
1

 Design and Analysis of 4x4 Smith Waterman’s
Based DNA Sequences Alignment Accelerator Using

Multicore Architecture

Nur Fariza binti Mohd Najib
Faculty of Electrical Engineering

Universiti Teknologi MARA Malaysia
40450 Shah Alam, Selangor, Malaysia

nurfarizamohdnajib@yahoo.com

Abstract- This paper presents the design and analysis of 4x4
Smith Waterman’s based DNA sequences alignment accelerator
using multicore architecture. The first objective of this paper is
to design 4 x 4 matrix filling module of DNA sequence alignment
accelerator. The second objective is to combine matrix filling
module with traceback and reconstruction module design by
previous student in order to create single core. The third
objective is to construct modules that consist of 2, 4 and 8 cores.
The fourth objective is to simulate and verify the functionality of
the new matrix filing, single and multicore modules on Xilinx
FPGA design flow. The last objective is to verify, optimize and
analyze the multicore modules using VCS, DC, ICC and PT. This
paper focuses on the timing analysis, power and area of
multicores architecture using Smith-Waterman algorithm. To
achieve a higher performance with low latency and high
throughput data has become a serious concern for today’s DNA
laboratory as the increase of number of DNA database all around
the world. Researchers may have done different kind of
architecture such as pipeline, vector, multicycle to boost up the
speed performance of DNA sequences alignment. All design is
written in Verilog language and the result is verified on Synopsys
EDA tool which are Verilog Compiler Simulator (VCS), Design
Compiler (DC) and ICCompiler (ICC).

Keywords: ASIC, multicore architecture analysis, Synopsys
EDA tools and Smith Waterman algorithm.

I. INTRODUCTION
 DNA is a self-replicating material present in nearly all
living organisms as the main constituent of chromosomes. It is
the carrier of genetic information for all cells. Scientists
realized that DNA molecules have a vertebra backbone unit
consists of sugar (deoxyribose) and one phosphate. Each
vertebra unit is attached by nitrogenous bases that are adenine
(A), guanine (G), cytosine (C) and thymine (T) [1].

 There are many algorithms for DNA sequence alignment.

For example FASTA and BLAST [2]. FASTA (Fast
Alignment Search Tool) and BLAST (Basic Local Alignment
Tool) are most commonly used algorithm to obtain high
performance system but both have low sensitivity to obtain the
correct result compared to Smith-Waterman algorithm.
FASTA and BLAST may have the speed but in term of

accuracy of DNA sequencing, Smith Waterman is more
preferable. However, the implementation of this algorithm is
quite complicated and challenging due to limited space
memory and speed for long DNA sequence.

 Smith-Waterman algorithm is one of the most basic and

well known algorithm that performs local sequence alignment
for DNA [3]. The algorithm was first proposed by Temple
Smith and Michael Waterman in 1981. Like the Needleman-
Wunsch algorithm, of which it is a variation, Smith-Waterman
is a dynamic programming algorithm [4]. This algorithm used
comparison technique of two DNA (A,C,G,T) sequences
functions based on local alignment in order to find the optimal
local alignment of that two sequences [5].

 In order to improve the efficiency of computer

platforms, multithreading processor is introduced as industry-
standard servers and the overwhelming majority of network
applications can take advantage of the additional processors,
multiple software threads, and multitasked computing
environments [6]. All these advantages have enabled
organizations to scale network applications for a greater
performance. The next logical step for multiprocessing
advancement is expected to come in the form of multiple
logical processing units, or processor cores, within a single
chip. Multicore processors are good because they have
multiple memory, I/O, and storage. A multicore processor
system consists of multiple processors and a method for
communication between the core processors. The multicore
processor is the separation of multiple cores on the same chip.
This architecture is used to run more tasks simultaneously by
dividing the tasks among the cores [7]. The increase in
frequency on a single core demands faster switching
transistors with higher operating voltages hence increase
power dissipation.

