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ABSTRACT

This paper proposes a distance measure for generalised L-R intuitionistic fuzzy number
(GLRIFN) which is Hamming distance, aiming to enhance the theoretical and practical tools
available for decision-making under uncertainty. The properties of the Hamming distance of
generalised L-R intuitionistic fuzzy number are also discussed in this study. GLRIFN extends
traditional L-R intuitionistic fuzzy number by incorporating confidence level for both
membership and non-membership functions, making them more reliable in the evaluation
process. To demonstrate the practical utility of the proposed measure, it is applied within the
Generalised L-R Intuitionistic Fuzzy Technique for Order of Preference by Similarity to Ideal
Solution (GLRIF-TOPSIS), a multi-criteria decision-making (MCDM) method. A real-world
case study on river water pollution classification is conducted, wherein the proposed model
effectively evaluates the pollution levels of different rivers by capturing the nuances of

imprecise, vague, and conflicting environmental data. The results show that the River J; is

the cleanest river, while the River J, is the most polluted river. The integration of the

Hamming distance with GLRIF-TOPSIS offers a structured and adaptable decision-making
framework, capable of addressing complex multi-criteria problems across domains
characterised by high levels of ambiguity. This contribution not only enriches the existing
body of fuzzy set theory but also opens avenues for further applications in environmental
assessment and other areas that require robust fuzzy modeling.
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1. Introduction

In recent years, fuzzy set theory has emerged as a vital tool for modeling and solving
problems characterised by uncertainty and imprecision (Klir, 2006; Klir & Yuan, 1995). The
real world often presents situations where exact data is unavailable or difficult to obtain,
especially in areas such as environmental management, social sciences, and engineering
(Ameen et al., 2019). Traditional mathematical models, which rely on precise input, are often
inadequate in such scenarios. In contrast, fuzzy set theory provides a flexible means of

This is an open access article under the CC BY-SA license
(https://creativecommons.org/licenses/by-sa/3.0/).
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representing and processing imprecise information, making it a powerful tool for complex
decision-making processes (Tarmudi et al., 2024).

Among its extensions of fuzzy sets, the intuitionistic fuzzy set, introduced by
Atanassov (1986), has gained significant traction due to its ability to capture membership and
non-membership degrees. This triadic structure enables more nuanced evaluations and
captures the uncertainty of information more effectively. The intuitionistic fuzzy set offers a
more comprehensive evaluation for addressing complex decision-making and analysis tasks
compared to fuzzy set (Atanassov, 1986).

Building on the foundation laid by intuitionistic fuzzy sets, researchers have developed
more advanced representations to address increasingly complex decision environments. One
such advancement is the Generalised L-R Intuitionistic Fuzzy Number (GLRIFN), as
proposed by Shafie et al. (2023). GLRIFN extends the intuitionistic fuzzy number by
introducing non-linear L-R type membership and non-membership functions. More
importantly, they incorporate the confidence levels of decision-makers, allowing for a more
realistic representation of uncertainty. This makes GLRIFN particularly suitable for real-
world applications where expert opinions, preferences, and the credibility of information must
be taken into account.

Despite the growing importance of GLRIFN, a critical component within this
framework remains underdeveloped, which is the distance measure. The concept of distance
measures is pivotal in fuzzy set theory, as it facilitates the comparison of fuzzy numbers and
supports various applications, including pattern recognition (Khan et al., 2024; Naranjo et al.,
2021; Zhu et al., 2024), decision-making (Ardil, 2023; Deli & Keles, 2021; Wang et al.,
2020), optimisation (Keikha & Sabeghi, 2024; Kumar & Sharma, 2023; Sahu et al., 2021),
and et cetera. In the context of MCDM, distance measures help evaluate and rank alternatives
based on their proximity to ideal solutions (Yazid et al., 2023).

While several distance measures have been proposed for classical fuzzy numbers and
even for intuitionistic fuzzy sets (Aguilar-Pefia et al., 2016; Guha & Chakraborty, 2010), very
few have been specifically tailored for GLRIFN. This presents a significant gap in the
literature, as the unique structure of GLRIFN, especially its non-linear functions and
embedded confidence levels which demand a more suitable approach. A generic distance
measure may fail to capture the intricacies of GLRIFN, leading to suboptimal or inaccurate
outcomes in decision-making models.

