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ABSTRACT 

Cardiovascular diseases are among the leading causes of global mortality. Heart disease, in 
particular, remains a major contributor to this burden, highlighting the need for effective 
predictive models to enable early detection. This study investigates the impact of feature 
standardization using StandardScaler on the performance of two prominent machine learning 
models involving Logistic Regression (LR) and Support Vector Machine (SVM) for predicting 
heart disease. The research utilizes a dataset comprising demographic and clinical attributes 
of patients, focusing on the role of feature standardization in enhancing model performance. 
The study compares models trained on raw data and standardized data, applying performance 
metrics such as accuracy, precision, recall, and F1-score. Results indicate that feature 
standardization significantly improves the performance of both models. LR showed a clear 
enhancement in macro F1-score on the testing set, rising from 0.82 without standardization to 
0.87 with standardization. SVM was slightly superior in its raw form but still improved after 
standardization, with the macro F1-score increasing from 0.85 to 0.86. These findings highlight 
the importance of data pre-processing and demonstrate how feature scaling can optimize 
machine learning models for heart disease prediction. This research contributes to the growing 
field of predictive healthcare, offering valuable insights for clinicians seeking reliable early 
detection tools for cardiovascular conditions. 
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1. Introduction  

Cardiovascular diseases (CVDs), including heart disease, are among the leading causes of 
morbidity and mortality worldwide, responsible for an estimated 17.9 million deaths annually 
(World Health Organization, 2021). This staggering statistic underscores the immense global 
health burden of CVDs, which not only contribute to significant mortality but also result in 
widespread disability and reduced quality of life. Heart disease, as a major form of CVD, 
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encompasses a variety of conditions such as coronary artery disease, heart failure, and 
arrhythmias. These diseases are often the result of complex interactions between genetic, 
environmental, and lifestyle factors, including hypertension, diabetes, and hyperlipidemia 
(Rowden, 2024). Early detection and personalized treatment strategies are critical for managing 
the progression of these conditions, as Balaraju et al. (2024) provide the opportunity to mitigate 
the risk of complications and improve long-term health outcomes. As such, the prediction of 
heart diseases is an important task in medicine (Balaraju et al., 2024). 

The importance of early detection in heart disease cannot be overstated. Timely 
diagnosis enables healthcare providers to initiate interventions that can significantly reduce the 
risk of severe complications, such as heart attacks, strokes, and chronic heart failure. For 
example, patients identified at high risk can benefit from targeted treatments, lifestyle 
modifications, and even preventive surgeries that may help delay or prevent the onset of full-
blown heart disease. 

 In contrast, delayed diagnosis often leads to advanced stages of the disease that require 
more intensive, expensive treatments and often result in poorer health outcomes. Early 
detection also allows for the possibility of reversing or managing the disease before it becomes 
life-threatening, improving the quality of life for individuals at risk (Grgić et al., 2021). 
Traditional diagnostic methods for heart disease, though essential, are often limited by 
subjectivity and the clinician’s judgment (Muhammad et al., 2020). These methods typically 
rely on physical examinations, medical history, and diagnostic tests such as electrocardiograms 
and blood pressure measurements. However, these approaches may miss subtle patterns or early 
symptoms, especially among patients presenting with atypical manifestations (Rowden, 2024).  

Additionally, the reliance on clinical experience introduces variability and potential for 
human error. To overcome these limitations, machine learning (ML) techniques have gained 
traction as a promising tool in the prediction and diagnosis of heart diseases (Suhaimi et al., 
2024). Machine learning (ML) models, such as Logistic Regression (LR) and Support Vector 
Machines (SVM), are capable of processing complex, high-dimensional data and identifying 
patterns that may not be easily detectable (Mojahid et al., 2025). These models offer a more 
objective and scalable approach to heart disease prediction, improving diagnostic accuracy and 
enabling earlier intervention. However, the performance of these models is highly dependent 
on the quality of the data used for training, where one crucial step in enhancing model accuracy 
is feature scaling. 

Feature scaling, including standardization, is an essential pre-processing step in 
machine learning that ensures all features contribute equally to the model's performance. In 
datasets where features have different magnitudes or units, unscaled data can lead to biased 
results, particularly in algorithms like SVM, which are sensitive to the scale of input features 
(Guido et. al, 2024). Standardization transforms features into a common scale with a mean of 
zero and a standard deviation of one, allowing the model to learn more effectively by preventing 
any feature from dominating the learning process (Bhandari, 2025). Without proper scaling, 
models may fail to capture the true relationships between the features and the target variable, 
resulting in suboptimal predictions. 