2

II. SMITH-WATERMAN ALGORITHM
 There are three modules on finding the optimal sequence
in Smith-Waterman algorithm and the first module is to fill in
the dynamic programming matrix, the second is to find the
maximum score from that matrix and the last is to trace back
the maximum path from the maximum score to find the
optimal local alignment [3]. Consider the two comparison of
DNA sequences are S for sample and T for target. The
dynamic programming for matrix filling module will be based
on this sample and target scoring according to this equation:

 For 0 ≤ i ≤ M, 0 ≤ j ≤ N,
 Di0 = D0j = 0
 For 1 ≤ i ≤ M and 1 ≤ j ≤ N
 Dij = 0 or (1)

 (2)
Where
d = penalty
Sbt = substitution matrix
i = matrix cell row of search sequence
j = matrix cell column of target sequence
M = maximum length of search sequence
N = maximum length of target sequence
Dij = dynamic matrix cell

 The equation (2) above shows that, comparison match and
mismatch at every horizontal and vertical move will be given
penalty of -1. But for every match comparison in diagonal will
be added +2 and for mismatch in diagonal will be given
penalty of -1. There is no negative number in Smith-
Waterman algorithm, so the smallest scoring in matrix filling
will be converted into zero. Consider S = A-C-G-T and T = C-
A-G-T. The comparison results for both sample and target are
shown in Fig. 1.

 Figure 1. Matrix filling scoring

 The second module is to find the optimal and maximum
path by finding the maximum score and trace it back until the
zero value is obtained. There are three rules to consider in
finding the maximum path in traceback module. The first rule
is to find the highest value of scoring inside the matrix. For
second rule, from that highest score value, the next instruction
is to compare the vertical, horizontal and diagonal scoring. If

the value for horizontal and vertical are equal, the path will
follow the diagonal score. If all three values are equal, the path
will follow the diagonal score. The last rule is, whenever the
path meet a zero value as diagonal score, the path will be
automatically stopped. Fig. 2 shows the correct maximum path
sequences that consider all rules as mentioned before.

 Figure 2. The optimal path from trace back module

 After finding the maximum path from traceback module,
the sequence of sample and target will be reconstructed back
at the last module which is known as reconstruction. At
reconstruction module, there will be an insertion of gap
depending on match and mismatch of sample and target DNA
along the maximum path. In Fig. 2, after reconstruction
modules, the sequence will change into S = C-G-T and T = A-
G-T.

 III. METHODOLOGY
 The first step of designing matrix filling module is to assign
the first column and first row with zero. Then the row and
column for each element in 4x4 matrix is represented by r1 to
r16 as illustrated in Fig. 3. The value of scoring is based on
comparison for each diagonal, vertical and horizontal in every
element in the matrix. The input for sample and target is
compared starting with r1 to r4, followed by r5 to r8, r9 to r12
and lastly r13 to r16. All comparison operations run
continuously until every element is fulfilled by score.

 Figure 3. Matrix filling representation

 The output from matrix filling module is then transferred to
traceback and recombination module that has been designed
by previous student. At traceback and reconstruction module,
the scoring is being compared again and checked for the
longest path. That longest path will be reconstructed back with
or without gap representation depending on the scoring
produce by matrix filling. This combination of two modules

 A C G T
 0 0 0 0 0

C 0 0 2 1 0
A 0 2 1 1 0
G 0 1 1 3 2
T 0 0 0 2 5

 A C G T
 0 0 0 0 0

C 0 0 2 1 0
A 0 2 1 1 0
G 0 1 1 3 2
T 0 0 0 2 5

 S[7:6] S[5:4] S[3:2] S[1:0]

 0 0 0 0 0

T[7:6] 0 r1 r2 r3 r4

T[5:4] 0 r5 r6 r7 r8

T[3:2] 0 r9 r10 r11 r12

T[1:0] 0 r13 r14 r15 r16

3

will become the single core in this project. Fig. 4 represents
the single core block diagram.

 Figure 4. Single core block diagram

 TABLE I. DNA SEQUENCE VARIABLES

Character

Input Data

Output Data

A 2’b 00 3’b 000

C 2’b 01 3’b 001

G 2’b 10 3’b 010

T 2’b 11 3’b 011

Gap - 3’b 100

 In matrix filling module, the comparison of DNA scoring
is based on two bits binary number. In traceback and
reconstruction module, the data must be converted into three
bits binary number with the addition of gap insertion. The
characters of each DNA sequence representative are tabulated
in Table I. In order to design the multicore architecture, the
single core block diagram is multiplied by the number of core.
For this project, multicores are designed in two, four and eight
cores. The clock remains synchronous all the time. Fig. 5
shows the block diagram for eight core of multicore.