Therefore, this study proposes a new Hamming distance measure designed specifically
for GLRIFN. The Hamming distance, known for its simplicity and effectiveness, is adapted
here to accommodate the characteristics of GLRIFN. This is due to the fact that when
Hamming distance is adapted to the structure of GLRIFN, the Hamming distance effectively
captures variations in membership and non-membership degrees while also accommodating
the embedded confidence levels of decision-makers. This ensures that the distinctive
characteristics of GLRIFN are fully preserved in comparative analysis. Hence, the proposed
Hamming distance not only fills the methodological gap in measuring similarity among
GLRIFNSs but also enhances decision-making accuracy in environments where uncertainty,
vagueness, and conflicting information are prevalent.

In addition to formally defining this measure, this study examines its mathematical
properties and demonstrates its practical utility by integrating it into the Generalised L-R
Intuitionistic Fuzzy Technique for Order Preference by Similarity to Ideal Solution (GLRIF-
TOPSIS), a robust MCDM method. A real-world case study on river water pollution
classification is presented to validate the model's applicability, showcasing how the proposed
measure can effectively manage vague and conflicting data in environmental decision-
making.

This study contributes to the growing body of knowledge in fuzzy decision-making by
enhancing the theoretical foundation of GLRIFN and expanding their utility in solving
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complex, real-world problems. This paper is organised in the following manner. This section
provides the introduction and background of the study. Next section defines and discusses
some of the preliminaries along with the proposed method of Hamming distance of GLRIFN.
The following section implements the proposed method in the river water pollution
classification. The next section discusses the results and the discussion of the findings.
Finally, the last section concludes this study.

2.  Materials and Methods

This section includes the preliminary concepts and theories on membership functions of
generalised L-R intuitionistic fuzzy number (GLRIFN), Hamming distance for triangular
fuzzy numbers, and Hamming distance for triangular intuitionistic fuzzy numbers. This
section also discusses the proposed method of Hamming distance of GLRIFN.

2.1 Preliminaries

The definitions of the membership function of GLRIFN, the Hamming distance for triangular
fuzzy numbers, and the Hamming distance for triangular intuitionistic fuzzy numbers are
given as follows:

Definition 1 (Shafie et al.,, 2023) A generalised L-R intuitionistic fuzzy number
A=(p,.9,:p'q's2,.B:a',.B':0,;0',),, defined by membership and non-membership

functions 4= {(x,,uA (x).v, (x)>|x € X} with the condition 0< @, + @', <1, where

a)a~L[uj : —o<x<p,
aa
wuy(x)=1 0, : p,<x<n,
a)a.R(x_qa an‘x<+Oo
B,

)

v,(x)=1@

1-(I-o',)-R x_q“J: q', <x <+

such that p,.q,,p'..q',.2,.8,.@'.B' €R, p,<q,, p'.<q'., ®, €(0,1], and @', €[0,1).

Definition 2 (Izadikhah, 2009) Let A=(a,,b,c,) and B=(a,,b,,c,) be two triangular

fuzzy numbers, then the Hamming distance is defined as
d(A’B):.[R|ﬂA (x)— 1 (x)|dx )

Definition 3 (Aikhuele, 2021; Wan et al, 2017) Let A4=(a,a,,a;;w,u,) and
B=(b,,b,,b;;w,,u,) be two triangular intuitionistic fuzzy numbers. The Hamming distance

between A and B is defined as
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|(1+wa —u,)a, —(1+w, —ub)b1|+
1
d(A,B):g |(1+wa—ua)az—(l+wh—ub)b2|+ (3)

|(1+wa —u,)a,—(1+w, —ub)b3|
where the confidence level of triangular intuitionistic fuzzy numberis 0 <w+u <1.

