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Abstract—Artificial Neural Networks (ANN) are computational 
models inspired by the human brain, capable of recognizing 
patterns and making predictions. Scale Conjugate Gradient 
(SCG) algorithm is an efficient training method for ANN that 
accelerates the learning process and improves output accuracy. 
However, conventional ANN training methods often struggle with 
slow convergence and can be less accurate when analyzing 
complex, high-dimensional data such as Electroencephalogram 
(EEG) signals. Furthermore, the precise classification of subtle 
neural pattern changes induced by Radiofrequency (RF) exposure 
remains a significant challenge. SCG improves the learning 
process of ANNs by speeding up the adjustment of their internal 
weights, helping the network learn faster and more accurately 
from large data sets. This study aims to improve the classification 
of RF neural data patterns using SCG. EEG neural data was 
captured in sessions before, during and after RF exposure. Power 
Asymmetry Ratio (PAR) was used for feature extraction. The data 
involved 96 subjects, were split into 70:30 ratio for training and 
testing in ANN modelling. The SCG algorithm was integrated, 
initialized with one hidden layer of 10 neurons. Parameter 
adjustments were made to optimize convergence, potentially 
involving multiple layers for model refinement. The results show 
that RF exposure in During session produces significantly distinct 
neural patterns, enabling the highest ANN classification accuracy.  
 
Index Terms—Brainwave, classification, feature extraction, neural 
signal, Scale Conjugate Gradient (SCG) 
 

I. INTRODUCTION 
Artificial Neural Networks (ANN) process information in a 

manner analogous to the human brain. They consist of layers of 
interconnected neurons, each of which receives inputs and 
produces outputs [1]. ANNs are non-linear mapping systems 

structured similarly to human neural networks [2]. An artificial 
neuron is the fundamental building component of any ANN, 
using basic mathematical model comprising multiplication, 
summation, and activation [3]. The connection strength from an 
input to a neuron is noted by the value of the weight [2]. The 
connections between neurons vary in strength, either exciting 
or inhibiting, and this strength difference affects information 
flow [1]. Negative weight values reflect inhibitory connections, 
while positive values designate excitatory connections [2]. 
Neurons can be grouped into layers: input, hidden, and output 
layers. The connections and the way these layers interact play a 
crucial role in solving specific problems [1].  

II. LITERATURE REVIEW 
Electroencephalogram (EEG) is an instrument used to record 

brain electrical activity as an analogue signal. There are three 
techniques used to record the brain signal: invasive, partially 
invasive, and non-invasive, which is EEG [4]. It has a wide 
range of applications, from clinical diagnostics to brain-
triggered neurorehabilitation treatments [5]. The technique 
records the net difference in voltage activity between ionic 
current flows in the brain, which is controlled by NMDA 
glutamate receptors [6]. EEG can be measured by placing the 
electrodes directly on the cortex or on the scalp. EEG rhythm 
data is classified into five different frequencies which are delta 
(0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), beta (13–30 Hz), 
and gamma (above 30 Hz) [7]. 

After extracting raw data of brain activity through EEG, the 
data will undergo artifact and noise removal as EEG 
preprocessing before applying Fast-Fourier Transform (FFT). 
FFT as an advanced digital signal processing technique is used 
to help with the classification of brainwave and feature 
extraction of EEG signal [8]. According to [9], FFT is suitable 
for a narrowband signal such as sine wave. It is a good tool for 
stationary signal processing and in real-time applications, FFT 
has a better speed compared to all other available methods 
virtually. Noise is neurological activities that are not relevant in 
examining the behavioral task, and artifact is an external 
activity that is not related to neurological activities such as 
electrical interference, eye movement, or respiration [10]. The 
artifacts may come from measurement instruments such as 
faulty electrodes, line noise, and high electrode impedance, 
which can be reduced or avoided by using a high-node precision 
equipment and standardized procedure of recording, while 
physiological artifacts which come from human subjects are 
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harder and more complicated to remove [11]. 
For characterizing EEG data, there are two common 