This study aims to examine the impact of feature standardization on the performance 
of LR and SVM models for heart disease prediction. The research utilizes a dataset that includes 
clinical attributes such as age, cholesterol levels, and blood pressure, comparing the predictive 
accuracy of the models when trained on raw and standardized data. The findings are expected 
to provide valuable insights into the importance of feature scaling in improving model 
performance, contributing to the development of more reliable machine learning-based 
diagnostic tools for heart disease prediction. 

2. Related Works 

Machine Learning has emerged as a powerful tool for heart disease prediction, leveraging large 
datasets of clinical and demographic features to identify patterns and predict outcomes. Among 
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the many ML algorithms explored, Logistic Regression and Support Vector are two of the most 
commonly used methods for binary classification tasks, particularly in medical diagnostics 
(Balaraju et al., 2024). 

LR has been widely utilized for predicting heart disease, primarily due to its simplicity 
and interpretability. It allows for the identification of relationships between clinical variables, 
such as age, cholesterol levels, and blood pressure, and the likelihood of heart disease. Studies, 
such as those by Zhang et al. (2021), have demonstrated the effectiveness of LR in heart disease 
prediction, finding that while it performs well in linearly separable cases, it may struggle when 
faced with more complex, non-linear relationships in the data. As heart disease involves 
complex interactions among multiple risk factors, models that capture these non-linear patterns 
may offer enhanced performance. 

On the other hand, SVM is particularly effective in scenarios where the data is not 
linearly separable. SVM works by identifying an optimal hyperplane that maximizes the margin 
between different classes, particularly useful when the data exhibits complex, non-linear 
relationships. Studies such as those by Owusu et al. (2021) and Krishna et al. (2023) have shown 
that SVM consistently outperforms LR in heart disease prediction, delivering higher accuracy 
and sensitivity. SVM's ability to handle non-linearities through kernel functions, such as the 
Radial Basis Function (RBF) kernel, makes it a more flexible model for medical datasets that 
may contain intricate patterns and interactions between clinical features. 

A critical aspect of improving machine learning models for heart disease prediction is 
the application of feature scaling, particularly standardization. Standardization is essential in 
ensuring that all input features contribute equally to the model's learning process. When features 
have different scales, models may be biased towards those with larger magnitudes, leading to 
inaccurate predictions (Leino et al., 2018). This issue is especially pronounced in SVM, which 
is sensitive to the scale of input features. Bhandari (2024) highlights that without 
standardization, models may fail to capture the true relationships between variables, leading to 
suboptimal performance. Previous research has demonstrated the significant benefits of feature 
standardization in improving the accuracy of SVM models. Ozsahin et. al (2022) found that 
when SVM models were trained on standardized data, their performance improved 
significantly, with higher F1-scores and more accurate predictions. Sarra et. al (2022) further 
support this by showing that standardized data helps in avoiding biases, ensuring that features 
with smaller magnitudes are not underrepresented in the model’s decision-making process. 

Given the strengths and limitations of LR and SVM, this study seeks to compare the 
two models by training them on both the raw and standardized datasets. By doing so, the study 
aims to evaluate how feature standardization impacts the predictive accuracy of these models 
and to provide insights into the best practices for preparing data in heart disease prediction. The 
findings of this research are expected to contribute to the ongoing efforts to enhance predictive 
models for heart disease, helping to ensure that machine learning tools are more reliable and 
accurate in medical diagnostics, ultimately leading to more timely and effective healthcare 
interventions. 

