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ABSTRACT 

Drowsy driving, particularly due to microsleep episodes, is a significant cause of traffic 
accidents, with existing solutions being often too costly or limited for widespread adoption. 
This project addresses this critical gap by developing a cost-effective, real-time Internet of 
Things (IoT)-based anti-microsleep alarm system. The system's development followed a four-
stage process: Planning, Design, Development, and Evaluation. During the development 
phase, the system was built in Python using OpenCV and dlib for real-time facial analysis 
and the Haar Cascade algorithm for efficient facial feature detection. Key metrics like the 
Eye Aspect Ratio (EAR) and lip distance were monitored to identify signs of drowsiness and 
yawning. A comprehensive feedback loop was implemented using MQTT for communication 
between the Python backend and a Node-RED dashboard, with eSpeak and the Slack API 
providing aural and textual alerts. A finding from the evaluation, however, was a sensitivity 
to environmental factors as the distance between the driver and the camera increased, the 
system's accuracy in detecting drowsiness, yawning, and microsleep declined, leading to an 
increased risk of false negatives. Based on these results, future research should focus on 
enhancing the core algorithm to be more resilient to variable lighting and distance, thereby 
reducing false positives and negatives. Further work is also recommended to explore the 
system's integration with vehicle-specific infrastructure, develop more scalable data storage 
solutions, and conduct extensive long-term testing to validate its performance in diverse real-
world driving conditions, which will pave the way for its commercial viability and broader 
adoption. 
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1. Introduction   

Driver fatigue, particularly in the form of microsleep episodes, remains a critical and 
persistent contributor to vehicular accidents. These brief lapses in consciousness severely 
impair a driver's ability to respond to critical sensory information, directly compromising safe 
vehicle operation (National Department of Transportation, 2023). The severity of this issue is 
discussed by the National Highway Traffic Safety Administration (NHTSA) estimates drowsy 
driving causes approximately 100,000 crashes annually in the United States, and the AAA 
Foundation for Traffic Safety reports that it accounts for 10% of all accidents (Foundation for 
Traffic Safety, 2018; National Department of Transportation, 2023). While existing 
interventions, such as rest breaks and caffeine, have proven to have limited effectiveness 
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(Dawson et al., 2021), a gap persists in practical, widely adopted technological solutions. 
Current systems, including lane departure warnings and some advanced sleepiness detection 
technologies, are often restricted by their high cost and limited availability, hindering 
widespread implementation (Skorucak et al., 2020). This critical need for effective, affordable 
alternatives has prompted a surge in research focusing on Internet of Things (IoT)-based 
solutions. 

Recent studies have explored the use of unobtrusive wearable technologies and 
physiological sensors to create real-time driver drowsiness monitoring systems. These devices 
track various parameters such as eyelid closure, head posture, and brain activity. Machine 
learning algorithms analyze anomalies in this sensor data to detect microsleep episodes and 
the early onset of sleepiness (Jabbar et al., 2020; National Department of Transportation, 
2023). A key advancement is the use of IoT connectivity, which facilitates the rapid 
transmission of alerts to the driver upon detecting a problematic state (Pauli et al., 2021). The 
integration of strain sensors, for instance, has shown promise in identifying microsleep events 
through abrupt reductions in muscle tone. In a simulated driving environment, an alarm 
system successfully detected these episodes and triggered alerts within an average of 0.96 
seconds of onset. As sensor technology continues to advance and 5G network infrastructure 
expands, the commercialization of these rapid-response, IoT-enabled devices becomes 
increasingly feasible. Ultimately, the widespread adoption of these systems holds significant 
potential to mitigate the risks associated with driver fatigue and substantially decrease the 
occurrence of traffic accidents. 

