time telemetry capabilities of MQTT and
WebSocket and HTTP protocols working together. The
Node.js processing module integrates an MQTT broker, which
functions as the core component for establishing quick and
dependable lightweight communication between vehicle units
and infrastructure units through its publish-subscribe model.
The system distributes GPS positions and traffic light statuses
to the system without additional overhead, which ensures quick
and essential updates needed for ITS environments. The
WebSocket protocol creates a permanent two-way connection
that connects the processing module to the telemetry web
platform, which delivers immediate updates for displaying
vehicle positions and infrastructure statuses on the Google
Maps interface. When telemetry data needs to reach the
InfluxDB time-series database, HTTP becomes the protocol
responsible for this transfer while keeping data structured for
traffic pattern analysis and monitoring of trends. The system
achieves a smooth, time-sensitive, scalable communication
flow through its integrated components.

Fig. 3. MQTT topic structure.
Figure 3 illustrates the topic structure of the MQTT-based

communication framework, where each node functions as a
publisher, subscriber, or both. The server and control node are
the processing modules that perform data processing as well as
configure the MQTT Broker to handle communication from all
the connected sources. The vehicle nodes send GPS and
identification data through NMEA format to the /vehicle/id
topic and use /vehicle/id/info to subscribe to processed
infrastructure information, which enables dynamic navigation
adjustments. The server node serves as the data processor and
distributor, which collects information from all vehicles and
traffic lights through vehicle/+ and traffic_light/+/status
subscriptions. The server node distributes processed vehicle
information through the vehicle/id/info topic while sharing
control strategies through control/algorithm. The control node
operates traffic management algorithms by receiving control
logic and traffic light connectivity information from
control/algorithm and traffic_light/+/connected subscriptions.
The system sends control instructions to traffic_light/id/control
and distributes status information to traffic_light/id/status with
the signal state, countdown timer, and position details.
Through traffic light nodes, vehicles and control systems
obtain real-time updates and signal status information by
subscribing to traffic_light/+/connected and receiving
traffic_light/id/status messages.

Through this method, the system architecture can be
effectively scaled by leveraging MQTT’s topic hierarchy and
broker clustering capabilities, along with edge-layer
processing and adaptive traffic control coordination as
demonstrated in [2], [5], allowing for reliable message
dissemination across thousands of vehicles and multiple
infrastructures in large-scale deployments.

B. Data Collection and Processing
The telemetry system receives and processes GPS data from

vehicle units to show vehicle positions and control traffic
signals in real-time. The GPS modules deliver NMEA
sentences that provide data about vehicle location and
movement. This system takes NMEA messages and processes
them to eliminate invalid readings to maintain precise data
quality. Subsequently, the system parsed and converted all
GPS coordinates from degrees-minutes format into decimal
degrees format to create a consistent location reading. The

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.27 OCT 2025

160

Haversine formula works between GPS points to find the
distance traveled, which helps the system measure vehicle
speed in kilometers per hour. The processed data uses JSON
structure for real-time MQTT transmission and database
storage.

1) MQTT Topic Structure
The system implements a structured MQTT topic hierarchy

to enable real-time data exchange between vehicles, traffic
lights, and backend servers and control algorithms. The system
components use topic-based messaging to subscribe and
publish events, which enables both state synchronization and
efficient event handling.

TABLE I. MQTT TOPIC STRUCTURE

Topic Name Publisher Subscriber Purpose

vehicle/{vehicle_id}
/nmea

Vehicle Unit Backend
Processing

Raw GPS Data
(NMEA)