 
3. Methodology 

This study employs a structured approach to develop and evaluate the performance of two 
supervised classification machine-learning models. The following sections outline the study 
workflow, delineating the procedural steps undertaken in each section. Figure 1 illustrates the 
overall sequence of processes from the initiation to completion of the study. This systematic 
approach ensures that the models are robust, generalize well to new data, and provide reliable 
predictions for heart disease diagnosis. The methodology adopted in this study aims to not only 
compare the performance of different models but also to assess the impact of pre-processing 
steps, such as feature standardization on the overall effectiveness of the prediction process. 
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Figure 1.  Workflow of the Study 

3.1 Data Acquisition and Description 

The dataset utilized by this research is obtained from Kaggle (Fedesoriano, 2021). It consists 
of patient entries merged from five independently available datasets, where eleven common 
features are included as clinical parameters. The total observations or entries present within the 
final dataset is 918. The dataset is slightly imbalanced, with 410 normal observations and 508 
observations with heart disease. According to the source data card, the incorporated datasets 
that were utilized include the popular Cleveland and Statlog heart datasets, alongside the 
Hungarian, Switzerland, and Long Beach VA datasets. From these datasets, the observations 
were aggregated based on 11 identified common features, forming a more comprehensive and 
the largest heart disease dataset currently accessible for research endeavours. The variables 
used in this research comprise 11 predictors and a target variable, which the latter indicates the 
occurrence of heart disease using a binary value. The specific definition and relevance of each 
variable, along with the corresponding units of measurement, are presented in Table 1. 
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Table 1. Data Description 
 

Variable Description (Units/Values) 
Age The age of the patient recorded. (Years) 
Sex The sex of the patient. (M: Male, F: Female) 
ChestPainType The type of chest pain experienced by the patient. (TA: Typical Angina,  

ATA: Atypical Angina, NAP: Non-Anginal Pain, ASY: Asymptomatic) 
RestingBP The patient’s resting blood pressure. (mm Hg) 
Cholesterol The patient’s serum cholesterol level. (mg/dL) 
FastingBS The patient’s fasting blood sugar. (1: FastingBS > 120 mg/dL, 0: 

Otherwise) 
RestingECG The resting electrocardiogram results recorded for the patient.  

(Normal: Normal, ST: ST-T wave abnormality, LVH: Left ventricular 
hypertrophy) 

MaxHR The maximum heart rate achieved by the patient.  
(Numeric value between 60 and 202, bpm) 

ExerciseAngina Exercise-induced angina experienced by the patient. (Y: Yes, N: No) 
Oldpeak The ST depression caused by activity in comparison to rest.  

(Numeric value measured in depression) 
ST_Slope The slope of the peak exercise ST segment.  

(Up: Upsloping, Flat: Flat, Down: Down sloping) 
HeartDisease The target variable; whether the patient has heart disease.  

(1: Heart disease, 0: Normal) 

 In terms of variable types, there are five numerical variables e.g., Age, RestingBP, 
Cholesterol, MaxHR, and OldPeak. Additionally, there are seven categorical variables e.g., 
Sex, ChestPainType, FastingBS, RestingECG, ExerciseAngina, and ST_Slope. Notably, the 
data description in the data card on Kaggle contains a typographical error on the “Cholesterol” 
attribute. The unit of measurement is incorrectly labelled as “mm/dl” instead of the standard 
“mg/dL” (milligrams per deciliter). This mistake is rectified in this study for accurate analysis 
and interpretation. 

3.2 Data Pre-processing 

Before model training, the dataset undergoes a pre-processing phase to ensure its suitability for 
analysis. Data pre-processing is a crucial step in the data classification process because it 
directly affects the task success rate (Hon et al., 2023). This phase includes tasks such as 
handling missing values and outliers, encoding categorical variables, and applying feature 
scaling. The goal of data pre-processing is to improve the quality, consistency, and 
compatibility of the dataset, making it ready for accurate model training (Wanyonyi & Masinde, 
2025).  

3.2.1 Handling Missing Values and Outliers 

The dataset is free from null values and duplicate rows, simplifying the data cleansing process, 
as no additional steps are needed to address missing or duplicated data. However, the absence 
of null values does not necessarily imply the absence of outliers, which can distort model 
performance. As shown in Figure 2, a box plot is constructed for all numerical variables to 
visualize and analyze potential anomalies for detecting outliers. Outliers in medical datasets 
require careful consideration, as they could represent genuine but rare health conditions, rather 
than erroneous data. Removing or altering these outliers without due diligence could lead to the 
loss of valuable insights and diagnostic information. For example, cholesterol levels above 200 
mg/dL are considered high, indicating an increased risk of heart disease (Cleaveland Clinic, 
2024). Similarly, resting blood pressure readings above or below the normal range of 120/80 
mmHg indicate potential cardiovascular issues (World Health Organization, 2021). Maximum 
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heart rate varies with age, typically calculated using a standard formula (Lach et al., 2021). 
Given the age range in the dataset (28 to 77 years), it would be inappropriate to treat the 
variation in max heart rates as outliers. Additionally, the "Oldpeak" variable refers to ST 
depression, where a baseline value of 0 indicates a healthy heart. Deviations from this baseline 
could suggest heart-related conditions, such as heart failure (Rowden, 2024).  
    

