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ABSTRACT

This paper sets out to propose a unified theoretical framework for knowledge tracing (KT) that
combines graph convolutional networks (GCNs) with neural sequence architectures in
intelligent tutoring systems. While existing methods have achieved some success, they face
limitations in modelling relational dependencies among concepts and the temporal progression
of learner behaviour. Building on socio-constructivist views of knowledge as a network of
relations and connectionist accounts of learning as adaptation over time, the framework
integrates graph-based relational reasoning with sequence-based temporal modelling. The
argument advanced here is that the integration offers interpretable representations of knowledge
states while preserving predictive performance. The paper draws together recent developments
in graph-enhanced KT and attention-based models and outlines design heuristics for scalable
deployment. Key issues are identified, including computational cost, data sparsity, and
explainability for classroom use. It is anticipated that the framework will inform the design of
more systems and provide a tractable agenda for empirical validation across multiple domains
and learner populations.
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1. Introduction

Progress in intelligent tutoring system (ITS) technologies has highlighted the fundamental
nature of knowledge tracing (KT) - modelling and predicting students’ learning of knowledge
components over time, as the basis of personalised instruction. KT facilitates adaptive
interventions by inferring the unmeasured state of knowledge from observable learner
interactions (Corbett & Anderson, 1994). Early KT models, such as Bayesian Knowledge
Tracing (BKT), employed probabilistic methods to account for the temporal dynamics, but were
based on the simplifying assumptions of independence among concepts and persistent learning
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rates (Khajah et al., 2016). More recently, algorithms based on deep learning and neural
networks, such as recurrent neural networks (RNN) and attention mechanisms, capture
sequential dependencies more flexibly, leading to better prediction performance (Pandey &
Karypis, 2019). However, most such models model knowledge components in isolation and do
not consider delicate dependencies between concepts, which characterise typical educational
domains.

The paper is conceptual in that it addresses a fundamental need in the KT literature; there
is currently no framework capable of modelling relational dependencies between knowledge
components and student learning over time. For modelling learners' existing works, such as
GCNs (graph convolutional networks), have exhibited effectiveness in using the topological
structure of knowledge graphs (Ghosh et al., 2020). However, these are not yet integrated as
part of a unified framework with (neural) sequence models. Such a disconnection hampers the
potential of ITS to take full advantage of the structural and sequential properties of learning
tasks.

This work is informed by socio-constructivist learning theories that view knowledge as
relational and dynamically constructed through experience (Vygotsky, 1978), alongside
connectionist principles in neural computation. Guided by socio-constructivist accounts of
knowledge as an organised, relational structure and by connectionist views of learning as
adaptive computation, we conceptualise learning as movement through a structured knowledge
space. This movement is constrained by the space’s topology, prior knowledge, and the
temporal progression of learner interactions.

This paper presents a framework that unifies GCNs and neural architectures in KT,
unifying graph-based relational reasoning with sequence-based temporal modelling. The main
claim is that such a combination provides theoretically sound and methodologically sound
learner models, allowing better learning interventions that are more accurate, interpretable and
learner-targeted. By so doing, the current paper sets out to add to the current discussion on
adaptive education technologies and serves to direct future empirical research on KT model
development and validation.

Graph convolutional networks have an exceptional merit in this special case. By taking
advantage of the structural information of knowledge graphs (concepts and relations), GCNs
can improve the modelling of student knowledge states, thus predicting the learning effect well.
Interfacing knowledge graph embeddings with neural architectures has been recently explored,
offering a significant performance improvement, but particularly within educational scenarios
(Li & Wu, 2023). Furthermore, the use of attention mechanisms in these systems can customise
learning paths by incorporating expert knowledge into learning models (Tato & Nkambou,
2022).

The rapid development of artificial intelligence (Al) and machine learning (ML)
technologies has created a vast opportunity for researchers to address various social, economic,
and security issues more effectively. For instance, agriculture is a promising field about ML
use to optimise crop production with better prediction by scale models. Fashoto et al. (2021)
have also been able to construct a multiple linear regression model with high accuracy rates to
forecast maize crop yields in Eswatini, thus assisting the country's food planning (Fashoto et
al., 2021). On the other hand, the ML approach has also been applied to social issues like
divorce among women of Malaysia by Aimran et al. (2022), where the Decision Tree (C5.0)
was the most successful approach with an accuracy of nearly 78% (Aimran et al., 2022). The
greatest predictors for divorce in this study included the wife’s occupation, nature of marriage
and ethnicity. From the perspective of cybersecurity, Sunardi et al. (2023) used RAT and data
mining analysis to characterise victims and offenders of cyber fraud in Indonesia (Sunardi et
al., 2023). This study revealed that female users with low security awareness are most at risk
of becoming victims. Overall, these three studies demonstrate how the integration of ML and
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sociological theory can be applied to understand complex phenomena, improve policy
effectiveness, and have a positive impact on society.

