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ABSTRACT 

This paper proposes a distance measure for generalised L-R intuitionistic fuzzy number 
(GLRIFN) which is Hamming distance, aiming to enhance the theoretical and practical tools 
available for decision-making under uncertainty. The properties of the Hamming distance of 
generalised L-R intuitionistic fuzzy number are also discussed in this study. GLRIFN extends 
traditional L-R intuitionistic fuzzy number by incorporating confidence level for both 
membership and non-membership functions, making them more reliable in the evaluation 
process. To demonstrate the practical utility of the proposed measure, it is applied within the 
Generalised L-R Intuitionistic Fuzzy Technique for Order of Preference by Similarity to Ideal 
Solution (GLRIF-TOPSIS), a multi-criteria decision-making (MCDM) method. A real-world 
case study on river water pollution classification is conducted, wherein the proposed model 
effectively evaluates the pollution levels of different rivers by capturing the nuances of 
imprecise, vague, and conflicting environmental data. The results show that the River 5J  is 

the cleanest river, while the River 1J  is the most polluted river. The integration of the 

Hamming distance with GLRIF-TOPSIS offers a structured and adaptable decision-making 
framework, capable of addressing complex multi-criteria problems across domains 
characterised by high levels of ambiguity. This contribution not only enriches the existing 
body of fuzzy set theory but also opens avenues for further applications in environmental 
assessment and other areas that require robust fuzzy modeling. 
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1. Introduction 

In recent years, fuzzy set theory has emerged as a vital tool for modeling and solving 
problems characterised by uncertainty and imprecision (Klir, 2006; Klir & Yuan, 1995). The 
real world often presents situations where exact data is unavailable or difficult to obtain, 
especially in areas such as environmental management, social sciences, and engineering 
(Ameen et al., 2019). Traditional mathematical models, which rely on precise input, are often 
inadequate in such scenarios. In contrast, fuzzy set theory provides a flexible means of 
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representing and processing imprecise information, making it a powerful tool for complex 
decision-making processes (Tarmudi et al., 2024). 

Among its extensions of fuzzy sets, the intuitionistic fuzzy set, introduced by 
Atanassov (1986), has gained significant traction due to its ability to capture membership and 
non-membership degrees. This triadic structure enables more nuanced evaluations and 
captures the uncertainty of information more effectively. The intuitionistic fuzzy set offers a 
more comprehensive evaluation for addressing complex decision-making and analysis tasks 
compared to fuzzy set (Atanassov, 1986).  

Building on the foundation laid by intuitionistic fuzzy sets, researchers have developed 
more advanced representations to address increasingly complex decision environments. One 
such advancement is the Generalised L-R Intuitionistic Fuzzy Number (GLRIFN), as 
proposed by Shafie et al. (2023). GLRIFN extends the intuitionistic fuzzy number by 
introducing non-linear L-R type membership and non-membership functions. More 
importantly, they incorporate the confidence levels of decision-makers, allowing for a more 
realistic representation of uncertainty. This makes GLRIFN particularly suitable for real-
world applications where expert opinions, preferences, and the credibility of information must 
be taken into account. 

Despite the growing importance of GLRIFN, a critical component within this 
framework remains underdeveloped, which is the distance measure. The concept of distance 
measures is pivotal in fuzzy set theory, as it facilitates the comparison of fuzzy numbers and 
supports various applications, including pattern recognition (Khan et al., 2024; Naranjo et al., 
2021; Zhu et al., 2024), decision-making (Ardil, 2023; Deli & Keleş, 2021; Wang et al., 
2020), optimisation (Keikha & Sabeghi, 2024; Kumar & Sharma, 2023; Sahu et al., 2021), 
and et cetera. In the context of MCDM, distance measures help evaluate and rank alternatives 
based on their proximity to ideal solutions (Yazid et al., 2023). 

