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ABSTRACT 

This paper sets out to propose a unified theoretical framework for knowledge tracing (KT) that 
combines graph convolutional networks (GCNs) with neural sequence architectures in 
intelligent tutoring systems. While existing methods have achieved some success, they face 
limitations in modelling relational dependencies among concepts and the temporal progression 
of learner behaviour. Building on socio-constructivist views of knowledge as a network of 
relations and connectionist accounts of learning as adaptation over time, the framework 
integrates graph-based relational reasoning with sequence-based temporal modelling. The 
argument advanced here is that the integration offers interpretable representations of knowledge 
states while preserving predictive performance. The paper draws together recent developments 
in graph-enhanced KT and attention-based models and outlines design heuristics for scalable 
deployment. Key issues are identified, including computational cost, data sparsity, and 
explainability for classroom use. It is anticipated that the framework will inform the design of 
more systems and provide a tractable agenda for empirical validation across multiple domains 
and learner populations. 
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1. Introduction  

Progress in intelligent tutoring system (ITS) technologies has highlighted the fundamental 
nature of knowledge tracing (KT) - modelling and predicting students’ learning of knowledge 
components over time, as the basis of personalised instruction. KT facilitates adaptive 
interventions by inferring the unmeasured state of knowledge from observable learner 
interactions (Corbett & Anderson, 1994). Early KT models, such as Bayesian Knowledge 
Tracing (BKT), employed probabilistic methods to account for the temporal dynamics, but were 
based on the simplifying assumptions of independence among concepts and persistent learning 
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rates (Khajah et al., 2016). More recently, algorithms based on deep learning and neural 
networks, such as recurrent neural networks (RNN) and attention mechanisms, capture 
sequential dependencies more flexibly, leading to better prediction performance (Pandey & 
Karypis, 2019). However, most such models model knowledge components in isolation and do 
not consider delicate dependencies between concepts, which characterise typical educational 
domains. 

The paper is conceptual in that it addresses a fundamental need in the KT literature; there 
is currently no framework capable of modelling relational dependencies between knowledge 
components and student learning over time. For modelling learners' existing works, such as 
GCNs (graph convolutional networks), have exhibited effectiveness in using the topological 
structure of knowledge graphs (Ghosh et al., 2020). However, these are not yet integrated as 
part of a unified framework with (neural) sequence models. Such a disconnection hampers the 
potential of ITS to take full advantage of the structural and sequential properties of learning 
tasks. 

This work is informed by socio-constructivist learning theories that view knowledge as 
relational and dynamically constructed through experience (Vygotsky, 1978), alongside 
connectionist principles in neural computation. Guided by socio-constructivist accounts of 
knowledge as an organised, relational structure and by connectionist views of learning as 
adaptive computation, we conceptualise learning as movement through a structured knowledge 
space. This movement is constrained by the space’s topology, prior knowledge, and the 
temporal progression of learner interactions. 

This paper presents a framework that unifies GCNs and neural architectures in KT, 
unifying graph-based relational reasoning with sequence-based temporal modelling. The main 
claim is that such a combination provides theoretically sound and methodologically sound 
learner models, allowing better learning interventions that are more accurate, interpretable and 
learner-targeted. By so doing, the current paper sets out to add to the current discussion on 
adaptive education technologies and serves to direct future empirical research on KT model 
development and validation. 

Graph convolutional networks have an exceptional merit in this special case. By taking 
advantage of the structural information of knowledge graphs (concepts and relations), GCNs 
can improve the modelling of student knowledge states, thus predicting the learning effect well. 
Interfacing knowledge graph embeddings with neural architectures has been recently explored, 
offering a significant performance improvement, but particularly within educational scenarios 
(Li & Wu, 2023). Furthermore, the use of attention mechanisms in these systems can customise 
learning paths by incorporating expert knowledge into learning models (Tato & Nkambou, 
2022). 

The rapid development of artificial intelligence (AI) and machine learning (ML) 
technologies has created a vast opportunity for researchers to address various social, economic, 
and security issues more effectively. For instance, agriculture is a promising field about ML 
use to optimise crop production with better prediction by scale models. Fashoto et al. (2021) 
have also been able to construct a multiple linear regression model with high accuracy rates to 
forecast maize crop yields in Eswatini, thus assisting the country's food planning (Fashoto et 
al., 2021). On the other hand, the ML approach has also been applied to social issues like 
divorce among women of Malaysia by Aimran et al. (2022), where the Decision Tree (C5.0) 
was the most successful approach with an accuracy of nearly 78% (Aimran et al., 2022). The 
greatest predictors for divorce in this study included the wife’s occupation, nature of marriage 
and ethnicity. From the perspective of cybersecurity, Sunardi et al. (2023) used RAT and data 
mining analysis to characterise victims and offenders of cyber fraud in Indonesia (Sunardi et 
al., 2023). This study revealed that female users with low security awareness are most at risk 
of becoming victims. Overall, these three studies demonstrate how the integration of ML and 
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sociological theory can be applied to understand complex phenomena, improve policy 
effectiveness, and have a positive impact on society. 