2. Literature Review

Knowledge tracing (KT) is a classical problem in educational technology, also known as
Bayesian knowledge tracing (BKT), a statistical model first proposed by Corbett and Anderson
(1994). BKT models student knowledge as an unobserved binary variable that evolves with
observed performance. Though BKT is very intuitive and understandable, it has a strong
assumption (independent components of knowledge, a constant learning probability, etc.),
which makes it less flexible in modelling complex learning processes. Some of these limitations
were addressed by extensions, but BKT still is not enough to describe the subtle, dynamic nature
of learners in the real world (Khajah et al., 2016). This restriction also requires more powerful
models that might encode temporal dependence and relational structure.

Expanding on these criticisms, Piech et al. (2015) proposed DKT, which uses RNNs to
model the sequence of student responses. Their finding showed that the RNN-based models
performed much better than the BKT in prediction accuracy. DKT was a watershed model in
that it framed KT as a sequence modelling problem, which let it tap into the representational
power of neural networks to model complex interactions observed in student response data.
Later research revealed significant limitations of DKT, such as poor interpretability as well as
ignoring domain knowledge, in which the hierarchy and association among concepts will be
considered (Yeung & Yeung, 2018). This gap indicates that a combined model of sequential
dynamics and the structure of knowledge is needed.

A graph-based method appeared to overcome the lack of relationship information. Ghosh
etal. (2020) have presented Context-Aware Attentive Knowledge Tracing (CAKT) for practical
purposes by extending the relationship of concepts included in KG to include the writing
process. CAKT demonstrated that graph structures capture the learning spaces for predicting
the next knowledge states of learners more accurately and representing the knowledge states
more readably. This aligns with socio-constructivist models of knowledge as the interconnected
network of concepts (Vygotsky, 1978). However, CAKT still views graph reasoning and
sequence modelling as two disconnected parts, which are heuristic instead of principled. The
absence of theoretical unification renders such models hard to extrapolate.

Similarly, Nakagawa et al. (2021) proposed Graph Enhanced Knowledge Tracing (GKT),
an approach that utilises a GCN to propagate information over an existing knowledge graph,
aiming to capture structural dependencies between concepts to generalise beyond the training
set. GKT makes the embeddings more interpretable and is consistent with the structure of the
domain; however, it does not capture the temporal nature of the learning sequence
straightforwardly and is not as suitable when the order of interactions has a strong impact on
the outcomes (Shen et al., 2024). On the other hand, neural sequence models generally focus
on the temporal structure but tend to under-represent concept—concept relations (Ke et al.,
2024). This also reinforces the intuition that the learning trajectories are too complicated to be
adequately modelled by either graph-based or purely neural sequential models, calling for a
joint relational and predictive design (Wu et al., 2022; Shen et al., 2024).

Hybrid approaches have also been the focus of more recent studies. Zhang et al. (2022)
introduced Sequence Graph Knowledge Tracing (SGKT) to combine these two types of
knowledge (where a Graph Convolutional Network (GCN) would model knowledge structure
and a Transformer higher-order feature dependencies in sequential knowledge productions).
Their results indicate that a joint utilisation of graph reasoning and sequence modelling can be
more effective than using either alone. But they have little theoretical backing other than
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empirical observations, very little in the way of theoretical modelling suggesting how or why
these different aspects should, in theory, come together. Because of this, it constitutes an
important step towards integration, but it raises questions about its generalisation, scalability,
and theoretical support.

Combined, these studies yield precious information but demonstrate important
deficiencies. BKT and its extensions emphasize interpretability but concern only simple
dependencies (Corbett & Anderson, 1994; Khajah et al., 2016). DKT and its descendants (e.g.,
Pandey & Karypis, 2019) optimize for predictive power but not for structure and transparency.
Graph-based models (Ghosh et al., 2020) take domain knowledge into consideration; however,
they are not capable of capturing sequential dynamics in their entirety. There are some
promising hybrid models (Wu et al., 2022), which are nevertheless under-theorised. The
absence of a coherent theoretical or methodological structure to organize the relational and the
temporal dimensions of learning, is a bottleneck for advancing knowledge in the field.