 

Figure 2.  Boxplot for Numerical Variables 

In this study, the presence of 0 mg/dL in the Cholesterol and 0 mm Hg in RestingBP 
columns is considered unusual and likely a result of data collection errors, where 0 values were 
mistakenly used to indicate missing data. To address this, mean imputation is applied, replacing 
the 0 values with the mean of the respective columns. After imputation, the dataset contains 
only valid values in these columns, ensuring that the data is accurate and ready for analysis. 

3.2.2 Encoding Categorical Variables 

The next step is encoding variables, crucial for preparing the dataset for analysis. Categorical 
variables, which represent qualitative attributes, cannot be directly utilized by most machine 
learning algorithms. Therefore, encoding is necessary to convert categorical data into a 
numerical format that can be processed by the selected classification models (Anitha, 
Savarimuthu & Bhanu, 2025). In this study, label encoding, also known as ordinal encoding, is 
applied to map categorical variables into numerical representations. This method assigns a 
unique integer to each category within a variable, thereby preserving the nominal quality of the 
categories. This step ensures that the categorical data is standardized and compatible with 
classification models, preparing the data for model training and the application of supervised 
classification techniques. 

3.3 Feature Scaling 

Feature scaling is a critical pre-processing step that involves transforming the range of numeric 
features to a standard scale. In this implementation, standardization is utilized via 
StandardScaler. This ensures that features with larger magnitudes do not disproportionately 
influence the model training process, and that all input features contribute equally to the model 
training process (Bhandari, 2024). Due to the difference in orders of magnitude present in the 
dataset, feature scaling becomes necessary. Hence, StandardScaler is applied to map the feature 
value of the dataset to the same range. The equation is presented in Equation (1). 

 

(1) 

Where Χ is the data value, μ is the mean and σ is the standard deviation. The scaler is 
fitted on the training data before it is used to transform both the training and testing sets. This 

𝑋′ =
𝑋 − 𝜇

𝜎
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approach is employed to prevent any leakage of data from the testing set to the training set, 
which could lead to inaccuracies in the estimation of performance on unseen data during the 
model evaluation process. By fitting the scaler on the full dataset before data splitting, instead, 
information about the testing set is passed downstream, where the distribution of the data may 
influence the way the models are parameterized during the training process. To ascertain the 
necessity of standardization for the classification task, the models were trained with and without 
feature scaling. They were fitted to both raw and standardized data, respectively, to compare 
their performance and determine the optimal approach for achieving the best results. In both 
scenarios, grid search was utilized for hyperparameter tuning.  
 Grid search is a technique that systematically searches through a specified 
hyperparameter space to determine the optimal combination of hyperparameters for a machine 
learning algorithm. It accomplishes this by exhaustively evaluating each combination of 
hyperparameters using cross-validation and selecting the combination that yields the highest 
performance metric. Due to the computational load of grid search, only two hyperparameters 
were selected for each of the two classification models. For LR, the key hyperparameters are 
the regularization parameter (alpha) and the penalty type (L1 or L2). The alpha parameter 
controls the strength of regularization, with higher values leading to stronger regularization. L1 
regularization promotes sparsity by penalizing the absolute values of the coefficients, while L2 
regularization penalizes the squared values of the coefficients. Together, these parameters help 
reduce model complexity and the risk of overfitting by treating high variance (Wu et. al, 2025). 
 For SVM, the important hyperparameters are the C regularization parameter and gamma 
(γ). The C parameter controls the trade-off between minimizing training error and the 
complexity of the model. A larger C value results in a smaller margin but higher accuracy on 
the training data, while a smaller C value allows a larger margin but may accept more 
classification errors, leading to better generalization. The gamma parameter controls the 
influence of a single training point, with smaller gamma values creating a smoother decision 
boundary, and larger gamma values resulting in more complex boundaries. Grid search is used 
to find the optimal combination of these hyperparameters to maximize model performance.  