vehicle/{vehicle_id}
/processed

Backend
Processing

Web
Platform

JSON-formatted
GPS Data

vehicle/{vehicle_id}
/info

Server.js Vehicle
Unit

Sends processed
vehicle info

vehicle/{vehicle_id} Vehicle Unit Vehicle
Unit

Publishes
telemetry updates

traffic_light/{traffic
_light_id}/status

Traffic Light
Unit

Web
Platform

Publishes traffic
light states

traffic_light/{traffic
_light_id}/control

Control.js Traffic
Light Unit

Sends control
commands

traffic_light/{traffic
_light_id}/connecte
d

Traffic Light
Unit

Control.js Traffic light
connection status

traffic_light/+/status Traffic Light
Unit

Server.js Aggregates
traffic light status
updates

traffic_light/+/conne
cted

Traffic Light
Unit

Control.js Registers newly
connected traffic
lights

vehicle/+ Vehicle Units Server.js Subscribes to all
vehicle updates

control/algorithm Server.js Control.js Sends control
decisions for
traffic light
adjustments

In Table I, the hierarchical structure of MQTT topics shows

the message exchange between vehicle units, traffic lights,
backend processing, and web platforms. The topic structure
operates dynamically through identifiers {vehicle_id} and
{traffic_light_id}, which identify vehicles and traffic light
units respectively. Through its publish-subscribe model, the
system achieves efficient data transmission by ensuring that
system components only receive relevant updates without
wasting bandwidth. Vehicle telemetry receives processing
before real-time visualization begins, and traffic light status
updates are transmitted continuously for monitoring needs.

2) Database Storage and Retrieval

The system stores processed telemetry data within InfluxDB
through a time-series database that specializes in continuous
data operations. The system persistently records database
information on vehicle GPS data along with speed
measurements and traffic light statuses through its efficient
real-time monitoring and historical analysis capabilities.

TABLE II. TIME-SERIES DATABASE STRUCTURE

Field Description
Timestamp The time when the data was recorded

vehicle_id Unique identifier for each vehicle

Latitude Processed GPS latitude in decimal degrees

Longitude Processed GPS longitude in decimal degrees

speed_kmph Vehicle speed in kilometers per hour

traffic_light_id Unique identifier for a traffic light

light_status Current traffic light state (Red, Yellow, Green)

Table II shows the InfluxDB time-series database structure

for storing vehicle telemetry and traffic light status. The
database uses timestamps as its main index to provide quick
access for real-time performance analysis and visualization
needs.

Through MQTT, the broker enables real-time data sharing
among vehicle units, traffic lights, and the telemetry web
platform. Vehicle telemetry data moves to specific MQTT
topics for traffic lights and the web platform to receive vehicle
location updates in real-time. The system saves processed data
in the InfluxDB database, which handles time-series data
effectively to support both past performance checks and real-
time monitoring.

C. Web Development
The telemetry web platform functions as a real-time

interface to display vehicle movements alongside traffic light
status and system analytics. The platform implements Node.js
for backend processing alongside JavaScript with WebSockets
for frontend data visualization. Real-time data streaming
becomes possible through the combination of WebSockets
with MQTT, which is optimized for telemetry website updates.

1) Frontend Implementation
The web application implements HTML CSS and JavaScript

development while using Google Maps API to display real-
time GPS tracking through an interactive map interface.
Through the Google Maps API users can view vehicle
positions, speed indicators, and traffic light status in real-time
for precise location tracking. Through a WebSocket
connection, the front end receives the processed MQTT data,
which provides continuous live telemetry data updates. The
interface improves user experience by sending real-time event
notifications that display important changes, including new
vehicle detections and traffic light status updates.

2) Backend Implementation

Hadri et.al.:Telemetry Website for Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communication

161

The backend system functions as an intermediary through
Node.js development to connect the MQTT broker and the
database with the frontend WebSocket clients. The backend
system subscribes to MQTT topics, which it processes to
deliver structured telemetry data to the frontend. The database
InfluxDB stores processed data, which enables users to track
historical data for analysis purposes.