This is a conceptual piece that is rooted in the theoretical grounding of social-
constructivist learning (Vygotsky, 1978) and connectionist principles to support an integrated
framework that formalises the interplay between graph convolutional and neural architectures
for KT. This framework aims to inspire the creation of more adaptive, interpretable, and
effective ITSs by articulating a principled synthesis of graph-based relational reasoning and
sequence-based temporal modelling.

Table 1. Comparative Summary of Existing KT Models

Model Theore.tlcal Strengths Limitations Key
Basis References

Bayesian Simple Assumes Corbett &
Knowledge Probabilistic inte P re’ table independence, Anderson
Tracing (BKT) P fixed rates (1994)
Deep o Captures Poor B Piech et al.
Knowledge Connectionist temporal interpretability, (2015)
Tracing (DKT) dynamics ignores structure
Context- Socio- Heuristic
Aware constructivist Incorporates integration Ghosh et al.
Attentive KT + Attention graph wea%( the0r7 (2020)
(CAKT) y
Sequence .
Graph KT Hybrid S?emnbiﬁzd Under-theorised g(t)lzezt)al.
(SGKT) &

Table 1 summarises the key characteristics, strengths, and limitations of representative
KT models discussed in the literature, highlighting the lack of a unified approach that integrates
relational and temporal learning dimensions.

Recent developments in knowledge tracing (KT) have considered incorporating more
complex relational and behavioural cues in predictive student learning state models. Hiromi et
al. (2021) introduced a graph-based knowledge tracing model with graph neural networks
(GNN¥s) to represent the latent graph structures of student coursework and reformulate KT into
a time-series node classification problem (Hiromi et al., 2021). Their approach outperformed
the state of the art in terms of prediction accuracy and interpretability on two popular
benchmark datasets while not assuming the presence of explicit knowledge graphs. Similarly,
Qiang et al. (2022) proposed a neural Turing machine-based skill-aware KT (NSKT) model
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that models the latent relevance between conjunctive skills in questions (Qiang et al., 2022).
Empirical results on three real datasets showed that NSKT-based models achieved better
prediction and interpretation performance compared to previous deep KT models and
discovered semantically meaningful conditional dependencies over concepts. Consistent with
these studies, Zhang et al. (2022) proposed an attention-augmented encoder-decoder KT model
that incorporated three types of learning processes, end and interval, using both multiheaded
and channel attention mechanisms (Zhang et al., 2022). Their model improves proneness and
learnability, and acquisitions of aspects are effectively verified and shaped through an
intelligent learning system plugged into an offline courseware in computer and English.
Cumulatively, these studies point to the prospect of integrating relational, skill-relevance, and
multi-behavioural information via sophisticated neural architectures to enhance KT efficacy
and generalizability in education.

3. Theoretical and Conceptual Framework

The unified KT framework in ITS was proposed to consist of the GCNs and Neural Sequence
Architectures, which were underpinned by two learning theories, social constructivist learning
and connectionist learning. Collectively, these theories provide a basis for understanding
learning as a process that is both dynamic, patterned and contextually dependent.

According to socio-constructivist theory (Vygotsky, 1978), knowledge is created in the
encounter between the individual and the social and material context — it is relational from the
outset. In KT, this view stresses the need for modelling and capturing the interrelationships
among knowledge components (skills or concepts), which usually form a hierarchy or a
network with nodes and edges, respectively, in a curriculum. This relational orientation also
corresponds to knowledge graphs as representations of domain knowledge, where GCNs
benefit from spreading information through interlinked nodes to characterise the development
of learners’ mastery over a network of knowledge (Ghosh et al., 2020).

In contrast, connectionist learning theory (the foundation of multilayer neural networks)
characterises learning as the continuous modification of distributed representations following
exposure to streams of stimuli (Rogers et al., 2014). This view motivates the development of
RNNs and Transformer-based models in KT (Pandey & Karypis, 2019), in which the history
of student responses to questions is used to predict future performance. Neural sequence models
are effective at capturing the temporal dynamics of learning behaviours but are less capable of
encoding explicit relational knowledge.