3.4 Data Splitting 

In order to assess the generalization capabilities of the classification models, the dataset is 
partitioned into separate subsets for training and testing. The commonly used technique of 
random sampling is utilized to divide the dataset into two distinct sets e.g., the training set and 
the testing set, for model training and evaluation, respectively. In this study, the dataset was 
split using a 70:30 ratio, with 70% allocated for training the model and the remaining 30% 
reserved for testing its performance, following a common practice adopted in previous research 
(Ibrahim et al., 2024). Meanwhile, a same random state value is set for consistency in data 
splitting across multiple executions, guaranteeing identical results when re-running the code. 
This is helpful for reproducibility, as maintaining the same split facilitates documentation and 
comparison of results across iterations of the study. 

3.5 Model Selection, Training and Testing 

Two distinct supervised classification machine learning models are selected for this study. The 
choice of models is determined by their suitability for the task at hand, as well as their 
widespread usage and established performance in similar contexts. In this case, the task is 
predicting the presence of heart failure based on an input of predictors in the context of 
cardiovascular diseases. In this study, LR and SVM are chosen for model training and 
evaluation.  

Following the model training phase, the models with learned parameters are evaluated 
using the dataset reserved for testing. This stage involves feeding unseen observations into the 
trained models and comparing their predictions against the actual target values in the testing 
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set. The study intends to ascertain the models’ ability to generalise to new instances beyond the 
training set by assessing their performance on unseen data. 

3.6 Model Assessment 

The final stage of the study involves evaluation of the trained models’ performance. Various 
metrics such as precision, recall, F1 score, and accuracy are assessed to gauge the effectiveness 
of the models in correctly classifying instances across different classes. In the context of the 
dataset used, there exist only two classes for the output variable: Normal or heart disease. This 
is known as binary classification, where the model predicts between the two classes given an 
input of predictors. Various performance metrics, including accuracy, precision, recall, and F1-
score, are taken into consideration to assess the models’ effectiveness in correctly classifying 
instances of observations. 
 The four-performance metrics i.e., accuracy, precision, recall, and F1-score are essential 
for evaluating classification models, as they are directly derived from the confusion matrix. The 
confusion matrix provides a tabular representation of the model’s predictions against the actual 
class labels. It groups instances into four categories: true positives, true negatives, false 
positives (type 1 error), and false negatives (type two error) (Rainio, Teuho, & Klén, 2024). 
The confusion matrix for binary classification is illustrated in Figure 3.  

  

Figure 3.  Confusion Matrix for Binary Classification 

3.6.1 Precision and Recall 

Precision and recall are key evaluation metrics that together form the foundation for calculating 
the F1-Score (Bohani et al, 2024). Precision quantifies the proportion of correctly predicted 
positive instances among all instances predicted as positive by the model. In other words, it is 
the degree to which the model correctly classifies an instance, or how many of the predicted 
positive instances are positive. The formula for the precision score is presented in Equation (2).  
 

 

(2) 

 
Recall refers to the proportion of correctly predicted positive instances among all 

positive instances. Put simply, it measures how often the model is correct in its prediction, given 
that the actual value is positive. It can also be thought of as the measurement of how many of 
the actual positive instances are correctly classified by the trained model. The formula for the 
recall score is presented in Equation (3). 
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(3) 

3.6.2 F1-Score 

F1-score is defined as the harmonic mean between precision and recall, which combines the 
two metrics into a single score. This metric is helpful when a balance between high precision 
and high recall is required, since it penalizes extreme negative values of either component. The 
formula for the F1-Score is presented in Equation (4). 

 

 

(4) 

The F1 score balances both precision and recall by treating false positives and false 
negatives equally. In some tasks, however, the importance of precision and recall may differ, 
depending on the consequences of each type of error. In medical domains like heart disease 
diagnosis, false negatives failing to detect the condition are far more harmful than false 
positives (Maxim, Niebo & Utell, 2014). Thus, recall may be prioritized, as having some false 
positives is more tolerable than missing a positive case. However, false positives can lead to 
unnecessary anxiety and invasive procedures (Saito & Rehmsmeier, 2015). While high recall 
indicates the model’s ability to correctly identify positive cases, the F1 score offers a better 
balance by combining precision and recall, ensuring the model detects positives without 
excessive false alarms. This study will use the macro-average F1 score as the primary 
performance metric, especially given the minor class imbalance observed, where heart disease 
cases outnumber non-heart disease cases. 