 

2. Literature Review 

Knowledge tracing (KT) is a classical problem in educational technology, also known as 
Bayesian knowledge tracing (BKT), a statistical model first proposed by Corbett and Anderson 
(1994). BKT models student knowledge as an unobserved binary variable that evolves with 
observed performance. Though BKT is very intuitive and understandable, it has a strong 
assumption (independent components of knowledge, a constant learning probability, etc.), 
which makes it less flexible in modelling complex learning processes. Some of these limitations 
were addressed by extensions, but BKT still is not enough to describe the subtle, dynamic nature 
of learners in the real world (Khajah et al., 2016). This restriction also requires more powerful 
models that might encode temporal dependence and relational structure. 

Expanding on these criticisms, Piech et al. (2015) proposed DKT, which uses RNNs to 
model the sequence of student responses. Their finding showed that the RNN-based models 
performed much better than the BKT in prediction accuracy. DKT was a watershed model in 
that it framed KT as a sequence modelling problem, which let it tap into the representational 
power of neural networks to model complex interactions observed in student response data. 
Later research revealed significant limitations of DKT, such as poor interpretability as well as 
ignoring domain knowledge, in which the hierarchy and association among concepts will be 
considered (Yeung & Yeung, 2018). This gap indicates that a combined model of sequential 
dynamics and the structure of knowledge is needed. 

A graph-based method appeared to overcome the lack of relationship information. Ghosh 
et al. (2020) have presented Context-Aware Attentive Knowledge Tracing (CAKT) for practical 
purposes by extending the relationship of concepts included in KG to include the writing 
process. CAKT demonstrated that graph structures capture the learning spaces for predicting 
the next knowledge states of learners more accurately and representing the knowledge states 
more readably. This aligns with socio-constructivist models of knowledge as the interconnected 
network of concepts (Vygotsky, 1978). However, CAKT still views graph reasoning and 
sequence modelling as two disconnected parts, which are heuristic instead of principled. The 
absence of theoretical unification renders such models hard to extrapolate. 

Similarly, Nakagawa et al. (2021) proposed Graph Enhanced Knowledge Tracing (GKT), 
an approach that utilises a GCN to propagate information over an existing knowledge graph, 
aiming to capture structural dependencies between concepts to generalise beyond the training 
set. GKT makes the embeddings more interpretable and is consistent with the structure of the 
domain; however, it does not capture the temporal nature of the learning sequence 
straightforwardly and is not as suitable when the order of interactions has a strong impact on 
the outcomes (Shen et al., 2024). On the other hand, neural sequence models generally focus 
on the temporal structure but tend to under-represent concept–concept relations (Ke et al., 
2024). This also reinforces the intuition that the learning trajectories are too complicated to be 
adequately modelled by either graph-based or purely neural sequential models, calling for a 
joint relational and predictive design (Wu et al., 2022; Shen et al., 2024). 

Hybrid approaches have also been the focus of more recent studies. Zhang et al. (2022) 
introduced Sequence Graph Knowledge Tracing (SGKT) to combine these two types of 
knowledge (where a Graph Convolutional Network (GCN) would model knowledge structure 
and a Transformer higher-order feature dependencies in sequential knowledge productions). 
Their results indicate that a joint utilisation of graph reasoning and sequence modelling can be 
more effective than using either alone. But they have little theoretical backing other than 
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empirical observations, very little in the way of theoretical modelling suggesting how or why 
these different aspects should, in theory, come together. Because of this, it constitutes an 
important step towards integration, but it raises questions about its generalisation, scalability, 
and theoretical support. 

Combined, these studies yield precious information but demonstrate important 
deficiencies. BKT and its extensions emphasize interpretability but concern only simple 
dependencies (Corbett & Anderson, 1994; Khajah et al., 2016). DKT and its descendants (e.g., 
Pandey & Karypis, 2019) optimize for predictive power but not for structure and transparency. 
Graph-based models (Ghosh et al., 2020) take domain knowledge into consideration; however, 
they are not capable of capturing sequential dynamics in their entirety. There are some 
promising hybrid models (Wu et al., 2022), which are nevertheless under-theorised. The 
absence of a coherent theoretical or methodological structure to organize the relational and the 
temporal dimensions of learning, is a bottleneck for advancing knowledge in the field. 