While several distance measures have been proposed for classical fuzzy numbers and 
even for intuitionistic fuzzy sets (Aguilar-Peña et al., 2016; Guha & Chakraborty, 2010), very 
few have been specifically tailored for GLRIFN. This presents a significant gap in the 
literature, as the unique structure of GLRIFN, especially its non-linear functions and 
embedded confidence levels which demand a more suitable approach. A generic distance 
measure may fail to capture the intricacies of GLRIFN, leading to suboptimal or inaccurate 
outcomes in decision-making models. 

Therefore, this study proposes a new Hamming distance measure designed specifically 
for GLRIFN. The Hamming distance, known for its simplicity and effectiveness, is adapted 
here to accommodate the characteristics of GLRIFN. This is due to the fact that when 
Hamming distance is adapted to the structure of GLRIFN, the Hamming distance effectively 
captures variations in membership and non-membership degrees while also accommodating 
the embedded confidence levels of decision-makers. This ensures that the distinctive 
characteristics of GLRIFN are fully preserved in comparative analysis. Hence, the proposed 
Hamming distance not only fills the methodological gap in measuring similarity among 
GLRIFNs but also enhances decision-making accuracy in environments where uncertainty, 
vagueness, and conflicting information are prevalent.  

In addition to formally defining this measure, this study examines its mathematical 
properties and demonstrates its practical utility by integrating it into the Generalised L-R 
Intuitionistic Fuzzy Technique for Order Preference by Similarity to Ideal Solution (GLRIF-
TOPSIS), a robust MCDM method. A real-world case study on river water pollution 
classification is presented to validate the model's applicability, showcasing how the proposed 
measure can effectively manage vague and conflicting data in environmental decision-
making.  

This study contributes to the growing body of knowledge in fuzzy decision-making by 
enhancing the theoretical foundation of GLRIFN and expanding their utility in solving 
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complex, real-world problems. This paper is organised in the following manner. This section 
provides the introduction and background of the study. Next section defines and discusses 
some of the preliminaries along with the proposed method of Hamming distance of GLRIFN. 
The following section implements the proposed method in the river water pollution 
classification. The next section discusses the results and the discussion of the findings. 
Finally, the last section concludes this study. 

 

2. Materials and Methods 

This section includes the preliminary concepts and theories on membership functions of 
generalised L-R intuitionistic fuzzy number (GLRIFN), Hamming distance for triangular 
fuzzy numbers, and Hamming distance for triangular intuitionistic fuzzy numbers. This 
section also discusses the proposed method of Hamming distance of GLRIFN. 

2.1 Preliminaries 

The definitions of the membership function of GLRIFN, the Hamming distance for triangular 
fuzzy numbers, and the Hamming distance for triangular intuitionistic fuzzy numbers are 
given as follows: 

Definition 1 (Shafie et al., 2023) A generalised L-R intuitionistic fuzzy number 

 , ; ' , ' ; , ; ' , ' ; ; 'a a a a a a a a a a LR
A p q p q        defined by membership and non-membership 

functions     , ,A AA x x x x X    with the condition 0 ' 1a a    , where 
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 (1) 

such that , , ' , ' , , , ' , 'a a a a a a a ap q p q     ℝ, ,a ap q  ' ' ,a ap q   0,1 ,a   and   ' 0,1 .a   

Definition 2 (Izadikhah, 2009) Let  1 1 1, ,A a b c  and  2 2 2, ,B a b c  be two triangular 

fuzzy numbers, then the Hamming distance is defined as 

     , A BR
d A B x x dx    (2) 

Definition 3 (Aikhuele, 2021; Wan et al., 2017) Let  1 2 3, , ; ,a aA a a a w u  and 

 1 2 3, , ; ,b bB b b b w u  be two triangular intuitionistic fuzzy numbers. The Hamming distance 

between A  and B  is defined as  
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 (3) 

where the confidence level of triangular intuitionistic fuzzy number is 0 1w u   . 

