UNIVERSITI TEKNOLOGI MARA

ON HATCHING RATE AND DEVELOPMENT PERIOD OF Aedes aegypti (Linnaeus) (Diptera: Culicidae)

ALYA FARZANA BINTI MOHD JAMILI

Project submitted in fulfilment of the requirements for the degree of

Bachelor in Environmental Health and Safety (Hons.)

Faculty of Health Sciences

JANUARY 2023

ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious, The Most Merciful

First and foremost, I would like to express my heartful gratefulness to my supervisor, Dr. Nazri Bin Ched Dom, for his unwavering support for my final year thesis, for his patience, and inspiration, as well as for his immense knowledge of vector fields. His undisputed advice has supported me in both time of studying and writing this thesis. I couldn't have pictured a better supervisor for my year thesis.

It is therefore my immense pleasure to devote this project to my beloved family and my parents, who have given me the blessing of their unfaltering trust in my abilities to achieve this goal: thank you for your never-ending encouragement, affection, inspiration, and patience.

My sincerest thanks and appreciation devoted to all the staff from the department and laboratory who gave their undivided cooperation and assisted me in everything throughout the study. A special thanks to my friends from HS243 as well who constantly provide with support both physically and mentally throughout my journey. Lastly, I would like to thank for anyone who involved in this study regardless directly or indirectly.

TABLE OF CONTENTS

TITI	LE	PAGE
DEC	CLARATION BY STUDENT	ii
INTI	ELLECTUAL PROPERTIES	iii
APP	ROVAL BY SUPERVISOR	vi
ACK	KNOWLEDGEMENT	vii
TAB	SLE OF CONTENTS	viii
LIST	Γ OF TABLES	xi
LIST	Γ OF FIGURES	xii
LIST	Γ OF ABBREVIATIONS	xiv
ABS	TRACT	xv
ABS	TRAK	xvi
CHA	APTER 1: INTRODUCTION	1
1.1	Background Study	1
1.2	Problem Statement	3
1.3	Research Objectives	4
1.3	3.1 General objectives	4
1.3	3.2 Specific objective	4
1.4	Research Question	5
1.5	Hypothesis	5
1.6	Scope and Limitation	5
1.7	Significant of Study	6
CHA	APTER 2: LITERATURE REVIEW	8
2.1	Background	8
2.2	Dengue Fever (DF)	8

ABSTRACT

The study of effects of radiofrequency (RF) on Aedes aegypti is important to determine the severity and relationship of upcoming technologies with their morphological characteristics. Rapid expansion of technologies namely the evolvement of fourth generation networks (4G) to fifth generation networks (5G) in wireless telecommunication has put vector control and management on alert due to its unknown effect. Until now, there are scarce studies of RF radiation effect on Aedes population whereas significant research is done on other insects such as honeybee and vertebrae like birds. Aedes aegypti which mainly found in the dwelling areas and centralized more on dense city area are chosen to monitor the effect of RF on its hatching rate and development time. The study found that low dose RF (900 MHz) has significantly increased the hatching rate of Aedes aegypti eggs by 17.4% compared to unexposed (Control) eggs. The hatching rate for high dose of RF caused significant increase albeit less than 900 MHz when compared to Control by 7%. The development time of Aedes aegypti was also slightly affected after exposed to RF. The overall development time was shortened to 900 MHz which concluded that exposure to RF is indeed dangerous to human population. However, higher dose of RF showed a slight lay back in adult emergence compared to Control which can be concluded that high dose of RF radiation might impair Aedes aegypti ability for growth.

Keywords: Aedes aegypti, radiofrequency, high-dose, low dose, hatching rate, development time

CHAPTER 1

INTRODUCTION

1.1 Background Study

It is estimated that 3 billion people globally are at the risk of infection with mosquito-borne disease, attributing millions of demises annually (Wilke et al., 2017). *Aedes* spp. mosquito being the carrier or known as vector are responsible to transmit the life-threatening arboviral diseases cause by dengue virus namely dengue, chikungunya, yellow fever and Zika. One of the fastest growing infectious diseases worldwide is dengue fever (DF) and constantly being a global public health issue for the last few decades (Norli & Azmi 2008; Palanivel et al. 2012). The symptoms exhibited are varies raging from a non-specific febrile illness, muscle and bone pain [as in Dengue Fever (DF)] to more severe illness with bleeding tendency, thrombocytopenia, severe headache, and plasma leakage [dengue haemorrhagic fever (DHF)] (Mia et al., 2013).

Total number of dengue cases reported to WHO has increased 8-fold from 505,430 cases in 2000, to over 2.4 million in 2010, and 5.2 million in 2019 (WHO 2022) depicting that DF is literally an apparent hazard and the most widespread remerging arboviral disease. DF has been declared as endemic in Malaysia and the first case were identified in Penang in 1902 (Packierisamy et al. 2015) and dengue