approaches performed on functional correlation (FC) patterns 
which is Power Spectral Density (PSD) and network analysis 
[12]. PSD is usually computed using a parametric 
autoregressive (AR) model where it provides signal power 
information at relatively narrow frequency sub-bands [13]. 
SCG algorithm has been shown to be a highly effective method 
for training artificial neural networks. SCG is particularly 
suitable for applications such as the classification of 
electromyographic data [14], automated seizure detection using 
EEG data [15], and the classification of depressive and normal 
states in EEG data [16] as it offers fast and more stable 
convergence. It is faster to converge due to its effectiveness in 
training deep neural networks [17]. SCG outperforms other 
gradient-based optimization methods in speed and accuracy in 
a comparative study [18]. It offers significant performance 
benefits in neural network training despite the challenges in 
implementing SCG, such as precise parameter tuning [19]. A 
confusion matrix is an essential tool for summarizing prediction 
results in a structured format for evaluating the performance of 
classification models [20]. Confusion matrix provides insight 
into the model's accuracy and comprises four components: true 
positives, true negatives, false positives, and false negatives 
[21]. 

III. METHODOLOGY 
Fig. 1 presents the flowchart for project methodology. In the 

comprehensive process of signal processing for the 
development of the SCG algorithm in RF neural signal 
processing, data acquisition initiates with the collection of EEG 
data capturing brain activity in before, during and after the RF 
exposure session. The EEG neural signals were recorded in 
time domain, encompassing 5 minutes period of each session 
for Left Exposure (LE), Right Exposure (RE), and Sham 
Exposure (SE) across 96 EEG data of subjects per frequency 
band. Then EEG recording involved two electrodes placed at 
the forehead to record the frontal hemisphere brainwave 
signals.  

The RF exposure source ranging from 900 MHz to 2.2 GHz 
with 0.69 W/Kg Specific Absorption Rate (SAR). After data 
collection, a meticulous filtering stage eliminates artifacts and 
noise using bandpass and notch filters, employing techniques 
such as filtering and artifact rejection. Moving to the signal pre-
processing phase, a series of steps is undertaken to prepare the 
data for analysis. The FFT converted the time-domain signal 
into a frequency-domain signal, providing PSD at different 
frequency bands, namely alpha, beta, theta, and delta.  

The squared magnitude of FFT is then calculated to obtain 
PSD. Normalization was conducted for the PSD data, focusing 
on relative power changes within specific frequency bands. 

 
 

Fig. 1. Methodology flowchart. 
 
This step is crucial in EEG analysis, emphasizing the 

importance of understanding the relative distribution of power 
across delta, theta, alpha and beta frequency ranges. The 
normalization formula given in (1), is applied to scale the PSD 
values from 0 to 1.  

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =
𝑋𝑋

𝑋𝑋𝑋𝑋𝑋𝑋𝑋𝑋
 (1) 

 
Feature extraction is conducted using the PAR formula as in 

(2), capturing both positive and negative values to extract 
significant behavioral patterns within each frequency band. PL 
indicates PSD value for left hemisphere and PR indicates PSD 
value for right hemisphere.  

 

𝑃𝑃𝑃𝑃𝑃𝑃 =
𝑃𝑃𝐿𝐿 − 𝑃𝑃𝑅𝑅
𝑃𝑃𝐿𝐿 + 𝑃𝑃𝑅𝑅

 (2) 

 
Subsequently, pattern recognition is achieved through data 

visualization by plotting graphs, including box plots and scatter 
graphs. The signal undergoes the feature extraction and analysis 
using Analysis of Variance (ANOVA) and Homogeneity Test. 
Finally, ANN modeling is executed with 70:30 ratio dataset 
split for training and testing. The SCG algorithm is applied, 
integrated into the input, hidden layer, and expected output of 
the neural network. The initial networks configuration involves 
a single hidden layer with 10 neurons and an input layer with 2 
nodes. To optimize convergence, adjustments were made, 
potentially incorporating multiple hidden layers with varying 
neuron configurations until convergence is achieved and the 
model is refined. 
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IV. RESULTS AND DISCUSSION 

A. PAR Analysis for Beta and Alpha 
For Beta LE, there is a slight decrease from the Before 

session to the During session, followed by a slight increase in 
the After session as shown in Fig. 2. For Beta RE, the mean 
value slightly increases from the Before session to the During 
session and decreases in the After session. For Beta SE, the 
mean value slightly increases from the Before session to the 
During session, then remains stagnant in the After session. The 
overall beta mean value shows no significant difference across 
all sessions for all exposures.  