This is a conceptual piece that is rooted in the theoretical grounding of social-
constructivist learning (Vygotsky, 1978) and connectionist principles to support an integrated 
framework that formalises the interplay between graph convolutional and neural architectures 
for KT. This framework aims to inspire the creation of more adaptive, interpretable, and 
effective ITSs by articulating a principled synthesis of graph-based relational reasoning and 
sequence-based temporal modelling. 

 

Table 1. Comparative Summary of Existing KT Models 

Model 
Theoretical 

Basis 
Strengths Limitations 

Key 
References 

Bayesian 
Knowledge 
Tracing (BKT) 

Probabilistic 
Simple, 
interpretable 

Assumes 
independence,  
fixed rates 

Corbett & 
Anderson 
(1994) 

Deep 
Knowledge 
Tracing (DKT) 

Connectionist 
Captures 
temporal 
dynamics 

Poor 
interpretability, 
ignores structure 

Piech et al. 
(2015) 

Context-
Aware 
Attentive KT 
(CAKT) 

Socio-
constructivist 
+ Attention 

Incorporates 
graph 

Heuristic 
integration,  
weak theory 

Ghosh et al. 
(2020) 

Sequence 
Graph KT 
(SGKT) 

Hybrid 
Combined 
strengths 

Under-theorised 
Wu et al. 
(2022) 

Table 1 summarises the key characteristics, strengths, and limitations of representative 
KT models discussed in the literature, highlighting the lack of a unified approach that integrates 
relational and temporal learning dimensions. 

Recent developments in knowledge tracing (KT) have considered incorporating more 
complex relational and behavioural cues in predictive student learning state models. Hiromi et 
al. (2021) introduced a graph-based knowledge tracing model with graph neural networks 
(GNNs) to represent the latent graph structures of student coursework and reformulate KT into 
a time-series node classification problem (Hiromi et al., 2021). Their approach outperformed 
the state of the art in terms of prediction accuracy and interpretability on two popular 
benchmark datasets while not assuming the presence of explicit knowledge graphs. Similarly, 
Qiang et al. (2022) proposed a neural Turing machine-based skill-aware KT (NSKT) model 
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that models the latent relevance between conjunctive skills in questions (Qiang et al., 2022). 
Empirical results on three real datasets showed that NSKT-based models achieved better 
prediction and interpretation performance compared to previous deep KT models and 
discovered semantically meaningful conditional dependencies over concepts. Consistent with 
these studies, Zhang et al. (2022) proposed an attention-augmented encoder-decoder KT model 
that incorporated three types of learning processes, end and interval, using both multiheaded 
and channel attention mechanisms (Zhang et al., 2022). Their model improves proneness and 
learnability, and acquisitions of aspects are effectively verified and shaped through an 
intelligent learning system plugged into an offline courseware in computer and English. 
Cumulatively, these studies point to the prospect of integrating relational, skill-relevance, and 
multi-behavioural information via sophisticated neural architectures to enhance KT efficacy 
and generalizability in education. 

 

3. Theoretical and Conceptual Framework 

The unified KT framework in ITS was proposed to consist of the GCNs and Neural Sequence 
Architectures, which were underpinned by two learning theories, social constructivist learning 
and connectionist learning. Collectively, these theories provide a basis for understanding 
learning as a process that is both dynamic, patterned and contextually dependent. 

According to socio-constructivist theory (Vygotsky, 1978), knowledge is created in the 
encounter between the individual and the social and material context – it is relational from the 
outset. In KT, this view stresses the need for modelling and capturing the interrelationships 
among knowledge components (skills or concepts), which usually form a hierarchy or a 
network with nodes and edges, respectively, in a curriculum. This relational orientation also 
corresponds to knowledge graphs as representations of domain knowledge, where GCNs 
benefit from spreading information through interlinked nodes to characterise the development 
of learners’ mastery over a network of knowledge (Ghosh et al., 2020).  

In contrast, connectionist learning theory (the foundation of multilayer neural networks) 
characterises learning as the continuous modification of distributed representations following 
exposure to streams of stimuli (Rogers et al., 2014). This view motivates the development of 
RNNs and Transformer-based models in KT (Pandey & Karypis, 2019), in which the history 
of student responses to questions is used to predict future performance. Neural sequence models 
are effective at capturing the temporal dynamics of learning behaviours but are less capable of 
encoding explicit relational knowledge.  

