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Abstract—Artificial Neural Networks (ANN) are computational
models inspired by the human brain, capable of recognizing
patterns and making predictions. Scale Conjugate Gradient
(SCG) algorithm is an efficient training method for ANN that
accelerates the learning process and improves output accuracy.
However, conventional ANN training methods often struggle with
slow convergence and can be less accurate when analyzing
complex, high-dimensional data such as Electroencephalogram
(EEG) signals. Furthermore, the precise classification of subtle
neural pattern changes induced by Radiofrequency (RF) exposure
remains a significant challenge. SCG improves the learning
process of ANNs by speeding up the adjustment of their internal
weights, helping the network learn faster and more accurately
from large data sets. This study aims to improve the classification
of RF neural data patterns using SCG. EEG neural data was
captured in sessions before, during and after RF exposure. Power
Asymmetry Ratio (PAR) was used for feature extraction. The data
involved 96 subjects, were split into 70:30 ratio for training and
testing in ANN modelling. The SCG algorithm was integrated,
initialized with one hidden layer of 10 neurons. Parameter
adjustments were made to optimize convergence, potentially
involving multiple layers for model refinement. The results show
that RF exposure in During session produces significantly distinct
neural patterns, enabling the highest ANN classification accuracy.

Index Terms—Brainwave, classification, feature extraction, neural
signal, Scale Conjugate Gradient (SCG)

I. INTRODUCTION

Artificial Neural Networks (ANN) process information in a
manner analogous to the human brain. They consist of layers of
interconnected neurons, each of which receives inputs and
produces outputs [1]. ANNs are non-linear mapping systems
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structured similarly to human neural networks [2]. An artificial
neuron is the fundamental building component of any ANN,
using basic mathematical model comprising multiplication,
summation, and activation [3]. The connection strength from an
input to a neuron is noted by the value of the weight [2]. The
connections between neurons vary in strength, either exciting
or inhibiting, and this strength difference affects information
flow [1]. Negative weight values reflect inhibitory connections,
while positive values designate excitatory connections [2].
Neurons can be grouped into layers: input, hidden, and output
layers. The connections and the way these layers interact play a
crucial role in solving specific problems [1].

II. LITERATURE REVIEW

Electroencephalogram (EEQG) is an instrument used to record
brain electrical activity as an analogue signal. There are three
techniques used to record the brain signal: invasive, partially
invasive, and non-invasive, which is EEG [4]. It has a wide
range of applications, from clinical diagnostics to brain-
triggered neurorehabilitation treatments [5]. The technique
records the net difference in voltage activity between ionic
current flows in the brain, which is controlled by NMDA
glutamate receptors [6]. EEG can be measured by placing the
electrodes directly on the cortex or on the scalp. EEG rhythm
data is classified into five different frequencies which are delta
(0.5-4 Hz), theta (4-8 Hz), alpha (8—13 Hz), beta (13-30 Hz),
and gamma (above 30 Hz) [7].

After extracting raw data of brain activity through EEG, the
data will undergo artifact and noise removal as EEG
preprocessing before applying Fast-Fourier Transform (FFT).
FFT as an advanced digital signal processing technique is used
to help with the classification of brainwave and feature
extraction of EEG signal [8]. According to [9], FFT is suitable
for a narrowband signal such as sine wave. It is a good tool for
stationary signal processing and in real-time applications, FFT
has a better speed compared to all other available methods
virtually. Noise is neurological activities that are not relevant in
examining the behavioral task, and artifact is an external
activity that is not related to neurological activities such as
electrical interference, eye movement, or respiration [10]. The
artifacts may come from measurement instruments such as
faulty electrodes, line noise, and high electrode impedance,
which can be reduced or avoided by using a high-node precision
equipment and standardized procedure of recording, while
physiological artifacts which come from human subjects are



harder and more complicated to remove [11].