 
2. Literature Review 

Microsleep is a condition characterized by brief periods of unconsciousness, typically lasting 
between 1 and 15 seconds, and is often caused by fatigue from insufficient rest (Zaleha et al., 
2021). Factors such as long-distance driving, certain health conditions like Obstructive Sleep 
Apnea (OSA), and specific road or weather conditions can contribute to its occurrence 
(Biswal et al., 2021; Pham et al., 2023). Microsleep events, which are often accompanied by 
abrupt reductions in muscle tone, can be identified through strain sensor readings. For 
instance, an IoT-based alarm system was successfully tested in a driving simulator, where it 
detected microsleep episodes and triggered alerts within an average of 0.96 seconds of their 
onset.  The integration of IoT technologies has accelerated the development of these advanced 
systems. Wearable physiological sensors, coupled with machine learning algorithms, provide 
a more comprehensive understanding of driver alertness by analyzing multiple parameters 
simultaneously, including eye movements and heart rate variations (Sudarshan et al., 2023). 
The ability of these systems to process data in real time and provide prompt interventions is 
crucial for mitigating accidents caused by driver drowsiness. Ongoing advancements in 
sensor technology and the expanding 5G network infrastructure could further facilitate the 
commercialization of these solutions, making them more accessible and effective in reducing 
traffic accidents related to driver fatigue.    

The proposed project addresses the issue of driver microsleep, a factor in traffic 
accidents. Existing literature highlights the severity of this problem, with drowsy driving 
being a major contributor to a substantial number of accidents annually (Foundation for 
Traffic Safety, 2018; National Department of Transportation, 2023). Previous research has 
explored the characteristics of microsleep, including its causes and categories (Zaleha et al., 
2021; Skorucak et al., 2020; Pham et al., 2023; Biswal et al., 2021; Jabbar et al., 2020; 
Sumitha & Subha, 2020). Past research work has underscored the need for practical and 
effective solutions to mitigate the risks associated with microsleep. Past studies have been 
defining the problem and its physiological underpinnings, they often fall short in providing a 
real-time, integrated, and scalable solution. Many existing approaches rely on laboratory 
settings which are limited by computational constraints, making them impractical for 
widespread vehicular integration. The current project addresses this gap by developing a real-
time, Internet of Things (IoT)-based system to detect microsleep events. This approach is a 
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combination of techniques for feature extraction, interconnected technologies for data 
processing and alert generation. By integrating these elements, the project offers a deployable 
and immediate solution compared to the primarily theoretical and laboratory-based 
contributions. This comparison highlights the project's contribution to the field not just in 
identifying the problem, but in providing a practical, and technologically advanced solution 
that can be integrated into real-world applications. 

 The implementation of the Haar Cascade algorithm is an element in the real-time 
detection of facial features, specifically eye closure. This algorithm is well-regarded for its 
computational efficiency, which makes it highly suitable for processing continuous video 
streams and promptly identifying the subtle changes in eye state that are indicative of 
microsleep episodes (Balcero-Posada et al., 2022). The proposed system monitors and 
analyzes data from a camera module. Its primary focus is on two key metrics which are EAR 
and the lip distance. By continuously evaluating these parameters, the system can discern 
specific patterns associated with the onset and occurrence of microsleep. This approach is 
predicated on the physiological changes that occur during a microsleep event, which are 
reliably captured through these quantifiable facial metrics. The discussions presented above 
are summarized in Table 1, which provides a comprehensive overview of the literature 
review. This table systematically compares key findings and contributions from various 
studies, highlighting their direct relevance to the current research on microsleep detection. 

Table 1 Literature Review Comparison Table 
 

Issues Author(s) 
Key Findings/ 
Contributions 

Relevance to 
the Study 

Microsleep 
Characteristics 

Zaleha et al. (2021); 
Skorucak et al. 
(2020);  
Pham et al. (2023); 
Biswal et al. (2021); 
Jabbar et al. (2020); 
Sumitha and Subha 
(2020) 

Defines microsleep, its 
causes, and categories. 

Provides 
foundational 
understanding of 
the problem 
being addressed. 