For Alpha LE, there is an increment from the Before session 
to the During session, followed by a slight decrease in the After 
session, as illustrated in Fig. 3. For Alpha RE, the mean value 
remains stagnant throughout all sessions. For Alpha SE, the 
mean value slightly decreases from the Before session to the 
During session, then increases in the After session. Alpha LE 
shows a significant increase compared to other exposures. The 
mean value for both Alpha and Beta in LE is the highest, 
indicating for highly left hemisphere dominance. 

 

 
Fig. 2. PAR Beta between exposure and session. 
 

 
Fig. 3. PAR Alpha between exposure and session. 
 

B. ANOVA Analysis 
Significant differences (p < 0.05) were observed in the 

Before Beta, Before Alpha, During Alpha, After Beta, and After 
Alpha conditions, suggesting that the experimental stimulus 
had a statistically significant impact on the subject. From Table 
1, the "During Beta" condition did not show significant 
differences (p = 0.092), indicating that the exposure did not 
significantly affect the subject during the exposure period. 
However, further analysis was conducted with ANN to classify 
the brainwave signals.  

 
 
 
 
 
 

TABLE I.   ANOVA ANALYSIS OF SIGNIFICANT DIFFERENCE BETWEEN 
EXPOSURE 

Session Brainwave Significant, p 
Value Remarks 

Before Beta 0.0014 Significant 
Alpha 0.0310 Significant 

During Beta 0.0920 Not Significant 
Alpha 0.0000 Significant 

After Beta 0.0310 Significant 
Alpha 0.0000 Significant 

C. MSE vs Hyperparameter 
Mean Square Error (MSE) is used to determine the optimal 

hyperparameters of the ANN Modelling using SCG. The 
hyperparameters are learning rate and hidden layer size. The 
hyperparameters were chosen by finding the lowest MSE value 
across a range of value sets as shown in Fig. 4, 5 and 6. 

 

 
Fig. 4. MSE vs Hyperparameter for Before Session. 

 

 
Fig. 5. MSE vs Hyperparameter for During Session. 
 

 
Fig. 6. MSE vs Hyperparameter for After Session. 
 
The analysis of the learning rate throughout different 

sessions (Before, During, and After) reveals a dynamic and 
adaptive approach required for optimal neural network training 
as illustrated in Table 2. Before the exposure, a high learning 
rate (1.0) enabled significant weight adjustments and balanced 
exploration in the early training phase. During the session, due 
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to increased complexity from the RF stimulus, the learning rate 
was reduced to 0.7, facilitating finer adjustments and leveraging 
past gradient directions to navigate the more complex error 
landscape. In the after session, the learning rate further reduced 
to 0.5, supporting precise weight updates and smooth 
convergence towards the optimal solution. 

TABLE II.  LOWEST MSE FOR HYPERPARAMETERS IN EACH SESSION 

Parameters Session:  Before During After 
Learning rate       1.0 0.7 0.5 
Hidden Layer      10.0 10.0 10.0 

 

D. PAR ANN Modeling Using SCG 
The confusion matrices for Before session as in Fig. 7, show 

model performance before the exposure to radiofrequency 
stimulation. Both matrices highlight significant 
misclassifications among the classes. This indicates the model 
has difficulty distinguishing between left exposure, right 
exposure, and sham exposure when the brain has not been 
influenced by the stimulus. Such results are expected because 
the data, recorded before exposure, lack distinctive patterns. 

 

 
Fig. 7. Training and Testing confusion matrix for Before  
session.  

 
The linear regression line for Before session in Fig. 8 shows 

that the regression fit (blue line) diverges from the ideal fit 
(dotted line) for both training and testing data. Such divergence 
is to be expected as the subject is yet to be exposed to the 
stimulus. The regression equation on training data indicates that 
the predicted output increases by 0.33 units for each unit 
increase in the target, starting from an intercept of 1.3 when the 
target is zero. For the testing data, the equation indicates that 
the predicted output increases by 0.017 units for each unit 
increase in the target. 