3.7 Simulation Procedure for Model Performance Evaluation 

To strengthen the validity of the results, a simulation-based performance evaluation was 
conducted using Stratified Shuffle Split cross-validation. This method maintains the original 
class distribution across splits and allows for assessing model robustness under different train-
test configurations. 

A total of 50 independent simulation runs were carried out. In each run, the data was 
split into 70% training and 30% testing subsets using stratified sampling. Four models were 
evaluated: (1) Logistic Regression (unscaled) using SGDClassifier with log_loss, alpha=0.01, 
penalty='l1'; (2) Logistic Regression (scaled) using a pipeline with StandardScaler, 
alpha=0.001, penalty='l1'; (3) Support Vector Machine (unscaled) with RBF kernel, C=1000, 
gamma=0.001; and (4) Support Vector Machine (scaled) using a pipeline with StandardScaler, 
C=100000, gamma=0.000001. 

Each model was trained on the training subset and evaluated on the testing subset. The 
F1 macro score was used as the evaluation metric to capture performance across all classes, 
especially in the presence of class imbalance. The simulation scores were collected and 
analyzed across all 50 runs to measure performance consistency, with mean and standard 
deviation computed for each model. The results were also visualized to compare the stability 
and generalization of each model under repeated trials. 

 
4. Results 

This section presents the results of the model evaluations, beginning with an analysis of the 
output class distribution to understand how common heart disease is in the dataset. Then, the 
performance of the two classification models is assessed using selected metrics. Graphs and 
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tables are used to clearly show how the models performed. Based on these results, conclusions 
are drawn to identify which model performs better in predicting heart disease. 
4.1 Output Class Distribution 

Figure 4 depicts the patient count for each output class within the dataset. Upon closer 
inspection of the distribution, it becomes evident that there is a slight imbalance between the 
two classes. Specifically, there are 410 instances classified as “Normal” and 508 instances 
classified as “Heart Disease”. This observation indicates a minor class imbalance existing 
within the dataset, warranting the need for certain measures to be taken when interpreting the 
performance metrics of the trained models. 

 

Figure 4.  Heart Status Distribution 

4.2 Classification Models Performances 

Table 2 presents the macro F1 scores obtained from the evaluation of LR and SVM models on 
both the training and testing sets. The scores are provided for models trained with and without 
standardization, allowing for a comparative analysis of their performance across the 
standardized dataset and the raw dataset. The macro F1 scores for both LR and SVM models, 
with and without standardization, provide valuable insights into their performance on both the 
training and testing datasets. Without standardization, LR achieved a macro F1 score of 0.78 
on the training set and 0.82 on the testing set.  

Table 2. Macro F1-Scores for Logistic Regression (LR) and Support Vector Machine (SVM) 
 

 
LR Macro F1 

Score 
SVM Macro F1 

Score 

Train Test Train Test 

Without Standardization 0.78 0.82 0.85 0.85 

With Standardization 0.78 0.87 0.87 0.86 

 Conversely, SVM demonstrated higher performance, with a macro F1 score of 0.85 on 
both the training and testing sets. With standardization, LR’s performance notably improved, 
achieving a macro F1 score of 0.86 on the training set and 0.87 on the testing set. Similarly, the 
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SVM’s performance saw a slight improvement, with macro F1 scores of 0.87 on the training 
set and 0.86 on the testing set. Comparing the LR and SVM models, it is evident that SVM 
consistently outperformed LR in terms of macro F1 scores, irrespective of standardization. 
SVM exhibited higher accuracy rates on both training and testing sets, showcasing its superior 
predictive capabilities compared to LR. These results underscore the effectiveness of SVM in 
capturing complex patterns within the data and highlight its potential as a robust classification 
model for the given task. 
 The optimal hyperparameter values for both LR and SVM models, considering both 
scenarios with and without standardization, are presented in Table 3. Without standardization, 
LR employed an alpha of 0.001 and penalty type L1, whereas with standardization, LR’s alpha 
increased to 0.01 while maintaining the L1 penalty type. Similarly, SVM utilized a C of 100,000 
and gamma of 0.000001 without standardization, whereas with standardization, SVM’s C 
decreased to 1,000 and gamma increased to 0.001. These variations highlight the impact of 
standardization in feature scaling on the selection of hyperparameter values for both LR and 
SVM models, with SVM showing a more substantial improvement in hyperparameter stability 
and thus benefiting more from standardization. 