IoT Integration 
in Microsleep 
Detection 

Pauli et al. (2021); 
National Department 
of Transportation 
(2023); Balcero-
Posada et al. (2022) 

Explores the use of IoT 
for enhanced 
microsleep detection 
and real-time 
monitoring. 

Highlights the 
technological 
context and 
potential 
solutions. 

IoT and 
Vehicle Safety 

Sudarshan et al. 
(2023) 

Discusses the role of 
IoT in improving 
vehicle safety through 
fatigue detection 
systems. 

Emphasizes the 
importance of 
IoT in the 
proposed 
solution. 

Microsleep 
Detection 
Technologies 

Balcero-Posada et al. 
(2022);  
Sudarshan et al. 
(2023) 

Reviews sensors, 
hardware tools, and 
algorithms used for 
microsleep detection. 

Informs the 
selection of 
appropriate 
technologies for 
the project. 

Impact of 
Drowsy 
Driving and 
Need for 
Solutions 

Foundation for 
Traffic Safety (2018);  
Dawson et al. (2021) 

Highlights the dangers 
of drowsy driving and 
the necessity for 
effective detection and 
prevention systems. 

Justifies the 
significance and 
purpose of the 
research. 

 
In conclusion, the current research landscape provides a foundation for the 

development of driver fatigue detection systems. While prior studies have defined the nature 
of microsleep, its causes, and the associated risks of drowsy driving, a critical gap remains in 
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the implementation of practical and integrated solutions. The literature highlights the potential 
of Internet of Things (IoT) technologies and various detection algorithms, but a 
comprehensive, real-time system that combines these elements for widespread application has 
not yet been fully realized. Therefore, this project addresses a vital need by synthesizing 
existing knowledge to create an innovative and effective system. This not only builds upon 
the foundational understanding of microsleep but also offers a tangible, technologically 
advanced solution to a well-documented and urgent safety problem. 

 
3. Research Methodology 

Figure 1 shows a flow chart, outlines the methodology for developing the microsleep 
detection system. The process is divided into four main stages which are planning, design, 
development, and evaluation. The planning phase establishes the project's foundation by 
defining the problem statement, studying related works, and setting clear objectives and a 
project scope. This initial work provides the necessary context and direction for the 
subsequent stages. Following this, the design phase focuses on creating the system's 
architecture. It involves selecting the appropriate hardware and software, designing the 
system's schematics, and creating a user-friendly interface. The development phase then 
moves into the hands-on creation of the system. This stage includes writing and compiling the 
code, building the system, establishing a database, and developing a dashboard with 
notifications. Finally, the evaluation phase rigorously tests the system's performance. In this 
phase, key parameters are identified, and the system's accuracy in detecting drowsiness, 
yawning, and microsleep is tested and analyzed to ensure its overall effectiveness. 
 

Figure 1. System Development Flowchart  

3.1 Haar Cascade Algorithm  

The Haar Cascade algorithm, introduced by Viola and Jones in 2001, stands as a foundational 
machine learning-based approach for real-time object detection in computer vision (Bade and 
Sivaraja, 2020). This technique employs a cascade function, a series of stages containing 
classifiers that identify specific Haar-like features. These features are essentially rectangular 
filters that measure the difference in intensity between adjacent image regions. The 
algorithm's computational efficiency, crucial for its real-time performance, is achieved 
through the use of an integral image to rapidly calculate these features (Bade and Sivaraja, 
2020). 

The classifier is trained using the AdaBoost algorithm, which iteratively selects and 
combines the most discriminative features from a vast pool of positive and negative training 
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images to form a robust classification model. Once trained, this model can efficiently scan 
images at various scales and positions to detect the target object, making it particularly well-
suited for real-time applications like face detection (Jain et al., 2018). Although deep learning 
methods have since emerged with superior accuracy and versatility, the Haar Cascade 
algorithm's enduring relevance stems from its speed and computational simplicity. In the 
context of developing IoT applications for driver microsleep detection, this efficiency is a 
critical advantage. The algorithm enables the system to continuously monitor a driver's face 
and eye movements, providing a reliable and low-latency method for detecting signs of 
drowsiness and triggering timely alerts to prevent accidents. This makes the Haar Cascade 
algorithm an invaluable component, ensuring effective operation within the constrained 
computing environments often associated with IoT devices. Its application here mirrors 
broader trends in machine learning where efficient algorithms are vital for practical solutions, 
such as in crop yield prediction (Fashoto et al., 2021) and regression model analysis 
(Adewoye et al., 2021). 