For characterizing EEG data, there are two common
approaches performed on functional correlation (FC) patterns
which is Power Spectral Density (PSD) and network analysis
[12]. PSD is wusually computed wusing a parametric
autoregressive (AR) model where it provides signal power
information at relatively narrow frequency sub-bands [13].
SCG algorithm has been shown to be a highly effective method
for training artificial neural networks. SCG is particularly
suitable for applications such as the classification of
electromyographic data [ 14], automated seizure detection using
EEG data [15], and the classification of depressive and normal
states in EEG data [16] as it offers fast and more stable
convergence. It is faster to converge due to its effectiveness in
training deep neural networks [17]. SCG outperforms other
gradient-based optimization methods in speed and accuracy in
a comparative study [18]. It offers significant performance
benefits in neural network training despite the challenges in
implementing SCG, such as precise parameter tuning [19]. A
confusion matrix is an essential tool for summarizing prediction
results in a structured format for evaluating the performance of
classification models [20]. Confusion matrix provides insight
into the model's accuracy and comprises four components: true
positives, true negatives, false positives, and false negatives
[21].

III. METHODOLOGY

Fig. 1 presents the flowchart for project methodology. In the
comprehensive process of signal processing for the
development of the SCG algorithm in RF neural signal
processing, data acquisition initiates with the collection of EEG
data capturing brain activity in before, during and after the RF
exposure session. The EEG neural signals were recorded in
time domain, encompassing 5 minutes period of each session
for Left Exposure (LE), Right Exposure (RE), and Sham
Exposure (SE) across 96 EEG data of subjects per frequency
band. Then EEG recording involved two electrodes placed at
the forehead to record the frontal hemisphere brainwave
signals.

The RF exposure source ranging from 900 MHz to 2.2 GHz
with 0.69 W/Kg Specific Absorption Rate (SAR). After data
collection, a meticulous filtering stage eliminates artifacts and
noise using bandpass and notch filters, employing techniques
such as filtering and artifact rejection. Moving to the signal pre-
processing phase, a series of steps is undertaken to prepare the
data for analysis. The FFT converted the time-domain signal
into a frequency-domain signal, providing PSD at different
frequency bands, namely alpha, beta, theta, and delta.

The squared magnitude of FFT is then calculated to obtain
PSD. Normalization was conducted for the PSD data, focusing
on relative power changes within specific frequency bands.
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Fig. 1. Methodology flowchart.

This step is crucial in EEG analysis, emphasizing the
importance of understanding the relative distribution of power
across delta, theta, alpha and beta frequency ranges. The
normalization formula given in (1), is applied to scale the PSD
values from 0 to 1.
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Feature extraction is conducted using the PAR formula as in
(2), capturing both positive and negative values to extract
significant behavioral patterns within each frequency band. Pp
indicates PSD value for left hemisphere and Pr indicates PSD
value for right hemisphere.

P, —

PAR = 2)

Subsequently, pattern recognition is achieved through data
visualization by plotting graphs, including box plots and scatter
graphs. The signal undergoes the feature extraction and analysis
using Analysis of Variance (ANOVA) and Homogeneity Test.
Finally, ANN modeling is executed with 70:30 ratio dataset
split for training and testing. The SCG algorithm is applied,
integrated into the input, hidden layer, and expected output of
the neural network. The initial networks configuration involves
a single hidden layer with 10 neurons and an input layer with 2
nodes. To optimize convergence, adjustments were made,
potentially incorporating multiple hidden layers with varying
neuron configurations until convergence is achieved and the
model is refined.
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IV. RESULTS AND DISCUSSION

A. PAR Analysis for Beta and Alpha

For Beta LE, there is a slight decrease from the Before
session to the During session, followed by a slight increase in
the After session as shown in Fig. 2. For Beta RE, the mean
value slightly increases from the Before session to the During
session and decreases in the After session. For Beta SE, the
mean value slightly increases from the Before session to the
During session, then remains stagnant in the After session. The
overall beta mean value shows no significant difference across
all sessions for all exposures.