 

  
Fig. 8. Training and Testing Linear Regression plot for  
Before session. 

 
 

The prediction of training for Before session in Fig. 9 shows 
the data before undergoing ANN modelling of SCG algorithm 
and the classification of training shows the data after putting 
through the ANN modelling where the data aligned to the 
measured target according to the prediction of the SCG 
algorithm. 

 

  
Fig. 9. Prediction and classification of Training for Before  
session. 
 

The prediction of testing for Before session in Fig. 10 shows 
the data before undergoing ANN modelling of SCG algorithm 
and the classification of training shows the data after putting 
through the ANN modelling where the data aligned to the 
measured target according to the prediction of the SCG 
algorithm. 

 

  
Fig. 10. Prediction and classification of Testing for Before  
session. 

 
Fig. 11 shows the feature overlap visualisation between 

groups for Before session of the RF exposure. As observed, the 
exposures are overlapping each other. This feature overlap is 
the reason the ANN model had difficulty accurately classifying 
the data, leading to lower classification accuracy in Before 
session. As the mobile phone RF has yet to be exposed to the 
subject, there is no distinct pattern between exposure groups.  
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Fig. 11. Data overlap visualisation for Before session. 
 
The confusion matrices for the During session as in Fig. 12 

show a significant improvement compared to the Before 
session. In the During training matrix, it exhibits high accuracy 
for LE and substantial improvement in correctly identifying the 
subjects in RE and SE classes. In the During testing matrix, it 
shows better performance with more accurate classifications 
across all classes for training and testing accuracy. 

 
Fig. 12. Training and Testing confusion matrix for During  
session. 

 
The During session plot in Fig. 13 shows a stronger 

relationship between the target and output compared to the 
Before session plot. The slope is significantly higher, and the 
intercept is lower, suggesting that the model fits the data more 
closely during the session than before. This indicates an 
improvement in the regression model's performance during the 
session.   

 

  
Fig. 13. Training and Testing Linear Regression plot for  
During session. 
 
The prediction of training for During session as in Fig. 14 

shows the data before and the classification of training shows 
the data after putting through the ANN modelling where the 
data goes to the measured target according to the prediction of 

the SCG algorithm. It shows better prediction in classification 
of training for During session with more predicted target 
aligned to the measured target suggesting more accurate 
prediction. The same applies to testing data as depicted in Fig. 
15, where more predicted target accurately classified at the 
measured target with higher percentage of accuracy after 
undergoing the SCG algorithm. 
 

  
 Fig. 14. Prediction and classification of Training for  
During session. 

  
Fig. 15. Prediction and classification of Testing for  
During session.   

 
Fig.16 shows the feature overlap visualisation. The LE data 

are well separated while RE and SE value overlap and closely 
positioned around each other causing more harder for SCG 
algorithm to classify accurately. Thus, resulted the RE data to 
be misclassified to SE group. Circles represent LE, rectangles 
represent RE while triangles represent SE. 

 

 
Fig. 16. Data overlap visualisation for During session. 

 
The confusion matrices for the After session as in Fig. 17 

show a significant decrease as compared to the During session. 
This is due to the removal of RF stimulus, therefore resulted the 
brainwave response decreased. 
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Fig. 17. Training and Testing confusion matrix for After  
session. 

 
Regression in After session as in Fig. 18 shows a slight 

decrease in the strength of the relationship between the target 
and output. The "During Session" plot demonstrates a steeper 
slope and a lower intercept, indicating a stronger correlation 
and a lower baseline output. Conversely, the "After Session" 
plot shows a marginally less steep slope and a higher intercept, 
suggesting a minor reduction in model performance but still 
maintaining a relatively strong fit. This indicates that while the 
predictive power was strongest in During session, it slightly 
declined afterward, though not significantly enough to 
undermine its overall effectiveness. 

 

  
Fig. 18. Training and Testing Linear Regression plot for  
After session. 

  
The prediction of training for After session as in Fig. 19 

shows the data before and the classification of training shows 
the data after putting through the ANN modelling where the 
predicted data closely matches the actual measured target as 
classified by the SCG algorithm. It shows better prediction in 
classification of training for During session with more predicted 
target goes to the measured target suggesting more accurate 
prediction. The same applies to the testing data as in Fig. 20 
where predicted target classified with lower accuracy compared 
to the During session due to the absence of the RF stimulus. 
This is expected as there were no exposure having by the 
subjects during the session.  