 
Table 3. Optimal Hyperparameters 

 

 
LR SVM 

Alpha Penalty Type C Gamma 

Without 
Standardization 

0.001 L1 100 000 0.000001 

With Standardization 0.01 L1 1 000 0.001 

 Additionally, figure 5 provides a visual representation of the precision and recall scores. 
Results revealed that standardization substantially improved both precision and recall, 
particularly for LR, which showed low precision (0.73) but very high recall (0.98) without 
scaling, suggesting a tendency to over-predict positive cases. Upon applying standardization, 
the precision and recall for LR became more balanced, improving to 0.92 and 0.85 respectively 
on the test set.  Similarly, for the Support Vector Machine (SVM) model, standardization also 
yielded improvements. Without scaling, SVM achieved a training precision of 0.85 and a 
testing precision of 0.88. After standardization, SVM's training precision saw a slight increase 
to 0.87, and its testing precision remained strong at 0.90. 

JKK UHEK

 

Figure 5.  Precision and Recall for Each Classification Model  
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Based on these performance metrics, it is evident that standardization is highly impactful for 
both Logistic Regression and Support Vector Machine models. It consistently led to more 
balanced and robust results across precision and recall, demonstrating its crucial role in 
optimizing model performance in this context. 

Figure 6 illustrates the F1 macro scores across 50 simulation runs for both scaled and 
unscaled versions of LR and SVM models. It is evident that models trained on unscaled data 
(blue and green lines) exhibit high variability and inconsistent performance across runs. In 
contrast, models using standardized data (orange and red lines) show much greater consistency, 
with lower standard deviation in scores. Among all models, the scaled SVM consistently 
achieves the highest F1 macro scores, indicating superior and stable performance when feature 
standardization is applied. 

 

Figure 6.  F1 Macro Scores Across 50 Simulations 

5. Discussion 

In the previous section, it was observed that Support Vector Machine performed slightly better 
compared to Logistic Regression in predicting heart disease, both in cases with raw data and 
standardized data. Moreover, the application of feature scaling had also improved the macro F1 
score for both models, with LR receiving a greater positive impact from standardization. 

5.1 The Impact of Feature Scaling 

Without feature scaling, the original feature space consisted of variables with significantly 
different scales or ranges. When features are on different scales, the optimization algorithm can 
be dominated by the feature with a larger order of magnitude. This uneven influence on the 
optimization process may lead to the algorithm prioritizing the minimization of the loss 
function concerning features that have larger magnitudes, potentially overshadowing the 
importance of features with smaller magnitudes (Bhandari, 2024).  
 In contrast, when feature scaling is applied, the input features are transformed to a 
common scale and range. This standardization process ensures that each feature contributes 
proportionally to the optimization process, preventing any undue influence based on feature 
magnitude (Islam, 2024). As a result, the final model fit would not depend on the scale on which 
the predictors are measured (James et al., 2014), and can better capture the relationships 
between the features and the target variable, leading to a more balanced performance on 
precision and recall across both output classes, thereby improving the macro-average of the F1 
score. From the increase in macro F1 scores in both LR and SVM, it can be seen that 
standardizing the input features enhanced the classifier's performance. 
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5.2 Model Hyperparameter Selection Behaviour 