For Alpha LE, there is an increment from the Before session
to the During session, followed by a slight decrease in the After
session, as illustrated in Fig. 3. For Alpha RE, the mean value
remains stagnant throughout all sessions. For Alpha SE, the
mean value slightly decreases from the Before session to the
During session, then increases in the After session. Alpha LE
shows a significant increase compared to other exposures. The
mean value for both Alpha and Beta in LE is the highest,
indicating for highly left hemisphere dominance.
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Fig. 2. PAR Beta between exposure and session.
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Fig. 3. PAR Alpha between exposure and session.

B. ANOVA Analysis

Significant differences (p < 0.05) were observed in the
Before Beta, Before Alpha, During Alpha, After Beta, and After
Alpha conditions, suggesting that the experimental stimulus
had a statistically significant impact on the subject. From Table
1, the "During Beta" condition did not show significant
differences (p = 0.092), indicating that the exposure did not
significantly affect the subject during the exposure period.
However, further analysis was conducted with ANN to classify
the brainwave signals.

54

TABLEL ANOVA ANALYSIS OF SIGNIFICANT DIFFERENCE BETWEEN
EXPOSURE
Session Brainwave Significant, p Remarks
Value
Before Beta 0.0014 Significant
Alpha 0.0310 Significant
During Beta 0.0920 Not Significant
Alpha 0.0000 Significant
After Beta 0.0310 Significant
Alpha 0.0000 Significant
C. MSE vs Hyperparameter

Mean Square Error (MSE) is used to determine the optimal
hyperparameters of the ANN Modelling using SCG. The
hyperparameters are learning rate and hidden layer size. The
hyperparameters were chosen by finding the lowest MSE value
across a range of value sets as shown in Fig. 4, 5 and 6.

MSE vs. Learning Rate

5 = )
e \“e/ \

05 0.6 0.7 0.8 0.9 1
Learning Rate
MSE vs. Hidden Layer Size

—;——F""ar/ -
~— I

05r

MSE

045
0.1

02 0.3 0.4

06—

T——o . 50 ﬂ\ ]
! | K
10

b
G5

0.4 L L ' L L s
1 2 3 4 7 8 9

5 ]
Hidden Layer Size

Fig. 4. MSE vs Hyperparameter for Before Session.
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The analysis of the learning rate throughout different
sessions (Before, During, and After) reveals a dynamic and
adaptive approach required for optimal neural network training
as illustrated in Table 2. Before the exposure, a high learning
rate (1.0) enabled significant weight adjustments and balanced
exploration in the early training phase. During the session, due



to increased complexity from the RF stimulus, the learning rate
was reduced to 0.7, facilitating finer adjustments and leveraging
past gradient directions to navigate the more complex error
landscape. In the after session, the learning rate further reduced
to 0.5, supporting precise weight updates and smooth
convergence towards the optimal solution.

TABLE II. LOWEST MSE FOR HYPERPARAMETERS IN EACH SESSION

Parameters Session: Before During After
Learning rate 1.0 0.7 0.5
Hidden Layer 10.0 10.0 10.0

D.PAR ANN Modeling Using SCG

The confusion matrices for Before session as in Fig. 7, show
model performance before the exposure to radiofrequency
stimulation. Both matrices highlight significant
misclassifications among the classes. This indicates the model
has difficulty distinguishing between left exposure, right
exposure, and sham exposure when the brain has not been
influenced by the stimulus. Such results are expected because
the data, recorded before exposure, lack distinctive patterns.

Training Session Testing Session

Actual
Actual

Predicted
Accuracy = 49.4%

Predicted
Accuracy =47.4%
Fig. 7. Training and Testing confusion matrix for Before
session.