2.2 Hamming Distance of Generalised L-R Intuitionistic Fuzzy Number 

The Hamming distance is a metric for comparing two binary data (Norouzi et al., 2012; 
Zhang et al., 2013). The Hamming distance calculates the number of positions at which 
corresponding elements in the two GLRIFNs differ. The Hamming distance can be adapted to 
assess the distance in terms of the positions at which corresponding elements in two 
GLRIFNs differ. This distance measure provides a straightforward and interpretable way to 
compare GLRIFNs in such structured scenarios. Hence, the definition of Hamming distance 
of GLRIFNs is as follows: 

Definition 4 Suppose two generalised L-R intuitionistic fuzzy numbers (GLRIFNs) 

 , ; ' , ' ; , ; ' , ' ; ; 'a a a a a a a a a a LR
A p q p q        and 

 , ; ' , ' ; , ; ' , ' ; ; 'b b b b b b b b b b LR
B p q p q        or can be written as 

 , , , ; ' ' , ' , ' , ' ' ; ; 'a a a a a a a a a a a a a a LR
A p p q q p p q q           and 

 , , , ; ' ' , ' , ' , ' ' ; ; 'b b b b b b b b b b b b b b LR
B p p q q p p q q          . Thus, the Hamming 

distance between A  and B  can be calculated if    A BL x L x  and    A BR x R x  for the 

left and right reference functions respectively. The Hamming distance of GLRIFNs is defined 
as 
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 (4) 

The distance measure of  ,H
GLRIFNsd A B  between A  and B  satisfies the following 

propositions. 

Proposition 1 If both A  and B  are GLRIFNs, then the distance measurement  ,H
GLRIFNsd A B  

is identical to the Hamming distance.  
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Proof:  

Suppose that both  , , , ; ' ' , ' , ' , ' ' ; ; 'a a a a a a a a a a a a a a LR
A p p q q p p q q           and 

 , , , ; ' ' , ' , ' , ' ' ; ; 'b b b b b b b b b b b b b b LR
B p p q q p p q q           are two GLRIFNs, then let 

' ' ' ' ' 'a a a a a a a a a a a ap p q q p p q q A               ,

' ' ' ' ' 'b b b b b b b b b b b bp p q q p p q q B               , 1a b     , and 

' ' ' 0a b     . The distance measurement  ,H
GLRIFNsd A B  can be calculated as: 
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Proposition 2 Two GLRIFNs A B  if and only if  , 0H
GLRIFNsd A B  . 
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A p p q q p p q q           and 

 , , , ; ' ' , ' , ' , ' ' ; ; 'b b b b b b b b b b b b b b LR
B p p q q p p q q           be two GLRIFNs. If A B , 

then ,a a b bp p     ,a bp p  ,a bq q  ,a a b bq q      ' ' ' ' ,a a b bp p     

' ' ,a bp p  ' ' ,a bq q  ' ' ' ' ,a a b bq q     a b  , and ' 'a b  . Thus, the distance 

between A  and B  is 
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Conversely, if  , 0H
GLRIFNsd A B  , then the distance between A  and B  is 
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It follows that ,a a b bp p     ,a bp p  ,a bq q  ,a a b bq q      ' ' ' ' ,a a b bp p     

' ' ,a bp p  ' ' ,a bq q  ' ' ' ' ,a a b bq q     a b  , and ' 'a b  . Therefore, two GLRIFNs 

A  and B  are identical. 

Proposition 3 If A  and B  are two GLRIFNs. The distance    , , .H H
GLRIFNs GLRIFNsd A B d B A  

Proof:  

Let  , , , ; ' ' , ' , ' , ' ' ; ; 'a a a a a a a a a a a a a a LR
A p p q q p p q q           and 

 , , , ; ' ' , ' , ' , ' ' ; ; 'b b b b b b b b b b b b b b LR
B p p q q p p q q           be two GLRIFNs. The 

distance of  ,H
GLRIFNsd A B  is equal to the distance of  ,H

GLRIFNsd B A . It is obvious that  

            ,a a a b b b b b b a a ap p p p               

            ,a a b b b b a ap p p p                   ,a a b b b b a aq q q q       

            ,a a a b b b b b b a a aq q q q               

           1 ' ' ' 1 ' ' ' 1 ' ' ' 1 ' ' ' ,a a a b b b b b b a a ap p p p                   

           1 ' ' 1 ' ' 1 ' ' 1 ' ' ,a a b b b b a ap p p p           

           1 ' ' 1 ' ' 1 ' ' 1 ' ' ,a a b b b b a aq q q q           and 

           1 ' ' ' 1 ' ' ' 1 ' ' ' 1 ' ' 'a a a b b b b b b a a aq q q q                  . 