The choice of the hyperparameters was determined through grid search, where different values 
for said hyperparameters are evaluated and the combination that provides the best performance 
on a validation set is selected. The difference in the regularization parameter alpha between the 
LR models trained with and without feature scaling can be attributed to the scaling effect on 
the input features. The regularization term penalizes large coefficients in the model, enforcing 
simpler models and reducing the impact of individual features (James et al., 2014). Without the 
help of feature scaling, the contributions to the cost function and the regularization term can 
occur among features of different ranges and units. The value of 0.001 may have been sufficient 
to prevent overfitting, as the optimization algorithm struggles to balance the impact of features 
with varying magnitudes without underfitting. In this case, the regularization parameter needs 
to be smaller to compensate for the potentially large coefficients that may arise due to the 
significant differences in scale of the features. This was likely to prevent overly aggressive 
regularization. Otherwise, large coefficients would be heavily penalized by a larger term, 
diminishing the contribution of larger-scale features.  
 On the other hand, when feature scaling is applied, all features are scaled to have a similar 
range (with a standard deviation of 1 through standardization). This ensures that no features 
dominate the cost function or the regularization term due to their scale. As a result, a larger 
regularization parameter can be used to achieve the desired level of regularization, as the 
coefficients can be penalized evenly without over-penalizing any particular feature due to their 
similar scale. The alpha value of 0.01 may have been necessary to achieve comparable 
regularization effects, as the scaled features allow for more effective optimization and model 
generalization. 
 This reasoning applies to L1 regularization (lasso regression) as well, where the 
regularization term adds the sum of absolute values of coefficients multiplied by the alpha value 
(typically depicted as σ instead). In the case of L1 regularization without feature scaling, 
features with larger scales will tend to have larger coefficient magnitudes. Therefore, if a large 
alpha value is used, the regularization terms, or the sum of absolute coefficients multiplied by 
alpha, will heavily penalize these larger coefficients, effectively shrinking or eliminating the 
contribution of larger-scale features. Due to their smaller scales, smaller features with smaller 
coefficients will not be penalized as much as the regularization term. Thus, a smaller alpha is 
used to allow the larger-scale features to have a more substantial contribution to the model. 
With feature scaling, a large alpha can be used in L1 regularization without penalizing any 
particular feature too harshly due to their similar scale and subsequently, coefficient ranges.  
 For SVM, grid search found that higher C and lower gamma values were optimal when 
features were not standardized. A higher C value reduces misclassifications by forcing the 
model to focus more on accurately classifying data points, resulting in a stricter, hard-margin 
classifier. This encourages a more complex decision boundary to improve training accuracy, 
especially when features have different scales (Kumar, 2020). A lower gamma value, on the 
other hand, widens the region of influence for each support vector, making points further away 
more similar (Al-Mejibli, Alwan & Abd, 2020). This helps prevent overfitting by making the 
model more general, especially with the larger C value. After standardization, the C value 
decreased because the features were on the same scale, so the model needed a lower C to 
manage misclassifications effectively. The reduced scale of data points likely helped lower 
misclassification rates. Additionally, a higher gamma value was more suitable post-
standardization to shrink the similarity region and avoid overfitting (Kumar, 2020). 

5.3 Better Overall Performance by SVM 

In comparing the performance metrics of LR and SVM, it was found that SVM generally 
achieved slightly better F1-scores than LR. This result aligns with the inherent characteristics 
of both models. LR is a statistical model used to predict the probability of an instance belonging 
to a particular class based on a linear combination of features (Zhang et. al, 2021). In contrast, 
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SVM is a discriminative model that seeks the optimal hyperplane to separate two classes by 
maximizing the margin between the support vectors. SVMs excel at handling non-linear 
decision boundaries by utilizing kernel functions that map the data into higher-dimensional 
spaces, providing them with the flexibility to outperform LR when data is not linearly separable 
(Guido et. al, 2024). This suggests that the dataset used in this study may contain non-linear 
relationships that SVM can better capture, as LR struggles with non-linearly separable data.  
 If the results obtained from standardized data are analyzed in isolation, LR and SVM were 
found to be comparable in performance, where the difference in F1-score is marginal. The 
choice between them may depend on additional considerations, such as interpretability, 
computational efficiency, or the ability to handle non-linear decision boundaries. In addition, 
the resilience against non-standardized data may also become a factor, where SVM 
demonstrated a greater resistance against unscaled input features, provided that the 
hyperparameters are properly tuned. In hindsight, LR may have the potential to perform better 
on unscaled data if a more comprehensive hyperparameter tuning process were employed.  

 
6. Conclusion and Recommendation 

This study demonstrated the potential of machine learning models, specifically LR and SVM, 
in predicting the likelihood of heart disease using demographic and clinical data. The findings 
highlight that both models can provide valuable insights for early detection and personalized 
healthcare, with SVM showing a slightly better performance, especially when feature 
standardization was applied. The use of precision, recall, and F1 score allowed for a more 
balanced evaluation, revealing that the models were effective in identifying true cases of heart 
disease while minimizing false positives and negatives. For future improvement, applying 
feature selection methods such as SelectKBest can help identify the most important predictors, 
enhance model accuracy, and improve interpretability, particularly in clinical applications. 
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