2.2 Hamming Distance of Generalised L-R Intuitionistic Fuzzy Number

The Hamming distance is a metric for comparing two binary data (Norouzi et al., 2012;
Zhang et al., 2013). The Hamming distance calculates the number of positions at which
corresponding elements in the two GLRIFNs differ. The Hamming distance can be adapted to
assess the distance in terms of the positions at which corresponding elements in two
GLRIFNs differ. This distance measure provides a straightforward and interpretable way to
compare GLRIFNs in such structured scenarios. Hence, the definition of Hamming distance
of GLRIFNSs is as follows:

Definition 4 Suppose two generalised L-R intuitionistic fuzzy numbers (GLRIFNs)

A:(pa’qa;p'a’q'a;aa’ﬂa;a'a’ 'a;a)a;a)'a)LR and
B=(pb,qb;p'b,q’b;ab,ﬁb;a'b,ﬂ'b;a)b;a)'b)LR or can be written as
A=(p, =0y P0r 40y + Bl = Q' P304+ B3 0,50, and

B =(pb —a,, Dys 49,9, +ﬂb;p'b—a’b,p'b,q’b,q'b+ﬂ’b;a)b;a)’b)m . Thus, the Hamming
distance between 4 and B can be calculated if L,(x)=L,(x) and R,(x)=R,(x) for the

left and right reference functions respectively. The Hamming distance of GLRIFNSs is defined
as

(@.)(2.) = (@) (P)] + (@, )(a.) - (@) (,)|+

(@)a,+A)=(@)(a+4)+
Al (AB) =] [1=00)(p=a)=(1=0") (' =a )+ |, @
(1=0)(p2)=(1=01) (2] +
(=) (g)=(1-00)(a)+
(=0 ) (g £2) (100 (0, )

The distance measure of dg 4y (4,B) between A and B satisfies the following
propositions.

Proposition 1 If both 4 and B are GLRIFNG, then the distance measurement d, .y, (4. B)

GLRIFNs
is identical to the Hamming distance.
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Proof:

Suppose that both A4=(p,-a,.p,.q,.9. +B.;:p'.—a

B:(pb —Q Py-9,-9, +ﬂh;P'b—a'baP'baQ'b»Q'h"‘ﬂ'b;w;,;
pa _all =pa =qa

'a’p'a’q'a’q'a-i_ﬂ'a;a)a’w'a)LR and
®',),, are two GLRIFNs, then let

=q,+B,=p',—a',=p'.,=q',=q',+p', =4,

pb_ab:pb:qb:qb+ﬂb:p’b_a'h:p’b:q'b:q'b-‘rﬂ’b:E’ w,=0,=0=1, and
o', =", =o"'=0. The distance measurement d, .. (4,B) can be calculated as:
(@) 4—(@)B|+|(0)4-(o)B|+
; : ()4~ (@) B|+|(@)4-(o) B+
dGLRIFNs (A,B):— _ _
8|(1-@) 4~ (1-0")B|+|(1- @) 4-(1-0)B|+
(1-0)4-(1-0)B|+|1-0)4-(1-0") 5
45|
Proposition 2 Two GLRIFNs 4 =B if and only if d(j, 4.y, (4,B)=0.
Proof:
Let A=(Py =@ Purbara + PP =P 0000+ Bl 00, and
B= (p — Qs P>y + By — Y. 059 ",9 "+ By @0 ) be two GLRIFNs. If 4=5,
then p,-a,=p,-a, p,=p> 4.9 4.*tF=4+F, pP.a,=p-al,
p.=prY. 4.=9% q¢.,+B'.=9'+p,, 0,=0,, and ', =w',. Thus, the distance

between 4 and B is

(@.)(~.

|(a’ @, )(4y )| |

" |(1—w'a)(P'a—a )-(1-
dGrrirns

(4.5)=

0| —

) (a),,)(pb—ab)| |(“)a

‘]a+

(1-et)(p)-(1-
(1-e)(a)-(1-
i (1-')(g'+ £) - (=@ )(a',+ )

(@

)
’b 'b a
+

)(p
'b) p’b)|
') qb)|

h

)=
(
(
(
)

(P)=(@,)(p)]+|

(‘Ib +5, )|
W+

Conversely, if dj 4.y, (4,8)=0, then the distance between A and B is
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d(I;ILR]FNs (A’B) =5

It follows that p, —a, =p, —,, P, =Ds> 9.=4:> 9.+ 5, =q,+p5,, p',—a',=p',—a',,
p.=p% 49'.=49, ¢, +5', =9+, @, =0,,and o', =o', . Therefore, two GLRIFNs
A and B are identical.