The backend analyzes MQTT-based NMEA GPS vehicle
data by first extracting latitude and longitude positional
information before converting the degrees-minute
measurement system to decimal degrees format and removing
any inconclusive measurement readings. The system
determines vehicle speed through the Haversine formula,
which evaluates the distance traveled during specific periods.
The system stores processed data in InfluxDB through JSON
format, which includes a timestamp and vehicle ID alongside
coordinates and speed measurements. The system provides
real-time tracking precision and enables quick access to
historical data for additional analysis.

3) Real-Time Data Flow
The data flow within the web platform follows this

structured sequence:

1. Vehicle Units publish real-time GPS data to the MQTT

broker.
2. The Node.js backend subscribes to MQTT topics,

processes raw data, and formats it before transmission to
the frontend.

3. The Frontend WebSocket connection retrieves real-time
updates and dynamically updates the Google Maps API-
based interface and analytics dashboard.

4. The Database (InfluxDB) stores structured telemetry data,
allowing historical retrieval via API queries.

The telemetry web platform functions as a real-time

interface to track vehicle movements and traffic light status,
and system analytics. The platform utilizes Node.js for
backend processing alongside JavaScript with WebSockets to
display frontend data visualization. WebSockets integrated
with MQTT enable low-latency telemetry updates that stream
real-time data without needing manual refreshes.

III. RESULTS AND DISCUSSION

A. MQTT Performance Analysis
 MQTT communication performance was evaluated by

measuring message transmission delays across QoS levels 0, 1,
and 2. The results indicate that better Quality of Service helps
messages reach their destination more reliably while affecting
delay time differently.

The graph in Figure 4 shows how MQTT delays change over
time for different Quality of Service settings. The lowest delay
occurs with QoS 0, while QoS 2 shows the highest delay
because it requires message acknowledgments. The delays for
QoS 2 show how the system needs to handle more processing
to guarantee one-time message delivery.

1) MQTT Delay Trends Over Time

Fig. 4. Trend of MQTT delays over time.
Figure 5 shows how often MQTT delays fall into specific

time ranges. The histogram shows that most delays stay below
0.02 seconds, but higher QoS levels experience sudden
increases in delay that make their performance more
unpredictable. The probability density estimation reveals that
QoS 0 and QoS 1 produce consistent delay results, while QoS
2 shows more variation in its delay values.

2) Distribution of MQTT Delays

Fig. 5. Frequency of delays across different ranges.

3) Comparison of MQTT Delays by QoS Level

Fig. 6. Box plot comparing MQTT delays for QoS level.

Figure 6 displays a box plot that shows MQTT delay

performance at QoS levels 0, 1, and 2. The results demonstrate
that QoS 0 produces the shortest median delay with fewer
outliers than QoS 2, which has the highest median delay. The
larger interquartile range in QoS 2 shows that delay values vary
more widely, which confirms the performance trade-off
between reliability and latency in MQTT messaging.

B. MQTT Resilience Evaluation
This section evaluates MQTT performance through delay

analysis and studies how the protocol behaves under naturally

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.27 OCT 2025

162

fluctuating network conditions that were recorded during
system operation. The experimental setup used a vehicle node
as an MQTT publisher and a backend server as a subscriber,
which connected through a Wi-Fi-based local area network.
The system operated with naturally changing wireless
conditions, even though artificial congestion was not
introduced. The recorded timestamps and delay metrics allow
post-analysis simulation of dynamic traffic load and network
congestion effects on MQTT reliability.

Fig. 7. MQTT message rate per second
The MQTT message rate per second is displayed in Figure

7 during the entire experiment duration. The experiment results
demonstrate a steady message transmission speed of 3
messages per second, which remains constant throughout the
observation period. The publishing process functioned without
interruption, indicating that no messages were lost. The
protocol shows its ability to maintain delivery frequency
stability without QoS level 2 implementation, which proves
essential for time-sensitive vehicular communication systems.
Throughput degradation does not occur because MQTT
demonstrates its ability to maintain continuous delivery
throughout time.