 Figure 5. The block diagram for 8 cores

 This project began with writing the verilog coding using
Xilinx for matrix filling module and the coding is checked for
any syntax error. After all syntax are clear from any error, the
coding is then synthesized to view the RTL schematic circuit.
Then, the verilog coding is examined by testbench to view the
output waveform. This output waveform is checked to verify
its consistency with the input. The finalize verilog coding is
compiled using Verilog Compiler Simulator (VCS) for
debugging and viewing the waveform. The RTL coding is
simulated and verified the output with respect to its input. The
next synthesis is the hardware synthesis using Synopsys
Design Compiler (DC). At this stage, the RTL design is
converted into an optimized Gate Level Netlist. It is the
structural representation of standard cells based on the cells in
the standard cell library. The RTL hardware description and a
standard cell library are taken as the input to produce an
output of gate-level netlist. The DC synthesis tools will
attempt to meet the constraints specifications such as timing,
area and power by calculating the cost of various
implementation [8]. All the reports on timing, power and area
analysis of current design are stated at the end of the DC
analysis. The clock cycle in design constraint is changed
according to the desired frequency. The timing analysis is
used to find the operating frequency range that meet the
timing requirement of the design module. The analysis
procedure is continued by physical implementation in IC
Compiler (ICC). There are three stages in this compiler which
are floorplanning, placement and routing. Floorplanning is to
map the design to the physical description by minimizing area
and timing. In placement step, the standard cells are defined to
a particular position in a row while the last step is routing that
is used to build the connection between all the blocks and the
nets. The last method is to optimize the design with the Prime
Time (PT) analysis. This PT is the standard time off for gate
level static timing analysis in the industry. Once PT analysis
met the requirement, the design is capable to work if there is
no other damage during fabrication. Fig. 6 shows the
flowchart for ASIC design flow that illustrates the whole
process of this project.

4

Figure 6. ASIC design flow

 IV. RESULT AND DISCUSSION
 All input and output for the simulation waveform for all
single, two cores, four cores and eight cores will be based on
Table II and all the waveforms are shown in appendices from
Fig. 16 until Fig. 19. The score for each input on sample and
target are tabulated in Table II. Fig. 7 shows the schematic of
the top single core module generated by Xilinx. Fig. 8 to Fig.
11 shows the RTL schematic for single and multicore
generated by Design Vision.

TABLE II: MATRIX FILLING SCORING RESULT

S T
Score Code Binary Code Binary

ACAC 00010001 AGCA 00100100 9

CGTA 01101100 CTAG 01110010 9

ATTA 00111100 ACTC 00011101 7

AGCG 00100110 GGCA 10100100 6

GGAA 10100000 CAAA 01000000 6

TGCA 11100100 TACA 11000100 11

CTAG 01110010 CTAA 01110000 12

TGCC 11100101 TAAG 11000010 2

ACAT 00010011 ACAT 00010011 20

Figure 7. RTL schematic for single top core generated by Xilinx simulation

Figure 8. RTL schematic for single core generated by Design Vision

Figure 9. RTL schematic for 2 cores generated by Design Vision

5

Figure 10. RTL schematic for 4 cores generated by Design Vision

Figure 11. RTL schematic for 8 cores generated by Design Vision

 All reports on power and timing analysis on DC analysis
are based on wire load model but for ICC analysis the reports
are based on actual device model. A wire load model allows
the tool to estimate the effect of wire length, resistance, and
capacitances, area of nets, wire delays, circuit speeds, area and
timing information for each standard cell. DC uses this
information to optimize the synthesis process [8]. For any
design to work at a specific speed, timing analysis has to be
performed to check whether the design is meeting the speed
requirement. It is use to check the design for all possible
timing violations for example, set up time and hold time.

TABLE III: SIMULATION RESULT ON TIMING ANALYSIS BY VARYING
FREQUENCY FOR SINGLE CORE

Clk
Cycle
(ns)

DC (ns) ICC (ns) PT (ns)

max min max min max min

5 0.00 0.00 -0.24 0.21 -0.04 0.10

10 0.86 0.00 0.76 0.23 1.05 0.16

15 1.99 0.00 2.02 0.25 1.80 0.16

20 6.60 0.00 4.16 0.27 4.39 0.16

25 11.60 0.00 9.02 0.25 9.33 0.16

50 36.61 0.01 34.00 0.25 34.33 0.16

 Results in Table III show the timing analysis for ICC and
PT at 5ns because it gives negative slack at maximum time. It
shows the violation happened at 5ns. At 10ns to 50ns there is
no time violation. PT analyzes the timing delays in the design
and flags violation that must be corrected.

TABLE IV: SIMULATION RESULT ON TIMING ANALYSIS BY VARYING
FREQUENCY FOR 2 CORES

Clk
Cycle
(ns)

DC (ns) ICC (ns) PT (ns)

max min max min max min

5 0.00 -0.08 -0.11 0.19 0.03 0.06

10 0.85 0.00 0.17 0.23 0.36 0.03

15 1.99 0.00 0.15 0.23 0.71 0.14

20 6.56 0.00 3.66 0.24 3.91 0.12

25 11.55 0.00 8.46 0.24 8.98 0.14

50 36.55 0.00 33.33 0.24 34.01 0.13

 Table IV shows the violation occurred at 5ns because it
gives negative slack at minimum DC analysis and maximum
ICC analysis. There are no time violations at 10ns to 50ns.
Although it passes PT both max and min which are positive
slack, it is not advisable to work because the positive output is
very marginal.