Proposition 3 If 4 and B are two GLRIFNSs. The distance d(; .y, (A4, B) = dgyyex; (B, A).

Proof:

Let A=(p, =0y P0r40rdy + Bl s = Q' P04+ B 0,50, ), and
B=(py =@, Py8-9 + B3 0= @2 029454y + By:0,30',),, be two GLRIFNs. The
distance of d(; . (4, B) is equal to the distance of dy ., (B, A). It is obvious that

(@)(P. = a.)=(@,)(py =) # (@) (P =) = (@) (P, — 2.),
(@, )(P.)=(@)(p) #(@,)(p,) = (@) (p.) (@.)(a.)=(@)(g,) # (@) () = (@.)(a,):
(@ )(q.+£.) (@ )(%+ﬂb)¢(wb)(%+ﬂb) (@.)(q.+5.),
(1= )(p'ma') (10" )(p-a'y) # (1= )(p\,=a',) - (1= )(p',- '),
( ', )(p',)=(1- )( )2 (1=@4)(py)-(1-0',)(p"),
q',)-(1-0)(¢,)#(1-@})(q)-(1-@",)(q",), and
(1-o/, )(q +ﬂ )-(1=@')(q,+B)# (10" )(q's+ 5) - (1=, ) (g + )

—

|(l—a) )(p —a'a)—(l—a)b)(pb—ab = 1_‘0!7)(1’}7_0‘17)_(1_“":1)(1’ -a )|
(1-@')(p')-(1-a%)(p)|=[(1-@,)(p",) - (1= ) (P").
(1-@')(q",)~(1-@',)(¢%)]=|(1- @', )(¢,) - (1-@",)(g",)]. and

(1-@')(q',+ B) = (1=, ) (g, + )| =[(1- @, ) (', + ) = (1= @', )(g',+ B,)|
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dgLR]FNx (A,B) = dgLRJFNs (B> A)

Therefore, d gy, (4, B)=dpp, (B, A) has been proved.

Proposition 4 If 4, B, and C are three GLRIFNs. The distance between A4 and C is
d(I;[LRIFNs (A, C) < dé]LRIFNv (A»B) + dgLR]FNv (B,C).

Proof:

(pa_aa’pa’qa’qa+ﬂa;p'a_a’a’p’a’q’a3q‘ +ﬁ'a;w.w' )LR’
B= (pb Qs Py 9y + By Py =5 P59, s+ By 030 ) )
C:(pc_ ("pc’q("qc—‘rﬂc’p - c’p p’q c’q +ﬂc’ c’ C)LR and be three GLRIFNS

Since 4—C=(4- (B-C), it is obvious that

B)+

(@,)(p. - a.)=(@.)(p. -a.) <[(«.)(p )( ) (P = )| +](0,) (P, - @) = (.)(p. — @)

(@,)(p,)- wc)(Pc)Slwa) —(@,)(p,)|+ Iwb) p)—(@.)(p.)):

(@,)(2.)-(@.)(q.)]<[( a)( ) (@)(a,)]+(@,)(a,) = (@.)(a. )
(@,)(q,+5,)~ (e, (qc+ﬂc) ,)(4,+ B, +|(@,)(a, + 8,)-(@.)(a. + £.)).
(1-@',) L|i=@b)(p-at)-
a'y) (1 o' )(p'.—a')
<[1-w,)(p'.)- (1 @, )(p)|+|(1-o,)(p,)-(1-@")(p")
<|1-o')(q.) (1=, ) (g}, ) +|(1- 'h)(q'b)—(l—wl)(qz)
H oo -
(1-0')(q'.+B.) |

<|

B

)4, +5,)=(
|1-e’ )(Pa—a )~

T
S

l

]

>

Hence,
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o,)(p.—a, )+

~—

—

(,)(p, -,

—_ T T T
Sl s 3 s

_—

'+ B)=(

(-

bbbbbb

—o')(q' +B) |

~— N O ~—

~_~

)—(l—a)‘b)(q’b+ﬂ'b)|

s~

~— ' e S~

~~ /N /N ~~ _ o
bbbbbbbb

|- ) (g B

(B,C) is

H
GLRIFNs

(4,B)+d

H
dGLRIFNs

(4,C)<

H
GLRIFNs

Considering the above inequalities, the d,

obtained.