3.2 Project Development  

The project development sequence diagram illustrates the operational workflow of the 
proposed IoT-based microsleep alarm system, delineating the interactions between the driver 
and the system's components, and emphasizing the temporal sequence of actions and data 
exchanges critical for the detection and mitigation of microsleep events. As shown in Figure 
2, the process initiates with the Driver engaging with the Headband Sensors through device 
usage.  These sensors, integral to the system's functionality, are designed to capture and 
transmit pertinent biometric data indicative of driver drowsiness.  The data includes 
parameters such as eye and eyelid movements.     
 

 

Figure 2. Project Development Sequence Diagram 

Upon acquisition by the Headband Sensors, the biometric data is continuously 
transmitted to the Onboard System.  This system, characterized as a processing and alarm 
device mounted in the car, constitutes the central processing unit, responsible for the real-time 
analysis of the incoming sensor data. The Onboard System employs machine learning 
algorithms to analyze the received biometric data, with the objective of deciphering the 
driver's state of alertness.  A core function of this analysis involves the computation of a 
Drowsiness Score, a quantitative metric derived from indicators such as decreased heart rate 
variability, changes in prefrontal cortex activity, increased eyelid closure time, and slowed 
blink rates. The subsequent sequence of operations is conditional, predicated on the value of 
the calculated Drowsiness Score.  If the Drowsiness Score surpasses a predefined threshold, 
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the Onboard System triggers the Alarm System.  This action is designed to provide multi-
modal alerts, incorporating auditory, visual, and tactile cues, to the Driver, thereby prompting 
immediate corrective actions.     

On the other hand, if the Drowsiness Score remains below the established threshold, 
the Onboard System transmits the processed data to Node-RED.  Node-RED, an IoT 
application platform, is then responsible for updating the dashboard gauge to provide a visual 
representation of the driver's drowsiness level.  Additionally, Node-RED facilitates the 
transmission of notifications to Slack, a communication platform, via a webhook, enabling 
the logging of driver alertness status and the potential alerting of remote stakeholders. The 
concluding interaction depicted in the sequence diagram involves the Driver's potential 
response, which may include actions such as initiating a rest stop or modifying driving 
behavior, based on the alerts and information provided by the system. In summary, the 
sequence diagram illustrates the system's operational dynamics, from the initial capture of 
biometric data to the provision of alerts and information to the driver.  

 
4. Result  

Based on the provided class diagram in Figure 3, the NodeRED class functions as a pivotal 
interface for data visualization and external communication within the system. It encapsulates 
key attributes such as a dashboardGauge, representing a user interface element for visual 
data presentation, and a webhookURL, facilitating outgoing notifications to external 
services. Its operational capabilities are defined by methods including 
updateDashboard(float), responsible for refreshing the visual display with relevant 
data, and sendNotification(String, String), enabling alerts or information 
dissemination. Significantly, NodeRED's receiveData(OnboardSystemData) 
method allows it to acquire processed information, specifically OnboardSystemData 
instances containing drowsiness scores and sensor readings, directly from the 
OnboardSystem. This data is then displays to the Driver, making NodeRED the 
primary channel for conveying real-time system insights and alerts to the user, thereby 
bridging the analytical backend with actionable driver awareness. 
 