Fig. 8. MQTT Delay with Rolling Statistics

The rolling analysis in Figure 8 shows the MQTT delay

through moving average and standard deviation calculations.
These calculations help track brief delay changes. The delay
graph shows significant variations and occasional spikes
reaching values up to 0.06 seconds. Temporary queuing delays
or jitter spikes occur in the system, probably due to network
interference, broker congestion, or wireless channel
contention. The system coped with transient latency
fluctuations because MQTT successfully maintained operation

without packet loss despite the random variations in delay
amount.

The experimental setup was conducted in a semi-controlled
environment that used steady traffic generation, it does not
represent actual deployment scenarios with extensive urban
traffic and fluctuating signal conditions. Nonetheless, the
experimental findings of this study are consistent with previous
research outcomes [1], [3], [4], [6], which demonstrated
MQTT's reliable message delivery alongside minimal
overhead and network disruption tolerance. Furthermore,
Gruener et al. [6] examine MQTT broker stability and fault
tolerance during stress tests, which confirms its suitability for
IoT and V2X applications that need reliable, lightweight
communication. The evaluation results demonstrate that
MQTT would be suitable for connected vehicle systems as it
provides stable throughput and limited delay despite specific
network and broker configurations.

C. GPS Performance Evaluation
GPS performance was tested by looking at how

measurement errors change over time and by comparing the
consistency of position readings between multiple devices. The
analysis shows how environmental factors, movement speed,
and GPS refresh rate impact location precision.

1) GPS Error Trends Over Time

Fig. 9. GPS error trends.

Figure 9 presents GPS error patterns when comparing phone

GPS with Emlid Reach RS GPS, using Emlid Reach RS as the
ground truth. Initially, the phone's GPS achieves accuracy
within 2 to 5 meters. However, periodic fluctuations cause
error spikes reaching 17-18 meters, likely due to movement
speed, environmental interference, and GPS update delays.
Under ideal conditions, phone GPS measurements improve to
nearly one meter. The sudden spikes indicate possible data loss
or timestamp inconsistencies caused by irregular GPS updates.

Figure 10 illustrates GPS coordinate variability over time for
both devices. Initially, both GPS units maintain similar
stability, but variations increase when signals weaken or
movement changes. The parallel fluctuation patterns indicate
that environmental conditions impact performance more than
device hardware limitations.

Hadri et.al.:Telemetry Website for Vehicle-to-Vehicle and Vehicle-to-Infrastructure Communication

163

2) GPS Stability Analysis

Fig. 10. Standard deviation of GPS coordinates.

Figure 10 illustrates GPS coordinate variability over time for

both devices. Initially, both GPS units maintain similar
stability, but variations increase when signals weaken or
movement changes. The parallel fluctuation patterns indicate
that environmental conditions impact performance more than
device hardware limitations.

3) Correlation Analysis of GPS Error, Speed and MQTT
Delay

Fig. 11. Correlation matrix between MQTT delay, speed
and GPS accuracy.

Figure 11 illustrates the correlation between GPS error,

vehicle speed, and MQTT delay. The strong correlation (0.82)
between speed and GPS error suggests that higher vehicle
speeds reduce GPS accuracy, likely due to motion effects and
update delays. In contrast, MQTT delay shows minimal
correlation with both speed (0.18) and GPS error (0.16),
confirming that network latency does not significantly impact
GPS precision or real-time telemetry updates.

The analysis highlights that GPS accuracy decreases
significantly at higher speeds, making motion-induced errors a
major concern for real-time telemetry. Additionally, the
MQTT delay remains stable, ensuring consistent data
transmission. These findings emphasize the need for GPS
filtering techniques to enhance location accuracy and confirm
MQTT’s suitability for real-time ITS applications.

D. Real-Time Data Visualization
The telemetry web platform displays vehicle movements

and traffic light status updates in real-time through an
interactive Google Maps API-based interface for continuous
monitoring. The system combines MQTT and WebSockets to

deliver quick updates through an interface that tracks vehicles
and traffic signals automatically without requiring manual
page reloads.