The conceptual framework proposed in this paper synthesises these complementary
perspectives into a unified KT model. GCNs serve to model the relational structure of the
knowledge domain, informed by socio-constructivist principles, while neural sequence models
capture the temporal learning dynamics, aligned with connectionist principles. The interaction
between these two components enables the learner model to reason over both the graph-
structured knowledge space and the sequential trajectory of student interactions.

Table 2: Theoretical Alignment of Framework Components

Framework Component Learning Theory Computational Method

. Socio-constructivist Graph Convolutional
Relational Knowledge (Vygotsky, 1978) Networks
Sequential Behaviour Connectionist RNNs / Transformers

(Rogers et al., 2014)
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Table 2 delineates the alignment between the theoretical foundations and the
computational components of the proposed framework, illustrating how each learning theory
informs specific modelling strategies.

Application to the Research Problem

Existing KT models often focus either on sequential dynamics (e.g., DKT) or relational
structure (e.g., GKT), but rarely both in a theoretically principled manner (Wu et al., 2022).
This disjoint treatment leads to models that fail to fully exploit the rich, structured, and temporal
nature of learning. The unified framework conceptualises learning as a process of navigating
and updating a structured knowledge graph over time, enabling ITS to generate more accurate,
interpretable, and adaptive recommendations. Grounded in existing learning theories, it not
only provides methodological consistency but also theory-driven rigour that fills current gaps
and steers future empirical studies of integrated KT models.

Unified Theoretical-Conceptual Framework
Below is a schematic representation of the proposed framework.

Socio-Constructivist

Connectionist

Theory Theory
Knowledge Graph Temporal

Representation

Interaction Data

!

!

GCNs

Neural Sequence

Models

T~——

Unified Knowledge
Tracing Model

Adaptive &
Personalise ITS
Interventions

Figure 1. Proposed Framework.

The figure illustrates the framework integrating socio-constructivist (relational) and
connectionist (temporal) principles: a GCN component encodes concept relations; a neural
sequence component models learner trajectories; the fusion layer supports interpretable,
personalised interventions.

4. Discussion and Implications

The conceptualisation frame for embedding Graph Convolutional Networks (GCN) and neural
sequence architecture into the knowledge tracing (KT) contributes to empirical and applied
understandings in learning theory and ITS design. Theoretical implications of the framework,
its strengths and weaknesses, and possible educational applications are then considered.
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Theoretical Contributions

The model extends the theoretical foundations of KT by integrating two traditions in the science
of learning: the socio-constructivist conception of knowledge as an organised, interconnected
network (Vygotsky, 1978) and the connectionist view of learning as a dynamic, adaptive
process (Rogers et al., 2014). Current models often emphasise one view at the expense of the
other. Graph-based KT effectively uses relational dependencies among concepts but tends to
under-represent the temporal dynamics of learning (Ghosh et al., 2020; Wu et al., 2022). By
contrast, neural sequence models capture the dynamics of the learning process while ignoring
the relations between concepts (Ke et al., 2024). By explicitly unifying these standpoints, the
proposed framework characterises learning as a dynamic walk over a structured concept graph
through time, yielding representations that are both predictive and interpretable (Shen et al.,
2024; Cheng et al., 2024). This view aligns with contemporary educational psychology, which
emphasises the structure and development of learner knowledge (Shute & Rahimi, 2021). The
integration provides a theoretical base for the findings by providing a plausible account for how
learners could process both the conceptual and temporal relations in parallel when learning. It
also addresses the need for a KT model that is both predictive and interpretable.

Strengths of the Framework

The framework exploits the synergies between graph neural networks and neural sequence
models. Graph components capture prerequisite and co-occurrence relations of concepts,
leading to better structural awareness and interpretable feedback. Sequence features describe
order and timing and are used as temporal indicators of learner behaviours during and within
sessions. The argument advanced here is that a stripped-down fusion can provide valid
predictions and classroom-ready explanations. This design aligns with recent findings on
session-graph KT, hierarchical transformers, and attention-based interpretability, and it can be
extended to dynamic graphs when relations evolve (Wu et al., 2022).

The framework of this section gives a theoretical motivation to hybrid KT models, which
have recently been proposed in the empirical literature, such as Wu et al. (2022). Furthermore,
by detailing the theoretical basis for integration, it encourages methodological consistency and
lays the groundwork for more conceptually driven model development and application in future
studies.