(1,2,3,4;1,2,3,4;0.7;0.2) , and B=(4,5,6,7;4,5,6,7;0.6;0.3) , be two

Example 5.2 Let 4

(4,B) is

H

81|(1-o0.

I |(1-02)(3) = (1-0.3)(6)[ +|(1-0.2)(4) - (1-0.3)(7)| ]

1

GLRIFNs

GLRIFNSs, then d

(4.5)=

H
dGLRIFNs
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3. Implementation of the Proposed Methodology in the River Water Pollution
Classification

Five alternatives (rivers) have been selected for further evaluation: the River J;, River J>,
River Js, River Jy, and River Js for the year 2021. The six criteria (parameters) are K;, K>, K3,
K4, K5, and Ks were used for evaluating the five possible alternatives.

Using the generalised L-R intuitionistic fuzzy TOPSIS (GLRIF-TOPSIS) developed by
Shafie et al. (2023), the Euclidean distance has been used to calculate the distance of each
alternative from generalised trapezoidal L-R intuitionistic fuzzy positive ideal solution
(GTrLRIF-PIS) and generalised trapezoidal L-R intuitionistic fuzzy negative ideal solution
(GTrLRIF-NIS). This study replaces the Euclidean distance with the Hamming distance to
enhance the accuracy and reliability of the decision-making process, as the Hamming distance
provides a straightforward and interpretable approach for comparing GLRIFNSs in structured
scenarios. By comparing with the results in Shafie et al. (2023), the Euclidean distance
effectively reflects the geometric closeness between intuitionistic fuzzy numbers by
emphasising larger deviations, making it suitable for evaluating overall magnitude
differences. In contrast, the Hamming distance provides a simpler, equal-weighted assessment
of inconsistencies, which is beneficial when uniform treatment of all attributes is desired.
Therefore, the weighted normalised GTrLRIF decision matrix for the year 2021 is shown in
Table 1 followed by GTrLRIF-PIS and GTrLRIF-NIS for the year 2021 in Table 2. GTrLRIF-
PIS and GTrLRIF-NIS calculated using the Hamming distance are shown in Table 3. Table 4
shows the closeness coefficient and order of alternatives with Hamming distance of GLRIFNs
using GLRIF-TOPSIS.

Table 1. Weighted Normalised GTrLRIF Decision Matrix for the Year 2021.