1) Visualization of Vehicle and Traffic Light Data

Fig. 12. Real-time visualization of vehicle and traffic light
data.

Figure 12 shows the telemetry web interface that displays

vehicle positions on a map and shows system metrics,
including speed and location. The platform enables dynamic
traffic light state updates through incoming MQTT messages.
Through its Google Maps interface, users can perform both
zooming and panning operations to examine particular
locations in greater detail.

2) WebSocket-Based Live Updates
The platform depends on WebSockets to obtain real-time

telemetry data from the MQTT broker for smooth updates. The
system uses this mechanism to eliminate periodic polling,
which results in reduced network overhead while maintaining
a high response speed.

Fig. 13. Websocket-based live updates developer console

In Figure 13, the browser developer console displays real-
time WebSocket messages that demonstrate vehicle and traffic
light update reception. The system records an entry in the log
every time vehicles modify their positions or traffic lights
switch their status. The WebSockets system delivers live
telemetry updates with minimal latency which enables
immediate web interface updates. Through MQTT
communication the system optimizes data transmission tasks
which reduces network utilization and ensures message
reliability.

JOURNAL OF ELECTRICAL AND ELECTRONIC SYSTEMS RESEARCH, VOL.27 OCT 2025

164

E. Database Management and Historical Data Retrieval
This system integrates InfluxDB, a time-series database, to

store and manage historical telemetry data for efficient
retrieval and analysis. While WebSockets handle real-time
updates, InfluxDB ensures long-term storage of vehicle speed,
coordinates, and timestamps, enabling traffic trend analysis
and decision-making.

Fig. 14. InfluxDB data explorer.

Figure 14 illustrates the InfluxDB Data Explorer, showing

stored telemetry data for vehicle tracking and speed
monitoring. The system allows query-based data retrieval,
ensuring access to past telemetry for performance evaluation
and traffic optimization. This data persistence supports ITS
decision-making, preventing information loss during network
disruptions.

Overall, the system delivers an efficient and scalable
solution for real-time visualization needs in V2V and V2I
telemetry applications. The system will benefit from future
improvements that optimize WebSocket performance for
handling larger data volumes and enhance visualization
capabilities for dense traffic conditions.

IV. CONCLUSION

Exploring ITS and integrating a real-time telemetry system
that connects vehicles and traffic lights through MQTT over
WebSocket to share data in real-time has revealed further
possibilities and challenges in this dynamic field. The system
processes GPS telemetry data, calculates vehicle speed, and
transmits structured data for real-time visualization. The web
platform leverages WebSockets for continuous updates on
vehicle movements and traffic conditions while storing
telemetry data in InfluxDB for historical analysis. The
evaluation outcomes demonstrate that MQTT communication
achieves both low latency and reliable messages, especially
with QoS 1 settings, balancing between speed and reliability
while maintaining message integrity. The test conducted shows
that the data processing pipeline works well because Emlid
GPS and Phone GPS show similar vehicle tracking results.
However, results also reveal that higher speeds introduce
greater GPS errors, demonstrating the need for filtering
techniques to improve real-time positioning accuracy. The
ongoing development of this field will benefit from machine
learning traffic prediction models combined with edge
computing data processing techniques to enhance system

efficiency. The implementation of 5G networks will boost
system responsiveness and decrease latency, which enables
large-scale deployment of the system.

ACKNOWLEDGMENT
The authors would also like to thank and acknowledge the

Faculty of Electrical Engineering, Universiti Teknologi
MARA, 40450 Shah Alam for their support.

REFERENCES
[1] A. Amelia, F.N. Roslina, H. Pranoto, B.V. Sundawa, I.S. Hutauruk, & A.