But,  

            ,a a a b b b b b b a a ap p p p               

            ,a a b b b b a ap p p p       

            ,a a b b b b a aq q q q       

            ,a a a b b b b b b a a aq q q q               

           1 ' ' ' 1 ' ' ' 1 ' ' ' 1 ' ' ' ,a a a b b b b b b a a ap p p p                   

           1 ' ' 1 ' ' 1 ' ' 1 ' ' ,a a b b b b a ap p p p           

           1 ' ' 1 ' ' 1 ' ' 1 ' ' ,a a b b b b a aq q q q           and 

           1 ' ' ' 1 ' ' ' 1 ' ' ' 1 ' ' 'a a a b b b b b b a a aq q q q                  . 

Hence,  
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   , ,H H
GLRIFNs GLRIFNsd A B d B A  

Therefore,    , ,H H
GLRIFNs GLRIFNsd A B d B A  has been proved. 

Proposition 4 If A , B , and C  are three GLRIFNs. The distance between A  and C  is 

     , , , .H H H
GLRIFNs GLRIFNs GLRIFNsd A C d A B d B C    

Proof:  

Let 

 , , , ; ' ' , ' , ' , ' ' ; ; 'a a a a a a a a a a a a a a LR
A p p q q p p q q          ,

 , , , ; ' ' , ' , ' , ' ' ; ; 'b b b b b b b b b b b b b b LR
B p p q q p p q q          ,

 , , , ; ' ' , ' , ' , ' ' ; ; 'c c c c c c c c c c c c c c LR
C p p q q p p q q           and be three GLRIFNs. 

Since     ,A C A B B C      it is obvious that 

                  ,a a a c c c a a a b b b b b b c c cp p p p p p                     

                    ,a a c c a a b b b b c cp p p p p p           

                  ,a a c c a a b b b b c cq q q q q q           

                  ,a a a c c c a a a b b b b b b c c cq q q q q q                     

 
  
  

  
  

  
  

1 ' ' ' 1 ' ' ' 1 ' ' '
,

1 ' ' ' 1 ' ' ' 1 ' ' '

a a a a a a b b b

c c c b b b c c c

p p p

p p p

     

     

        
 

     
 

                 1 ' ' 1 ' ' 1 ' ' 1 ' ' 1 ' ' 1 ' ' ,a a c c a a b b b b c cp p p p p p               

                 1 ' ' 1 ' ' 1 ' ' 1 ' ' 1 ' ' 1 ' ' ,a a c c a a b b b b c cq q q q q q               

 and 
  
  

  
  

  
  

1 ' ' ' 1 ' ' ' 1 ' ' '

1 ' ' ' 1 ' ' ' 1 ' ' '

a a a a a a b b b

c c c b b b c c c

q q q

q q q

     

     

        
 

     
. 

Hence,  
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     
           

     
     

     
     

     
     

       

1
1 ' ' ' 1 ' ' '

8
1 ' ' 1 ' '

1 ' ' 1 ' '

1 ' ' ' 1 ' ' '

1

8

a a a c c c

a a c c a a c c

a a a c c c

a a a c c c

a a c c

a a c c

a a a c c c

a a a b b b

a a b b a

p p

p p q q

q q

p p

p p

q q

q q

p p

p p

   

   

   

   

 

 

   

   

  

    
 
    
 

    
 

      
 

    
 

    
 

      

   

 



    
     

     
     
     

     

     
           

     
 

1 ' ' ' 1 ' ' '

1 ' ' 1 ' '

1 ' ' 1 ' '

1 ' ' ' 1 ' ' '

1
1 '

8

a b b

a a a b b b

a a a b b b

a a b b

a a b b

a a a b b b

b b b c c c

b b c c b b c c

b b b c c c

b

q q

q q

p p

p p

q q

q q

p p

p p q q

q q

p



   

   

 

 

   

   

   

   



 
 
  
 

    
 

      
 

    
 

    
 

      

   

   

   

      
     
     

     

' ' 1 ' ' ' .