6

TABLE V. SIMULATION RESULT ON TIMING ANALYSIS BY VARYING
FREQUENCY FOR 4 CORES

Clk
Cycle
(ns)

DC (ns) ICC (ns) PT (ns)

max min max min max min

5 0.00 -0.27 -0.11 0.19 -0.15 -0.05

10 0.85 0.00 0.33 0.24 0.80 0.04

15 1.25 0.00 1.01 0.24 0.90 0.04

20 6.55 0.00 3.86 0.24 4.38 0.04

25 11.55 0.00 8.97 0.24 9.35 0.03

50 36.53 0.00 33.61 0.24 34.26 0.03

 Results in Table V show the violation timing analysis
happened at 5ns for ICC and PT since it gives negative slack
at maximum time. It shows the device could not work at 5ns.
At 10ns to 50ns there is no time violation since the timing
analysis gives the positive slack.

TABLE VI. SIMULATION RESULT ON TIMING ANALYSIS BY VARYING
FREQUENCY FOR 8 CORES

Clk
Cycle
(ns)

DC (ns) ICC (ns) PT (ns)

max min max min max min

5 0.00 -0.29 -0.27 0.19 -0.13 -0.07

10 0.85 0.00 -0.07 0.24 0.36 0.03

15 1.99 0.00 0.04 0.24 0.46 0.02

20 6.55 0.00 3.86 0.24 3.91 0.12

25 11.55 0.00 8.53 0.25 9.03 0.02

50 36.53 0.00 33.84 0.24 37.68 0.04

 Timing violation happened at both 5ns and 10ns in Table
VI because it illustrated negative slack in DC, ICC and PT
analysis for 5ns and maximum ICC analysis for 10ns. Larger
negative slack values mean that the design is missing the
desired clock frequency by a greater amount. It shows the
possibility that many paths are too slow. But if the negative
slack is a small negative number, it indicates that only a few
paths are too slow.

TABLE VII. SIMULATION RESULT ON POWER ANALYSIS BY VARYING
FREQUENCY FOR SINGLE CORE

Clk Cycle
(ns)

DC (W) ICC (W)
Dynamic Static Dynamic Static

5 6.8588m 3.3527μ 10.1462m 3.7274μ

10 3.2838m 2.9696μ 4.3016m 2.8445μ

15 2.2066m 2.9957μ 2.9396m 2.8602μ

20 1.6832m 2.9997μ 2.1964m 2.8634μ

25 1.3466m 2.9985μ 1.7824m 2.8667μ

50 673.2762μ 2.9963μ 890.3331μ 2.8680μ

TABLE VIII:. SIMULATION RESULT ON POWER ANALYSIS BY VARYING
FREQUENCY FOR 2 CORES

Clk Cycle
(ns)

DC (W) ICC (W)
Dynamic Static Dynamic Static

5 13.8569m 6.6823μ 20.4290m 7.3330μ

10 6.6047m 5.9396μ 8.7233m 5.6990μ

15 4.4487m 5.9994μ 5.8400m 5.7294μ

20 3.3886m 5.9980 μ 4.4742m 5.7375 μ

25 2.7116m 5.9998 μ 3.5380m 5.7315 μ

50 1.3556m 5.9933 μ 1.7637m 5.7344 μ

TABLE IX. SIMULATION RESULT ON POWER ANALYSIS BY VARYING
FREQUENCY FOR 4 CORES

Clk
Cycle
(ns)

DC (W) ICC (W)

Dynamic Static Dynamic Static

5 27.3373m 13.3285μ 40.3304m 14.6303μ

10 13.1810m 11.8853μ 17.4706m 11.3902μ

15 10.3373m 11.9285μ 12.3241m 11.4303μ

20 6.7495m 11.9895μ 8.9328m 11.4653μ

25 5.4016m 11.9920μ 7.1275m 11.4769μ

50 2.6998m 11.9978μ 3.5644m 11.4788μ

TABLE X. SIMULATION RESULT ON POWER ANALYSIS BY VARYING
FREQUENCY FOR 8 CORES

Clk Cycle
(ns)

DC (W) ICC (W)