River Ki K2 Ks K4 Ks Ks
(.1863, (.1443, (.1423, (.0294, (.0751, (.1162,
.1863; .1735; .1423; .0494; .0758; .1500;
.0966, .0108, 0146, .0101, 1176, .0002,
.0966; .0130; .0146; .0169; .1186; .0003;
't 0248, .0330, 0177, .0000, .0008, .0216,
.0337, .0165; 0177, .0207; .0004; .0000;
0148, .0009, .0016, .0030, .0007, .0000,
.0148,; .0039; .0021; .0000; .0014; .0001;
.9100; .8900; .9100; .9100; .9300; .9100;
.0900),.x .1100).x .0900),x .0900),.x .0700).x .0900),.x
(.0927, (.0099, (.0130, (.0896, (1189, (.0022,
.0941; .0105; .0151; A113; .1193; .0024;
1913, 1788, 1375, .0045, .0747, .0150,
.1942; .1900; .1600; .0056; .0749; .0164;
5 .0012, .0000, .0000, .0102, .0003, .0002,
.0000; .0003; .0018; .0205; .0007; .0004;
.0000, .0056, .0145, .0007, .0004, .0021,
.0025; .0000; .0000; .0007; .0002; .0016;
.8500; .8300; .8300; .7600; .8600; .8500;
.1500) .- .1700).2 .1700) .z .2400) .- .1400).2 .1500).z
(.0917, (.0129, (.0189, (.0809, (.0974, (.0003,
.0924; .0133; .0243; .0898; .0974; .0005;
.1948, 1413, .0857, .0055, .0915, .0682,
Js .1962; .1462; .1102; .0061; .0915; .1200;
.0008, .0007, .0000, .0123, .0012, .0000,
.0000; .0015; .0039; .0246; .0013; .0002;
.0000, .0139, .0119, .0012, .0012, .0185,
.0017; .0088; .0000; .0011; .0012; .0000;
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.8800; .8800; .8800; .8500; .8600; .8800;
.1200)zr .1200)zr .1200)zr .1500)zz .1400).r .1200)zz
(.1074, (.0166, (.0327, (.0932, (.0798, (.0125,
1114; .0177; .0345; 1124, .0808; .0125;
1616, .1066, .0603, .0044, .1103, .0029,
.1676; .1134; .0637; .0053; 1117, .0029;
Js .0046, .0010, .0014, .0238, .0015, .0014,
.0026; .0020; .0028; .0476; .0008; .0014;
.0037, .0107, .0046, .0013, .0011, .0003,
.0075; .0072; .0029; .0018; .0021; .0004;
.9300; .9300; .9300; .9300; .9400; .9300;
.0700)z# .0700).z .0700)zr .0700).r .0600).z .0700).r
(.0824, (.0111, (.0130, (.0031, (.0755, (.0002,
.0833; .0113; .0172; .0047; .0759; .0002;
2161, 1669, 1209, .1057, 1175, 1477,
.2185; .1690; .1600; .1600; .1180; .1500;
Js .0006, .0000, .0000, .0000, .0005, .0000,
.0000; .0002; .0037; .0021; .0003; .0000;
.0000, .0022, .0214, .0329, .0004, .0023,
.0015; .0000; .0000; .0000; .0008; .0000;
.9300; .9300; .9300; .9100; .9400; .9300;
.0700).# .0700).z .0700).r .0900).# .0600).z .0700).z
Table 2. GTrLRIF-PIS and GTrLRIF-NIS for the Year 2021.
soeal K, Ka Ks Ka Ks Ke
olution
08%2$3%33 (.1113,.1443;  (.1246, .1423;  (.0793,.0932;  (.0743,.0751;  (.0947,.1162;
'0833j'2161’ 1735, .1900; 1423, .1600; .1124, .1600; .0758, .0761; .1500, .1500;
A" .2161f.2185’ .0099, .0108; .0130, .0146; .0031, .0044; 1170, .1176; .0002, .0002;
:2200f:9300f .0130, .0169; .0146, .0167; .0053, .0063; .1186, .1200; .0003, .0004;
.0760hx > .8300;.1700).z .8300;.1700),r .7600; .2400),z .9400; .0600),z .8500; .1500).5
182;§lf;63 (.0099,.0099;  (.0130,.0130;  (.0031,.0031; (.1186,.1189;  (.0002,.0002;
.2200?.0818’ .0105, .0109; .0151, .0169; .0047, .0068; .1193, .1200; .0002, .0002;
A :0966?:0966’ 1732, .1788; 1230, .1375; .0728, .1057; .0743, .0747, 1454, 1477,
.1114f.8500i .1900, .1900; .1600, .1600; .1600, .1600; .0749, .0751; .1500, .1500;
.1560)LR > .9300;.0700).z  .9300; .0700).z .9300;.0700).z .8600;.1400).z .9300; .0700).5
Table 3. GTrLRIF-PIS and GTrLRIF-NIS Using Hamming Distance.
Distance Ki K K; Ky Ks Ke
Values
Ji d .1064 .0050 .0063 .0260 .0010 .0038
d .0073 .0971 .0787 .0591 .0276 .0849
J d .0201 .1306 .1072 .0032 .0393 .0598
d .0555 .0072 .0061 .0691 .0011 .0659
J; d .0170 1158 .0848 .0054 .0228 .0933
d .0574 .0247 .0288 .0673 .0107 .0316
J, d .0364 .1016 .0658 .0088 .0056 .0497
d .0417 .0398 .0452 .0678 .0237 .0730
Js d .0000 1316 .1083 .0951 .0004 1230
d .0706 0121 .0090 .0028 .0274 .0034
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Table 4. Closeness Coefficient and Order of Alternatives with Hamming Distance of GLRIFNs.