1 ' ' 1 ' '

1 ' ' 1 ' '

1 ' ' ' 1 ' ' '

b b c c c

b b c c

b b c c

b b b c c c

p

p p

q q

q q

  

 

 

   

 
 
 
 
 
 

     
 

    
 

    
 

      

 

Considering the above inequalities, the      , , ,H H H
GLRIFNs GLRIFNs GLRIFNsd A C d A B d B C   is 

obtained. 

Example 5.2 Let  1,2,3,4;1,2,3,4;0.7;0.2
LR

A   and  4,5,6,7;4,5,6,7;0.6;0.3
LR

B   be two 

GLRIFNs, then  ,H
GLRIFNsd A B  is 

 

           
           

           
           

 

0.7 1 0.6 4 0.7 2 0.6 5

0.7 3 0.6 6 0.7 4 0.6 71
,

8 1 0.2 1 1 0.3 4 1 0.2 2 1 0.3 5

1 0.2 3 1 0.3 6 1 0.2 4 1 0.3 7

1
13.6

8
1.7

H
GLRIFNsd A B

    
 
    

  
        

 
        




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3. Implementation of the Proposed Methodology in the River Water Pollution 
Classification 

Five alternatives (rivers) have been selected for further evaluation: the River J1, River J2, 
River J3, River J4, and River J5 for the year 2021. The six criteria (parameters) are K1, K2, K3, 
K4, K5, and K6 were used for evaluating the five possible alternatives.  

Using the generalised L-R intuitionistic fuzzy TOPSIS (GLRIF-TOPSIS) developed by 
Shafie et al. (2023), the Euclidean distance has been used to calculate the distance of each 
alternative from generalised trapezoidal L-R intuitionistic fuzzy positive ideal solution 
(GTrLRIF-PIS) and generalised trapezoidal L-R intuitionistic fuzzy negative ideal solution 
(GTrLRIF-NIS). This study replaces the Euclidean distance with the Hamming distance to 
enhance the accuracy and reliability of the decision-making process, as the Hamming distance 
provides a straightforward and interpretable approach for comparing GLRIFNs in structured 
scenarios. By comparing with the results in Shafie et al. (2023), the Euclidean distance 
effectively reflects the geometric closeness between intuitionistic fuzzy numbers by 
emphasising larger deviations, making it suitable for evaluating overall magnitude 
differences. In contrast, the Hamming distance provides a simpler, equal-weighted assessment 
of inconsistencies, which is beneficial when uniform treatment of all attributes is desired. 
Therefore, the weighted normalised GTrLRIF decision matrix for the year 2021 is shown in 
Table 1 followed by GTrLRIF-PIS and GTrLRIF-NIS for the year 2021 in Table 2. GTrLRIF-
PIS and GTrLRIF-NIS calculated using the Hamming distance are shown in Table 3. Table 4 
shows the closeness coefficient and order of alternatives with Hamming distance of GLRIFNs 
using GLRIF-TOPSIS. 

 

Table 1. Weighted Normalised GTrLRIF Decision Matrix for the Year 2021. 