Limitations and Challenges

This framework has strengths and constraints. A first constraint is computational cost. Training
graph neural networks on large or dense concept graphs is memory-hungry because message
passing expands neighbourhoods layer by layer, and intermediate activations and edge indices
must be stored on the device. Full-graph or poorly sampled batches can exceed a single GPU’s
memory; dynamic-graph updates add further overhead for time encoders and evolving edges
(Gao et al., 2024; Cheng et al., 2024). For the sequence component, standard self-attention
scales quadratically with sequence length, which increases both memory traffic and run-time;
more efficient kernels (e.g., Flash Attention) reduce memory reads/writes and help stabilise
training at longer lengths (Tay et al., 2022; Dao et al., 2022). In practice, mini-batch subgraph
or neighbour sampling and adaptive sampling strategies can control peak memory while
preserving accuracy (Shen et al., 2024; Younesian et al., 2023).

A second constraint concerns graph availability and quality. Interpretability improves
when domain knowledge is encoded as concept graphs, yet high-quality educational knowledge
graphs are uneven across subjects and costly to curate; recent work shows value in
programming education but highlights the dependency on graph coverage (Qu et al., 2024).

A third constraint is external validity. Logical coherence does not guarantee field efficacy. The
framework requires verification in live ITS across multiple subjects and learner profiles, with
reports on compute, latency, and explanation usefulness for teachers (Shen et al., 2024).
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Taken together, these limitations suggest specific mitigations: (i) neighbour/subgraph sampling
or dynamic graph training to bound memory; (ii) efficient attention for long sequences; and (iii)
staged pilots that track both predictive gains and operational costs in classroom settings (Gao
et al., 2024; Dao et al., 2022).

Potential Applications

There are several attractive applications of the unified framework. ITS developers can take
advantage of the framework to build systems that predict learner performance more precisely
and, simultaneously, deliver more relevant, context-based feedback and intervention. For
instance, by pinpointing not only which concepts a learner is struggling with but also how those
concepts relate to each other and how the learner’s performance has changed over time,
instructors and systems can develop more targeted remediation (Rahimi & Shute, 2021).
Furthermore, the framework can support the design of learning analytics dashboards that
visualise the relational and temporal aspects of learners’ progress, providing actionable
feedback for teachers and students. Beyond individual learning, the framework’s capacity to
model collective learning trajectories may also support collaborative learning environments
where group dynamics and shared knowledge structures play a critical role.

The general nature of the proposed approach makes an important contribution to KT
theory by integrating relational with temporal modelling in a logical theoretical framework. It
takes the dual advantage of GCNs and neural sequence models to overcome some constraints
of current approaches, including interpretability, adaptability, and predictive power. Despite
continuing challenges, related to complexity, data quality, and empirical testing, the framework
provides a strong basis for furthering ITS design and KT research. The framework should be
further developed, empirically tested and validated in real educational systems for a diverse
group of learners.

Future Work

Empirical validation in the wild.

The next step is empirical validation in real ITS deployments, across multiple domains and
learner populations. Studies should compare the unified model against leading sequence-only
and graph-only baselines on accuracy, calibration, and robustness, and should assess
explanation usefulness for teachers (Wu et al., 2022; Ke et al., 2024; Shen et al. 2024).

Efficiency and scaling.

Large concept graphs and long histories raise computational and memory load. Use
neighbour/subgraph sampling for GNNs, sequence truncation or efficient attention for long
inputs, and knowledge distillation for compact deployments. Report a simple resource envelope
(GPU/CPU, peak memory, throughput) to make trade-offs explicit (Cheng et al., 2024; Dao et
al., 2022; Younesian et al., 2023).

Adaptive knowledge graphs.

Move beyond static, expert-defined graphs. Incorporate dynamic graph updates driven by live
interactions and curriculum change, with periodic pruning to control sparsity and drift. Where
domain KGs are scarce, semi-automatic construction pipelines can bootstrap workable graphs
(Cheng et al., 2024; Qu et al., 2024).

Explainability and usability.

Deliver teacher-facing views that attribute predictions to both relational (concept nodes/edges)
and temporal (events/sessions) signals. Evaluate whether these explanations improve
intervention decisions without harming performance (Lu et al., 2023).
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Generalisability and equity.

Test across subjects (e.g., mathematics, programming, language), institutions, and demographic
groups. Report subgroup performance and fairness diagnostics to ensure benefits are broadly
shared (Shen et al., 2024).
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