River Hamming Distance
CCi Rank
Ji 7075 1
Js 3625 4
Js .3940 3
Ju 5208 2
Js 2145 5
Order | J, =J, =J,=J, = J;

4. Result and Discussion

Classifying river water pollution proved to be a difficult and intricate task due to the need to
simultaneously consider multiple factors, along with the inherent subjectivity and uncertainty
in the classification process. This study assessed five rivers: River J;, River J,, River J3, River
Jy4, and River Js for the year 2021, using parameters K, K>, K3, K4, K5, and K. To determine
the most polluted river, the GLRIF-TOPSIS method was applied, utilising the Euclidean
distance to calculate the separation measures between each alternative and the GTrLRIF-PIS
and GTrLRIF-NIS. This approach enabled a more objective ranking of the rivers based on the
weighted performance of each parameter, ultimately identifying the river with the highest
level of pollution in 2021.

The results show that the ranking of alternatives using Hamming distances is
J,=J, =J,=J,=J,. It shows that the River J; is the most polluted, followed by River J,,

River J3, River J2, and River Js. There are several factors that lead to polluted river water at
River J;. Based on the river data, the dissolved oxygen (DO) parameter at River J; is too low
due to the industrial wastewater discharge, especially in 2019. DO in rivers reflects the
breathing of aquatic life (Zhi et al., 2021). The changes in DO concentration in the river can
affect the biochemical oxygen demand (BOD) and chemical oxygen demand (COD) in the
river water. The high concentration of BOD and COD in River J; is also due to the discharge
of industrial wastewater containing organic materials. Additionally, River J; has a high
concentration of ammoniacal nitrate (AN) due to wastewater discharged from a nearby
fertiliser industry. Such findings are instrumental for environmental management and policy
decisions, enabling targeted interventions to address pollution in high-risk areas and preserve
cleaner river water. Moreover, the integration of GLRIFNs in the evaluation process helps
manage uncertainty and enhances the reliability of the classification, offering a valuable tool
for sustainable water quality monitoring due to the consideration of confidence level in the
evaluation.

The consistency in the rankings derived from both Euclidean and Hamming distance
measures demonstrates the robustness and reliability of the GLRIF-TOPSIS method in
handling imprecise and uncertain data. This suggests that the model is well-suited for
complex environmental decision-making scenarios, where data ambiguity is often a
challenge. Furthermore, the prioritisation of pollution levels among the rivers highlights the
practical potential of this method in supporting local authorities and stakeholders in allocating
resources efficiently. By identifying River J; as the most polluted, the model underscores the
urgency for immediate remedial action in that area.
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5. Conclusion

The Hamming distance of GLRIFN is introduced in this study along with its mathematical
properties. This research addresses a notable gap in the current literature; the limited
development of distance measures specifically tailored for generalised L-R intuitionistic
fuzzy numbers (GLRIFNs). By proposing a structured Hamming distance within this
framework, the study strengthens the theoretical foundation of GLRIFNs and extends their
applicability in complex decision-making scenarios.

To demonstrate practical relevance, the proposed distance measure was implemented in
the GLRIF-TOPSIS method to compute the distance of each alternative from the generalised
L-R intuitionistic fuzzy positive ideal solution (GTrLRIF-PIS) and negative ideal solution
(GTrLRIF-NIS). The case study on river water pollution classification revealed that River J;
is the most polluted, while River Js is the cleanest. These findings validate the utility of the
proposed Hamming distance in environmental data evaluation and contribute to improving
decision-making tools in real-world applications.

However, this study has some limitations. The proposed Hamming distance measure
assumes that decision-makers’ preferences and the shapes of membership/non-membership
functions are known and fixed. In real-world scenarios, such information may be imprecise or
dynamic, potentially affecting the accuracy of the results. Additionally, the computational
complexity associated with GLRIFNSs, particularly when dealing with large-scale datasets,
was not thoroughly analysed, which may influence the model's scalability.

Future research could explore adaptive or learning-based techniques to estimate
membership and non-membership functions dynamically, allowing for greater flexibility and
realism. Moreover, the development of efficient algorithms to handle large datasets within the
GLRIFN framework could enhance the model’s practical applicability. Integrating this
approach with machine learning or data-driven fuzzy inference systems could also offer
promising directions for advancing decision-making under uncertainty. The results proved
that GLRIFN is a trustworthy technique for classifying pollution in river water. Given its
broad advantages, GLRIFN is a valuable method not only for river water pollution
classification but also for potential applicability in various other fields such as healthcare
diagnostics, financial risk assessment, supply chain optimisation, and social sciences.
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