River K1 K2 K3 K4 K5 K6 

J1 

(.1863, 
.1863; 
.0966, 
.0966; 
.0248, 
.0337; 
.0148, 
.0148; 
.9100; 
.0900)LR 

(.1443, 
.1735; 
.0108, 
.0130; 
.0330, 
.0165; 
.0009, 
.0039; 
.8900; 
.1100)LR 

(.1423, 
.1423; 
.0146, 
.0146; 
.0177, 
.0177; 
.0016, 
.0021; 
.9100; 
.0900)LR 

(.0294, 
.0494; 
.0101, 
.0169; 
.0000, 
.0207; 
.0030, 
.0000; 
.9100; 
.0900)LR 

(.0751, 
.0758; 
.1176, 
.1186; 
.0008, 
.0004; 
.0007, 
.0014; 
.9300; 
.0700)LR 

(.1162, 
.1500; 
.0002, 
.0003; 
.0216, 
.0000; 
.0000, 
.0001; 
.9100; 
.0900)LR 

J2 

(.0927, 
.0941; 
.1913, 
.1942; 
.0012, 
.0000; 
.0000, 
.0025; 
.8500; 
.1500)LR 

(.0099, 
.0105; 
.1788, 
.1900; 
.0000, 
.0003; 
.0056, 
.0000; 
.8300; 
.1700)LR 

(.0130, 
.0151; 
.1375, 
.1600; 
.0000, 
.0018; 
.0145, 
.0000; 
.8300; 
.1700)LR 

(.0896, 
.1113; 
.0045, 
.0056; 
.0102, 
.0205; 
.0007, 
.0007; 
.7600; 
.2400)LR 

(.1189, 
.1193; 
.0747, 
.0749; 
.0003, 
.0007; 
.0004, 
.0002; 
.8600; 
.1400)LR 

(.0022, 
.0024; 
.0150, 
.0164; 
.0002, 
.0004; 
.0021, 
.0016; 
.8500; 
.1500)LR 

J3 

(.0917, 
.0924; 
.1948, 
.1962; 
.0008, 
.0000; 
.0000, 
.0017; 

(.0129, 
.0133; 
.1413, 
.1462; 
.0007, 
.0015; 
.0139, 
.0088; 

(.0189, 
.0243; 
.0857, 
.1102; 
.0000, 
.0039; 
.0119, 
.0000; 

(.0809, 
.0898; 
.0055, 
.0061; 
.0123, 
.0246; 
.0012, 
.0011; 

(.0974, 
.0974; 
.0915, 
.0915; 
.0012, 
.0013; 
.0012, 
.0012; 

(.0003, 
.0005; 
.0682, 
.1200; 
.0000, 
.0002; 
.0185, 
.0000; 
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.8800; 

.1200)LR 
.8800; 
.1200)LR 

.8800; 

.1200)LR 
.8500; 
.1500)LR 

.8600; 

.1400)LR 
.8800; 
.1200)LR 

J4 

(.1074, 
.1114; 
.1616, 
.1676; 
.0046, 
.0026; 
.0037, 
.0075; 
.9300; 
.0700)LR 

(.0166, 
.0177; 
.1066, 
.1134; 
.0010, 
.0020; 
.0107, 
.0072; 
.9300; 
.0700)LR 

(.0327, 
.0345; 
.0603, 
.0637; 
.0014, 
.0028; 
.0046, 
.0029; 
.9300; 
.0700)LR 

(.0932, 
.1124; 
.0044, 
.0053; 
.0238, 
.0476; 
.0013, 
.0018; 
.9300; 
.0700)LR 

(.0798, 
.0808; 
.1103, 
.1117; 
.0015, 
.0008; 
.0011, 
.0021; 
.9400; 
.0600)LR 

(.0125, 
.0125; 
.0029, 
.0029; 
.0014, 
.0014; 
.0003, 
.0004; 
.9300; 
.0700)LR 

J5 

(.0824, 
.0833; 
.2161, 
.2185; 
.0006, 
.0000; 
.0000, 
.0015; 
.9300; 
.0700)LR 

(.0111, 
.0113; 
.1669, 
.1690; 
.0000, 
.0002; 
.0022, 
.0000; 
.9300; 
.0700)LR 

(.0130, 
.0172; 
.1209, 
.1600; 
.0000, 
.0037; 
.0214, 
.0000; 
.9300; 
.0700)LR 

(.0031, 
.0047; 
.1057, 
.1600; 
.0000, 
.0021; 
.0329, 
.0000; 
.9100; 
.0900)LR 

(.0755, 
.0759; 
.1175, 
.1180; 
.0005, 
.0003; 
.0004, 
.0008; 
.9400; 
.0600)LR 

(.0002, 
.0002; 
.1477, 
.1500; 
.0000, 
.0000; 
.0023, 
.0000; 
.9300; 
.0700)LR 

 

Table 2. GTrLRIF-PIS and GTrLRIF-NIS for the Year 2021. 