Fig. 21 shows feature overlap visualisation for all exposure 
groups in After session. It shows how all exposure begins to 
overlap and closing to each other. This is because the mobile 
phone RF is removed from the subjects in the After session. As 
the data overlapped increased, the harder the modelling to 
accurately classified the data according to their respective 
classes of exposure. 

 
 

  
 Fig. 19. Prediction and classification of Training for After 
session. 
 

  

 

Fig. 20. Prediction and classification of Testing for After  
session.   
 
Fig. 21 shows feature overlap visualisation for all exposure 

groups in After session. It shows how all exposure begins to 
overlap and closing to each other. This is because the mobile 
phone RF is removed from the subjects in the After session. As 
the data overlapped increased, the harder the modelling to 
accurately classified the data according to their respective 
classes of exposure. 

 

 
Fig. 21. Data overlap visualization for After session. 
 
The confusion matrices for the Before session demonstrate 

significant misclassifications, indicating difficulty in 
distinguishing between different exposure types when the brain 
is not influenced by the RF stimulus. This lack of stimulus 
means the brainwave patterns do not have distinct features, 
leading to lower prediction accuracy. The regression analysis 
also reflects this with a notable divergence from the ideal fit, 
expected due to the absence of distinguishable patterns in the 
data during this session.  

During the RF exposure session, there is a notable 
improvement in classification accuracy as illustrated in Table 
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4. The confusion matrices indicate significant enhancements, 
particularly in identifying LE brainwaves. The regression 
analysis shows a stronger correlation between the predicted 
outputs and the actual targets, indicating enhanced model 
performance during RF exposure. The percentage of correct 
predictions is higher in the During session compared to the 
Before session, suggesting that the RF stimulus induces 
distinguishable brainwave patterns. This improvement is 
evident despite some misclassifications, such as 22 subjects 
from the RE class being misclassified as SE, likely due to high 
feature overlap between RE and SE classes. The fit line from 
the regression analysis converges towards the target during RF 
exposure, reflecting increased accuracy for both training and 
testing.  

In the After session, there is a slight decrease in accuracy 
compared to the During session as the RF stimulus is removed. 
Without the stimulus, the distinct brainwave patterns begin to 
dissipate, leading to a reduction in classification performance. 
The regression analysis in the After session shows a minor 
reduction in model performance but still maintains a relatively 
strong fit. This suggests that brain activity gradually returns to 
its baseline state post exposure, resulting in decreased accuracy. 
Overall, the RF stimulus significantly influences brainwave 
patterns, enhancing the model's classification performance 
during exposure, while the after-exposure phase highlights the 
temporary nature of these induced patterns. 

TABLE VI.  TRAINING AND TESTING ACCURACY FOR EACH SESSION 

Accuracy (%) Session:  Before During After 
Training 49.4 70.1 66.2 

Testing 47.4 84.2 57.9 

V. CONCLUSION AND RECOMMENDATION 
This research demonstrates the effective application of SCG 

algorithm for training ANNs in the context of RF neural signal 
processing. Through comprehensive EEG data acquisition and 
meticulous preprocessing, the study successfully extracted and 
analysed neural patterns across various exposure scenarios. The 
findings reveal that RF exposure impacts brainwave activity, 
with significant differences observed in the beta and alpha PAR 
in during and after exposure sessions.  

The optimized hyperparameters, identified through MSE 
analysis, highlight the dynamic adjustment needed in 
parameters tuning to achieve precise neural network training. 
The SCG-based ANN models showed varying degrees of 
accuracy in predicting and classifying brainwave patterns 
before, during, and after RF exposure, underscoring the 
complex nature of neural responses to RF stimuli. This research 
not only advances the understanding of RF neural interactions 
but also contributes to the development of efficient neural 
network training methodologies for accurate signal 
classification and pattern recognition in biomedical 
applications. As an enhancement in future work, analysis can 
be carried out using low-frequency neural signals within the 0–
8 Hz range.  
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