The conceptual framework proposed in this paper synthesises these complementary 
perspectives into a unified KT model. GCNs serve to model the relational structure of the 
knowledge domain, informed by socio-constructivist principles, while neural sequence models 
capture the temporal learning dynamics, aligned with connectionist principles. The interaction 
between these two components enables the learner model to reason over both the graph-
structured knowledge space and the sequential trajectory of student interactions. 

 
Table 2: Theoretical Alignment of Framework Components 

Framework Component Learning Theory Computational Method 

Relational Knowledge 
Socio-constructivist 
(Vygotsky, 1978) 

Graph Convolutional 
Networks 

Sequential Behaviour 
Connectionist 
(Rogers et al., 2014) 

RNNs / Transformers 
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Table 2 delineates the alignment between the theoretical foundations and the 
computational components of the proposed framework, illustrating how each learning theory 
informs specific modelling strategies. 
 
Application to the Research Problem 
Existing KT models often focus either on sequential dynamics (e.g., DKT) or relational 
structure (e.g., GKT), but rarely both in a theoretically principled manner (Wu et al., 2022). 
This disjoint treatment leads to models that fail to fully exploit the rich, structured, and temporal 
nature of learning. The unified framework conceptualises learning as a process of navigating 
and updating a structured knowledge graph over time, enabling ITS to generate more accurate, 
interpretable, and adaptive recommendations. Grounded in existing learning theories, it not 
only provides methodological consistency but also theory-driven rigour that fills current gaps 
and steers future empirical studies of integrated KT models. 
 
Unified Theoretical-Conceptual Framework 

Below is a schematic representation of the proposed framework. 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Proposed Framework. 
 

The figure illustrates the framework integrating socio-constructivist (relational) and 
connectionist (temporal) principles: a GCN component encodes concept relations; a neural 
sequence component models learner trajectories; the fusion layer supports interpretable, 
personalised interventions. 

 

4. Discussion and Implications 

The conceptualisation frame for embedding Graph Convolutional Networks (GCN) and neural 
sequence architecture into the knowledge tracing (KT) contributes to empirical and applied 
understandings in learning theory and ITS design. Theoretical implications of the framework, 
its strengths and weaknesses, and possible educational applications are then considered. 
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Theoretical Contributions 

The model extends the theoretical foundations of KT by integrating two traditions in the science 
of learning: the socio-constructivist conception of knowledge as an organised, interconnected 
network (Vygotsky, 1978) and the connectionist view of learning as a dynamic, adaptive 
process (Rogers et al., 2014). Current models often emphasise one view at the expense of the 
other. Graph-based KT effectively uses relational dependencies among concepts but tends to 
under-represent the temporal dynamics of learning (Ghosh et al., 2020; Wu et al., 2022). By 
contrast, neural sequence models capture the dynamics of the learning process while ignoring 
the relations between concepts (Ke et al., 2024). By explicitly unifying these standpoints, the 
proposed framework characterises learning as a dynamic walk over a structured concept graph 
through time, yielding representations that are both predictive and interpretable (Shen et al., 
2024; Cheng et al., 2024). This view aligns with contemporary educational psychology, which 
emphasises the structure and development of learner knowledge (Shute & Rahimi, 2021). The 
integration provides a theoretical base for the findings by providing a plausible account for how 
learners could process both the conceptual and temporal relations in parallel when learning. It 
also addresses the need for a KT model that is both predictive and interpretable. 

Strengths of the Framework 
The framework exploits the synergies between graph neural networks and neural sequence 
models. Graph components capture prerequisite and co-occurrence relations of concepts, 
leading to better structural awareness and interpretable feedback. Sequence features describe 
order and timing and are used as temporal indicators of learner behaviours during and within 
sessions. The argument advanced here is that a stripped-down fusion can provide valid 
predictions and classroom-ready explanations. This design aligns with recent findings on 
session-graph KT, hierarchical transformers, and attention-based interpretability, and it can be 
extended to dynamic graphs when relations evolve (Wu et al., 2022). 

The framework of this section gives a theoretical motivation to hybrid KT models, which 
have recently been proposed in the empirical literature, such as Wu et al. (2022). Furthermore, 
by detailing the theoretical basis for integration, it encourages methodological consistency and 
lays the groundwork for more conceptually driven model development and application in future 
studies. 