Ideal 
Solution 

K1 K2 K3 K4 K5 K6 

A+ 

(.0818, 
.0824; .0833, 
.0833; .2161, 
.2161; .2185, 
.2200; .9300; 

.0700)LR 

(.1113, .1443; 
.1735, .1900; 
.0099, .0108; 
.0130, .0169; 

.8300; .1700)LR 

(.1246, .1423; 
.1423, .1600; 
.0130, .0146; 
.0146, .0167; 

.8300; .1700)LR 

(.0793, .0932; 
.1124, .1600; 
.0031, .0044; 
.0053, .0063; 

.7600; .2400)LR 

(.0743, .0751; 
.0758, .0761; 
.1170, .1176; 
.1186, .1200; 

.9400; .0600)LR 

(.0947, .1162; 
.1500, .1500; 
.0002, .0002; 
.0003, .0004; 

.8500; .1500)LR 

A- 

(.1615, 
.1863; .1863, 
.2200; .0818, 
.0966; .0966, 
.1114; .8500; 

.1500)LR 

(.0099, .0099; 
.0105, .0109; 
.1732, .1788; 
.1900, .1900; 

.9300; .0700)LR 

(.0130, .0130; 
.0151, .0169; 
.1230, .1375; 
.1600, .1600; 

.9300; .0700)LR 

(.0031, .0031; 
.0047, .0068; 
.0728, .1057; 
.1600, .1600; 

.9300; .0700)LR 

(.1186, .1189; 
.1193, .1200; 
.0743, .0747; 
.0749, .0751; 

.8600; .1400)LR 

(.0002, .0002; 
.0002, .0002; 
.1454, .1477; 
.1500, .1500; 

.9300; .0700)LR 

 

Table 3. GTrLRIF-PIS and GTrLRIF-NIS Using Hamming Distance. 

Distance 
Values 

K1 K2 K3 K4 K5 K6 

J1
 d* .1064 .0050 .0063 .0260 .0010 .0038 

d- .0073 .0971 .0787 .0591 .0276 .0849 

J2
 d*

 .0201 .1306 .1072 .0032 .0393 .0598 
d-

 .0555 .0072 .0061 .0691 .0011 .0659 

J3
 d*

 .0170 .1158 .0848 .0054 .0228 .0933 
d-

 .0574 .0247 .0288 .0673 .0107 .0316 

J4
 d*

 .0364 .1016 .0658 .0088 .0056 .0497 
d-

 .0417 .0398 .0452 .0678 .0237 .0730 

J5 
d*

 .0000 .1316 .1083 .0951 .0004 .1230 
d-

 .0706 .0121 .0090 .0028 .0274 .0034 
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Table 4. Closeness Coefficient and Order of Alternatives with Hamming Distance of GLRIFNs. 

River 
Hamming Distance 
CCi Rank 

J1
 .7075 1 

J2
 .3625 4 

J3
 .3940 3 

J4
 .5208 2 

J5
 .2145 5 

Order 1 4 3 2 5J J J J J     

4. Result and Discussion 

Classifying river water pollution proved to be a difficult and intricate task due to the need to 
simultaneously consider multiple factors, along with the inherent subjectivity and uncertainty 
in the classification process. This study assessed five rivers: River J1, River J2, River J3, River 
J4, and River J5 for the year 2021, using parameters K1, K2, K3, K4, K5, and K6. To determine 
the most polluted river, the GLRIF-TOPSIS method was applied, utilising the Euclidean 
distance to calculate the separation measures between each alternative and the GTrLRIF-PIS 
and GTrLRIF-NIS. This approach enabled a more objective ranking of the rivers based on the 
weighted performance of each parameter, ultimately identifying the river with the highest 
level of pollution in 2021. 