 

Figure 3. Node Red Class Diagram 
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The deployment of eSpeak on Windows systems typically involved a structured, 
sequential installation and configuration process. Initially, users obtained the eSpeak 
executable from its official repository or other verified software distribution channels. 
Subsequently, the installation routine was executed, guiding users through on-screen prompts 
to complete the setup. During this phase, customization options, such as specifying the 
installation directory and selecting supplementary components, were available. Post-
installation, eSpeak could be utilized via the command-line interface or integrated into 
software applications using programming languages such as Python or C++. The command-
line interface facilitated text-to-speech conversion through specific commands, allowing users 
to define speech attributes including voice type, pitch, and speaking rate. For programmatic 
integration, developers leveraged eSpeak's Application Programming Interface (API) or 
dedicated wrapper libraries to seamlessly embed text-to-speech capabilities into their 
applications. Furthermore, post-installation customization options enabled users to refine 
voice attributes, language preferences, and pronunciation rules, thereby personalizing the 
voice synthesis output to meet specific requirements. This comprehensive process, 
encompassing a straightforward initial setup followed by detailed customization and 
integration steps, enabled effective utilization of its text-to-speech functionalities, as 
illustrated in Figure 4. 

 

 

Figure 4. Text-to-Speech Conversion 
 
This project's implementation focuses on leveraging the capabilities of the OpenCV 

and dlib libraries within a Python environment to establish a robust system for real-time facial 
analysis and weariness detection. The foundational step involved importing essential modules 
for various operational aspects. These included scipy.spatial.distance for 
geometric calculations, imutils for streamlined image processing, and numpy for efficient 
numerical operations. Concurrent execution was enabled through threading, while 
argparse facilitated command-line argument handling. Core functionalities were supported 
by dlib for sophisticated facial landmark detection and cv2 in OpenCV for comprehensive 
image and video processing. Furthermore, pyttsx3 was integrated for text-to-speech (TTS) 
capabilities, complemented by modules for data serialization to manage data structures 
effectively. Communication protocols were established using paho.mqtt.client for 
MQTT messaging, and os was utilized for interacting with the operating system, as 
illustrated in Figure 5. This integration of libraries and modules underpins the system's ability 
to perform sophisticated real-time facial analysis for detecting driver fatigue. 
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Figure 5. Facial Analysis 

The system's implementation for weariness detection and real-time facial analysis is 
developed in Python, leveraging robust and widely used libraries such as OpenCV and dlib. A 
critical initial step is the importation of modules, including scipy.spatial.distance 
and numpy, which are essential for the mathematical computation of fatigue metrics like the 
Eye Aspect Ratio (EAR) and lip distance. The imutils library is strategically employed to 
optimize the video processing pipeline by enabling efficient access to video streams, frame 
resizing, and grayscale conversion. Facial detection and the precise extraction of 68 facial 
landmarks are accomplished using the dlib package with a pre-trained model. This is a 
fundamental component, as the accuracy of EAR and lip distance calculations is directly 
dependent on the precise identification of these landmarks. As depicted in Figure 4, within the 
main execution loop, video frames are continuously read via cv2 and then subjected to dlib's 
face detection and shape prediction techniques.  

Concurrently, the system actively monitors these metrics for indicators of driver 
tiredness or yawning, triggering an immediate and critical alarm upon detection. This real-
time analysis is a feature designed to provide a response to potential safety hazards. For 
external data analysis and system integration, the MQTT client publishes the computed EAR 
and lip distance values to designated topics in JSON format. This is a step for enabling the 
system to communicate with other devices or dashboards, as shown in Figure 6. Visual 
feedback is a continuous and integral aspect of the system's operation. OpenCV (cv2) 
displays processed frames, which are text annotations indicating the alert status, EAR, and lip 
distance. This visual information provides feedback to the driver and aids in system 
debugging. Furthermore, the system is designed with a provision for a smooth program exit, 
ensuring proper resource cleanup by closing active windows, disconnecting the MQTT client, 
and terminating the video stream, which is vital for facilitating seamless API integrations and 
broader data exchange. 
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Figure 6. Real-time Fatigue Detection 