The linear regression line for Before session in Fig. 8 shows
that the regression fit (blue line) diverges from the ideal fit
(dotted line) for both training and testing data. Such divergence
is to be expected as the subject is yet to be exposed to the
stimulus. The regression equation on training data indicates that
the predicted output increases by 0.33 units for each unit
increase in the target, starting from an intercept of 1.3 when the
target is zero. For the testing data, the equation indicates that
the predicted output increases by 0.017 units for each unit
increase in the target.
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Fig. 8. Training and Testing Linear Regression plot for
Before session.
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The prediction of training for Before session in Fig. 9 shows
the data before undergoing ANN modelling of SCG algorithm
and the classification of training shows the data after putting
through the ANN modelling where the data aligned to the
measured target according to the prediction of the SCG
algorithm.
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Fig. 9. Prediction and classification of Training for Before
session.

The prediction of testing for Before session in Fig. 10 shows
the data before undergoing ANN modelling of SCG algorithm
and the classification of training shows the data after putting
through the ANN modelling where the data aligned to the
measured target according to the prediction of the SCG
algorithm.
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Fig. 10. Prediction and classification of Testing for Before
session.

Fig. 11 shows the feature overlap visualisation between
groups for Before session of the RF exposure. As observed, the
exposures are overlapping each other. This feature overlap is
the reason the ANN model had difficulty accurately classifying
the data, leading to lower classification accuracy in Before
session. As the mobile phone RF has yet to be exposed to the
subject, there is no distinct pattern between exposure groups.
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Fig. 11. Data overlap visualisation for Before session.

The confusion matrices for the During session as in Fig. 12
show a significant improvement compared to the Before
session. In the During training matrix, it exhibits high accuracy
for LE and substantial improvement in correctly identifying the
subjects in RE and SE classes. In the During testing matrix, it
shows better performance with more accurate classifications
across all classes for training and testing accuracy.
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Fig. 12. Training and Testing confusion matrix for During
session.
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The During session plot in Fig. 13 shows a stronger
relationship between the target and output compared to the
Before session plot. The slope is significantly higher, and the
intercept is lower, suggesting that the model fits the data more
closely during the session than before. This indicates an
improvement in the regression model's performance during the
session.
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Fig. 13. Training and Testing Linear Regression plot for
During session.

The prediction of training for During session as in Fig. 14
shows the data before and the classification of training shows
the data after putting through the ANN modelling where the
data goes to the measured target according to the prediction of
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the SCG algorithm. It shows better prediction in classification
of training for During session with more predicted target
aligned to the measured target suggesting more accurate
prediction. The same applies to testing data as depicted in Fig.
15, where more predicted target accurately classified at the
measured target with higher percentage of accuracy after
undergoing the SCG algorithm.
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Fig. 15. Prediction and classification of Testing for
During session.

Fig.16 shows the feature overlap visualisation. The LE data
are well separated while RE and SE value overlap and closely
positioned around each other causing more harder for SCG
algorithm to classify accurately. Thus, resulted the RE data to
be misclassified to SE group. Circles represent LE, rectangles
represent RE while triangles represent SE.
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Fig. 16. Data overlap visualisation for During session.
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The confusion matrices for the After session as in Fig. 17
show a significant decrease as compared to the During session.
This is due to the removal of RF stimulus, therefore resulted the
brainwave response decreased.
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Regression in After session as in Fig. 18 shows a slight
decrease in the strength of the relationship between the target
and output. The "During Session" plot demonstrates a steeper
slope and a lower intercept, indicating a stronger correlation
and a lower baseline output. Conversely, the "After Session"
plot shows a marginally less steep slope and a higher intercept,
suggesting a minor reduction in model performance but still
maintaining a relatively strong fit. This indicates that while the
predictive power was strongest in During session, it slightly
declined afterward, though not significantly enough to
undermine its overall effectiveness.
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Fig. 18. Training and Testing Linear Regression plot for
After session.