The results show that the ranking of alternatives using Hamming distances is 

1 4 3 2 5J J J J J    . It shows that the River J1 is the most polluted, followed by River J4, 
River J3, River J2, and River J5. There are several factors that lead to polluted river water at 
River J1. Based on the river data, the dissolved oxygen (DO) parameter at River J1 is too low 
due to the industrial wastewater discharge, especially in 2019. DO in rivers reflects the 
breathing of aquatic life (Zhi et al., 2021). The changes in DO concentration in the river can 
affect the biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in the 
river water. The high concentration of BOD and COD in River J1 is also due to the discharge 
of industrial wastewater containing organic materials. Additionally, River J1 has a high 
concentration of ammoniacal nitrate (AN) due to wastewater discharged from a nearby 
fertiliser industry. Such findings are instrumental for environmental management and policy 
decisions, enabling targeted interventions to address pollution in high-risk areas and preserve 
cleaner river water. Moreover, the integration of GLRIFNs in the evaluation process helps 
manage uncertainty and enhances the reliability of the classification, offering a valuable tool 
for sustainable water quality monitoring due to the consideration of confidence level in the 
evaluation.   

The consistency in the rankings derived from both Euclidean and Hamming distance 
measures demonstrates the robustness and reliability of the GLRIF-TOPSIS method in 
handling imprecise and uncertain data. This suggests that the model is well-suited for 
complex environmental decision-making scenarios, where data ambiguity is often a 
challenge. Furthermore, the prioritisation of pollution levels among the rivers highlights the 
practical potential of this method in supporting local authorities and stakeholders in allocating 
resources efficiently. By identifying River J1 as the most polluted, the model underscores the 
urgency for immediate remedial action in that area. 

 



 
 

Shafie et al., Malaysian Journal of Computing, 10 (2): 2234-2247, 2025  
 
 

2245 

 

5. Conclusion 

The Hamming distance of GLRIFN is introduced in this study along with its mathematical 
properties. This research addresses a notable gap in the current literature; the limited 
development of distance measures specifically tailored for generalised L-R intuitionistic 
fuzzy numbers (GLRIFNs). By proposing a structured Hamming distance within this 
framework, the study strengthens the theoretical foundation of GLRIFNs and extends their 
applicability in complex decision-making scenarios.  

To demonstrate practical relevance, the proposed distance measure was implemented in 
the GLRIF-TOPSIS method to compute the distance of each alternative from the generalised 
L-R intuitionistic fuzzy positive ideal solution (GTrLRIF-PIS) and negative ideal solution 
(GTrLRIF-NIS). The case study on river water pollution classification revealed that River J1 

is the most polluted, while River J5 is the cleanest. These findings validate the utility of the 
proposed Hamming distance in environmental data evaluation and contribute to improving 
decision-making tools in real-world applications. 

However, this study has some limitations. The proposed Hamming distance measure 
assumes that decision-makers’ preferences and the shapes of membership/non-membership 
functions are known and fixed. In real-world scenarios, such information may be imprecise or 
dynamic, potentially affecting the accuracy of the results. Additionally, the computational 
complexity associated with GLRIFNs, particularly when dealing with large-scale datasets, 
was not thoroughly analysed, which may influence the model's scalability. 

Future research could explore adaptive or learning-based techniques to estimate 
membership and non-membership functions dynamically, allowing for greater flexibility and 
realism. Moreover, the development of efficient algorithms to handle large datasets within the 
GLRIFN framework could enhance the model’s practical applicability. Integrating this 
approach with machine learning or data-driven fuzzy inference systems could also offer 
promising directions for advancing decision-making under uncertainty. The results proved 
that GLRIFN is a trustworthy technique for classifying pollution in river water. Given its 
broad advantages, GLRIFN is a valuable method not only for river water pollution 
classification but also for potential applicability in various other fields such as healthcare 
diagnostics, financial risk assessment, supply chain optimisation, and social sciences. 
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