Arief, "MQTT Protocol Implementation for Monitoring of
Environmental Based on IoT," 2020 International Conference on
Applied Science and Technology (iCAST), Padang, Indonesia, 2020, pp.
700-703, doi: 10.1109/iCAST51016.2020.9557694.

[2] N. M. Mari, S. Arrigoni, F. Braghin, S. Mentasti and M. Filippini, "A
V2I communication framework of adaptive traffic lights and a prototype
shuttle," 2022 AEIT International Annual Conference (AEIT), Rome,
Italy, 10.23919/AEIT56783.2022.9951792.

[3] N. Kaskatiiski and L. Boyanov, "Efficiency of data exchange of IoT
communication protocols," 2021 International Conference Automatics
and Informatics (ICAI), Varna, Bulgaria, 2021, pp. 358-361, doi:
10.1109/ICAI52893.2021.9639627.

[4] D. Selimović, A. Salkanović and M. Tomić, "Application of MQTT
Based Message Brokers for IoT Devices Within Smart City Solutions,"
2022 45th Jubilee International Convention on Information,
Communication and Electronic Technology (MIPRO), Opatija, Croatia,
2022, pp. 428-433, doi: 10.23919/MIPRO55190.2022.9803388.

[5] M. Živić, D. Nemec and Ž. Bojović, "MQTT protocol in IoT
environment: Comparison with CoAP and ZeroMQ protocols," 2023
31st Telecommunications Forum (TELFOR), Belgrade, Serbia, 2023, pp.
1-4, doi: 10.1109/TELFOR59449.2023.10372710.

[6] S. Gruener, H. Koziolek and J. Rückert, "Towards Resilient IoT
Messaging: An Experience Report Analyzing MQTT Brokers," 2021
IEEE 18th International Conference on Software Architecture (ICSA),
Stuttgart, Germany, 2021, pp. 69-79, doi:
10.1109/ICSA51549.2021.00015.

[7] J. Rouyer, A. Ninet, H. Fouchal, and A. Keziou, "A road intersection
control in urban intelligent transportation systems," ICC 2022 – IEEE
International Conference on Communications, Seoul, Republic of Korea,
2022, pp. 3562-3567, doi: 10.1109/ICC45855.2022.9838267.

[8] H. Antunes and I. d. S. A. da Fonseca, "Advanced web methodology for
flexible web development," 2021 16th Iberian Conference on
Information Systems and Technologies (CISTI), Chaves, Portugal, 2021,
pp. 1-4, doi: 10.23919/CISTI52073.2021.9476295.

[9] B. Mendes, M. Araújo, A. Goes, D. Corujo, and A. S. R. Oliveira,
"Exploring V2X in 5G networks: A comprehensive survey of location-
based services in hybrid scenarios," Vehicular Communications, vol. 52,
p. 100878, 2025. [Online]. Available:
https://doi.org/10.1016/j.vehcom.2025.100878.

[10] V. Shushkova, A. Kashevnik and L. Bakeeva, "Accelerometer and
Gyroscope Synthetic Data Calculation based on Driver Smartphone
GPS," 2024 36th Conference of Open Innovations Association
(FRUCT), Lappeenranta, Finland, 2024, pp. 748-755, doi:
10.23919/FRUCT64283.2024.10749939.

	I. Introduction
	II. Methodology
	A. System Architecture
	B. Data Collection and Processing
	C. Web Development

	III. Results And Discussion
	A. MQTT Performance Analysis
	1) MQTT Delay Trends Over Time

	B. MQTT Resilience Evaluation
	C. GPS Performance Evaluation
	1) GPS Error Trends Over Time
	2) GPS Stability Analysis
	3) Correlation Analysis of GPS Error, Speed and MQTT Delay

	D. Real-Time Data Visualization
	1) Visualization of Vehicle and Traffic Light Data
	2) WebSocket-Based Live Updates

	E. Database Management and Historical Data Retrieval

	IV. Conclusion
	Acknowledgment
	References