Limitations and Challenges 
This framework has strengths and constraints. A first constraint is computational cost. Training 
graph neural networks on large or dense concept graphs is memory-hungry because message 
passing expands neighbourhoods layer by layer, and intermediate activations and edge indices 
must be stored on the device. Full-graph or poorly sampled batches can exceed a single GPU’s 
memory; dynamic-graph updates add further overhead for time encoders and evolving edges 
(Gao et al., 2024; Cheng et al., 2024). For the sequence component, standard self-attention 
scales quadratically with sequence length, which increases both memory traffic and run-time; 
more efficient kernels (e.g., Flash Attention) reduce memory reads/writes and help stabilise 
training at longer lengths (Tay et al., 2022; Dao et al., 2022). In practice, mini-batch subgraph 
or neighbour sampling and adaptive sampling strategies can control peak memory while 
preserving accuracy (Shen et al., 2024; Younesian et al., 2023).  

A second constraint concerns graph availability and quality. Interpretability improves 
when domain knowledge is encoded as concept graphs, yet high-quality educational knowledge 
graphs are uneven across subjects and costly to curate; recent work shows value in 
programming education but highlights the dependency on graph coverage (Qu et al., 2024).  
A third constraint is external validity. Logical coherence does not guarantee field efficacy. The 
framework requires verification in live ITS across multiple subjects and learner profiles, with 
reports on compute, latency, and explanation usefulness for teachers (Shen et al., 2024). 
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Taken together, these limitations suggest specific mitigations: (i) neighbour/subgraph sampling 
or dynamic graph training to bound memory; (ii) efficient attention for long sequences; and (iii) 
staged pilots that track both predictive gains and operational costs in classroom settings (Gao 
et al., 2024; Dao et al., 2022).  

Potential Applications 
There are several attractive applications of the unified framework. ITS developers can take 
advantage of the framework to build systems that predict learner performance more precisely 
and, simultaneously, deliver more relevant, context-based feedback and intervention. For 
instance, by pinpointing not only which concepts a learner is struggling with but also how those 
concepts relate to each other and how the learner’s performance has changed over time, 
instructors and systems can develop more targeted remediation (Rahimi & Shute, 2021). 
Furthermore, the framework can support the design of learning analytics dashboards that 
visualise the relational and temporal aspects of learners’ progress, providing actionable 
feedback for teachers and students. Beyond individual learning, the framework’s capacity to 
model collective learning trajectories may also support collaborative learning environments 
where group dynamics and shared knowledge structures play a critical role. 

The general nature of the proposed approach makes an important contribution to KT 
theory by integrating relational with temporal modelling in a logical theoretical framework. It 
takes the dual advantage of GCNs and neural sequence models to overcome some constraints 
of current approaches, including interpretability, adaptability, and predictive power. Despite 
continuing challenges, related to complexity, data quality, and empirical testing, the framework 
provides a strong basis for furthering ITS design and KT research. The framework should be 
further developed, empirically tested and validated in real educational systems for a diverse 
group of learners. 

Future Work 

Empirical validation in the wild. 

The next step is empirical validation in real ITS deployments, across multiple domains and 
learner populations. Studies should compare the unified model against leading sequence-only 
and graph-only baselines on accuracy, calibration, and robustness, and should assess 
explanation usefulness for teachers (Wu et al., 2022; Ke et al., 2024; Shen et al. 2024). 
 
Efficiency and scaling. 

Large concept graphs and long histories raise computational and memory load. Use 
neighbour/subgraph sampling for GNNs, sequence truncation or efficient attention for long 
inputs, and knowledge distillation for compact deployments. Report a simple resource envelope 
(GPU/CPU, peak memory, throughput) to make trade-offs explicit (Cheng et al., 2024; Dao et 
al., 2022; Younesian et al., 2023). 

Adaptive knowledge graphs. 

Move beyond static, expert-defined graphs. Incorporate dynamic graph updates driven by live 
interactions and curriculum change, with periodic pruning to control sparsity and drift. Where 
domain KGs are scarce, semi-automatic construction pipelines can bootstrap workable graphs 
(Cheng et al., 2024; Qu et al., 2024). 

Explainability and usability. 

Deliver teacher-facing views that attribute predictions to both relational (concept nodes/edges) 
and temporal (events/sessions) signals. Evaluate whether these explanations improve 
intervention decisions without harming performance (Lu et al., 2023). 
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Generalisability and equity. 

Test across subjects (e.g., mathematics, programming, language), institutions, and demographic 
groups. Report subgroup performance and fairness diagnostics to ensure benefits are broadly 
shared (Shen et al., 2024). 
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