A primary challenge in developing a real-time driver fatigue detection system is the 
occurrence of both false positives and false negatives. As seen in Table 2, the system's 
performance is dependent on environmental factors, particularly the distance between the 
driver and the camera. This variability can lead to issues, such as false positives and false 
negatives. False positives, where the system incorrectly identifies a non-drowsy state as 
fatigue, often arise from momentary facial occlusions or natural actions like sneezing. These 
unwarranted alerts can cause driver frustration and erode confidence in the system's 
reliability, potentially leading to the alerts being ignored. Conversely, false negatives, which 
occur when genuine signs of drowsiness are missed, present a critical safety risk. This failure 
to detect fatigue can be attributed to suboptimal conditions such as poor lighting, head 
position changes, or a greater distance from the camera, which can diminish the accuracy of 
facial landmark detection. The system's core metrics, such as EAR and lip distance, may not 
consistently fall below the necessary thresholds under these circumstances. To address these 
issues, mitigation strategies are essential. Enhancing the algorithm to differentiate between 
brief eye closures and genuine fatigue patterns is crucial for reducing false positives. 
Similarly, developers must focus on making the system more resilient to variable lighting and 
distance to minimize false negatives and ensure its primary objective of improving driver 
safety is met.  

 
Table 2 Performance Analysis by Distance 

 

Distance 
(cm) 

Effectiveness 
Accuracy 

Drowsiness 
Accuracy 
Yawning 

Accuracy 
Microsleep 

Explanation 

30-40cm Excellent 85-90% 85-90% 90%+ 

Stable feature 
detection due 
to ideal 
lighting and 
landmark 
visibility 

50-60cm Good 75-85% 75-85% 85-90% 

Consistent 
feature 
detection 
under adequate 
lighting 
conditions 
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Distance 
(cm) 

Effectiveness 
Accuracy 

Drowsiness 
Accuracy 
Yawning 

Accuracy 
Microsleep 

Explanation 

70-90cm Fair 60-70% 60-70% 70-80% 

Unstable 
feature 
detection 
resulting from 
smaller facial 
landmarks 

>100cm Poor <50% <50% <60% 

Feature 
detection 
failure due to 
loss of 
landmarks and 
reduced face 
bounding box 
accuracy 

 
The developed system for real-time fatigue detection emphasized the integration of 

robust technologies and adherence to coding standards. It primarily leveraged OpenCV and 
dlib for facial recognition and landmark identification, utilizing EAR and lip distance 
calculations as key metrics for monitoring driver gaping and fatigue in real-time video data. 
The implementation featured a comprehensive feedback loop, employing the MQTT protocol 
for seamless communication between the Python backend and Node-RED, complemented by 
the Slack API for notifications, MongoDB for data storage, and eSpeak for aural alerts. This 
successfully demonstrated real-time fatigue detection capabilities, while also highlighting the 
need for improved data aggregation and filtering methods to address encountered challenges 
and guide future enhancements of the technology.    

 
 

5. Conclusion  

In conclusion, this project successfully developed and validated a real-time driver fatigue 
detection system using a combination of the Haar Cascade algorithm, OpenCV, and dlib 
within a Python environment. The system's effectiveness was demonstrated through its ability 
to accurately monitor key metrics such as EAR and lip distance, and to trigger timely alerts 
via an IoT-based alarm system and notifications to a Slack channel. While the current system 
shows significant promise, future research should focus on mitigating key limitations, 
particularly the occurrence of false positives and false negatives, which are highly sensitive to 
environmental factors like lighting and camera distance. Addressing these challenges will 
require enhancing the core algorithm with more advanced machine learning models that are 
more resilient to these variables. Furthermore, future work could explore integrating the 
system with vehicle-specific infrastructure, developing a more scalable and robust data 
storage solution beyond MongoDB, and conducting extensive long-term testing to validate its 
performance in diverse real-world driving conditions, paving the way for its commercial 
viability and widespread adoption. 
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