The prediction of training for After session as in Fig. 19
shows the data before and the classification of training shows
the data after putting through the ANN modelling where the
predicted data closely matches the actual measured target as
classified by the SCG algorithm. It shows better prediction in
classification of training for During session with more predicted
target goes to the measured target suggesting more accurate
prediction. The same applies to the testing data as in Fig. 20
where predicted target classified with lower accuracy compared
to the During session due to the absence of the RF stimulus.
This is expected as there were no exposure having by the
subjects during the session.

Fig. 21 shows feature overlap visualisation for all exposure
groups in After session. It shows how all exposure begins to
overlap and closing to each other. This is because the mobile
phone RF is removed from the subjects in the After session. As
the data overlapped increased, the harder the modelling to
accurately classified the data according to their respective
classes of exposure.
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Fig. 21 shows feature overlap visualisation for all exposure
groups in After session. It shows how all exposure begins to
overlap and closing to each other. This is because the mobile
phone RF is removed from the subjects in the After session. As
the data overlapped increased, the harder the modelling to
accurately classified the data according to their respective
classes of exposure.
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Fig. 21. Data overlap visualization for After session.

The confusion matrices for the Before session demonstrate
significant misclassifications, indicating difficulty in
distinguishing between different exposure types when the brain
is not influenced by the RF stimulus. This lack of stimulus
means the brainwave patterns do not have distinct features,
leading to lower prediction accuracy. The regression analysis
also reflects this with a notable divergence from the ideal fit,
expected due to the absence of distinguishable patterns in the
data during this session.

During the RF exposure session, there is a notable
improvement in classification accuracy as illustrated in Table
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4. The confusion matrices indicate significant enhancements,
particularly in identifying LE brainwaves. The regression
analysis shows a stronger correlation between the predicted
outputs and the actual targets, indicating enhanced model
performance during RF exposure. The percentage of correct
predictions is higher in the During session compared to the
Before session, suggesting that the RF stimulus induces
distinguishable brainwave patterns. This improvement is
evident despite some misclassifications, such as 22 subjects
from the RE class being misclassified as SE, likely due to high
feature overlap between RE and SE classes. The fit line from
the regression analysis converges towards the target during RF
exposure, reflecting increased accuracy for both training and
testing.

In the After session, there is a slight decrease in accuracy
compared to the During session as the RF stimulus is removed.
Without the stimulus, the distinct brainwave patterns begin to
dissipate, leading to a reduction in classification performance.
The regression analysis in the After session shows a minor
reduction in model performance but still maintains a relatively
strong fit. This suggests that brain activity gradually returns to
its baseline state post exposure, resulting in decreased accuracy.
Overall, the RF stimulus significantly influences brainwave
patterns, enhancing the model's classification performance
during exposure, while the after-exposure phase highlights the
temporary nature of these induced patterns.

TABLE VI. TRAINING AND TESTING ACCURACY FOR EACH SESSION

Accuracy (%) Session: Before During After
Training 49.4 70.1 66.2
Testing 47.4 84.2 57.9

V.CONCLUSION AND RECOMMENDATION

This research demonstrates the effective application of SCG
algorithm for training ANNS in the context of RF neural signal
processing. Through comprehensive EEG data acquisition and
meticulous preprocessing, the study successfully extracted and
analysed neural patterns across various exposure scenarios. The
findings reveal that RF exposure impacts brainwave activity,
with significant differences observed in the beta and alpha PAR
in during and after exposure sessions.

The optimized hyperparameters, identified through MSE
analysis, highlight the dynamic adjustment needed in
parameters tuning to achieve precise neural network training.
The SCG-based ANN models showed varying degrees of
accuracy in predicting and classifying brainwave patterns
before, during, and after RF exposure, underscoring the
complex nature of neural responses to RF stimuli. This research
not only advances the understanding of RF neural interactions
but also contributes to the development of efficient neural
network training methodologies for accurate signal
classification and pattern recognition in biomedical
applications. As an enhancement in future work, analysis can
be carried out using low-frequency neural signals within the 0—
8 Hz range.
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