Dynamic Static Dynamic Static

5 56.2640m 27.0311μ 81.5181m 29.2874μ

10 26.3182m 23.7660μ 34.9675m 22.7760μ

15 17.7645m 24.0819μ 23.7891m 22.9694μ

20 13.4826m 23.9785μ 17.8261m 22.9431μ

25 10.7893m 23.9772μ 14.2614m 22.9429μ

50 5.3920m 23.9527μ 7.1172m 22.9550μ

Figure 12. Dynamic power consumption in DC

7

Figure 13. Dynamic power consumption in ICC

 Results in Table VII, VIII, XI and X are illustrated by
graph in Fig. 11 and Fig. 12. The graph for dynamic power in
DC analysis shows that power consumption in 8 cores is
higher than other cores. High number of cores represents high
number of gates in chips. Dynamic powers for all cores are
rapidly decreasing from 5ns to 10ns. The graph shows that at
low frequency, the power consumption is also low. Power
consumption at two cores is twice higher than at single core.
The results on power consumption at four cores are twice
higher of two cores and four times higher than power
consumption at single core. The same results are obtained for
eight cores power consumption. Eight cores design consumed
twice higher power consumption of four cores, four times
higher than two cores and eight times higher than single core.
The increase number of cores will increase the number of
logic gates. Increase number of switching activity will also
increase the dynamic power. The value of dynamic power in
DC is different from ICC analysis because in DC the power
analysis is done on the wire load model that does not contain
information about some type of delay.

Figure 14. Static power in DC

Figure 15. Static power in ICC

 Static powers for both cores are barely constant at 10ns to
50ns. There are only small changes in static power in DC and
ICC analysis. Since the technology is being used in 0.18μm2
this static power is not considered as major power
consumption. But in smaller size technology such as 19 nano
and below, this static power will be the main concern in all
design.

TABLE XI. SIMULATION RESULT ON DESIGN AREA FOR SINGLE CORE

Clk Cycle
(ns) DC (μm2) ICC (μm2)

5 107572.451178 113500.096024

10 102928.796599 99236.492670

15 104725.052709 101119.235154

20 104705.094222 100833.164692

25 104715.073421 100912.998291

50 104658.524622 100879.734294

TABLE XII. SIMULATION RESULT ON DESIGN AREA FOR 2 CORES

Clk Cycle
(ns) DC (μm2) ICC (μm2)

5 214556.129517 226122.022404

10 205681.293995 198546.166134

15 209177.340599 201955.726282

20 209230.562844 201639.718174

25 209240.542041 201589.822177

50 209207.278040 201623.086181

8

TABLE XIII:. SIMULATION RESULT ON DESIGN AREA FOR 4 CORES

Clk Cycle
(ns) DC (μm2) ICC (μm2)

5 429840.740624 451073.151999

10 412297.306393 396403.767531

15 429840.740624 451073.151999

20 419289.399292 403309.374013

25 419056.551301 403163.012417

50 419169.648889 403389.207617

TABLE XIV. SIMULATION RESULT ON DESIGN AREA FOR 8 CORES

Clk Cycle
(ns) DC (μm2) ICC (μm2)

5 864538.025198 900975.410968

10 824657.814330 793033.730175

15 837308.114419 807217.500337

20 838642.000128 806595.463147

25 838585.451337 806565.525556

50 838459.048120 806771.762359

 All results design area for each core are always changing
at different frequency. In low frequency, simulation area for
ICC is lower than DC in all single and multicore. This happen
because optimization of area in DC is only like the first size
estimation because it synthesizes the design into a gate-level
netlist while still meeting the constraints. It uses virtual wiring
routing to connect every block. In ICC, it uses real
interconnection and real layout according to the standard cell
library. This standard cell library is the representation of the
physical shapes that will be fabricated. It also contains timing
information about the function such as delay and input pin
capacitance that are used to calculate output load. But the
result in high frequency shows the area in ICC is larger than
DC at all cores. This happen because in ICC synthesis, in
order to meet the design specification, the standard cell library
will use high drive cell that are able to operate in high
frequency. High drive cells are needed because it has bigger
width that will allow more electrons to flow and made it
compatible for high frequency.

 Figure 21. The Throughput data for all cores

 Fig. 21 show the throughput data for single, 2, 4 and 8
cores. Throughput data on 8 cores is higher than other cores in
every latency. It shows that the throughput in high number of
cores is greater than the lower number of core.

V. CONCLUSION

 All the design of matrix filling module and multicore
architecture has been successfully constructed. The output for
every core is exactly correct according to the sensitivity of
Smith Waterman algorithm. The entire project’s objectives
have been successfully achieved. The timing analysis shows
the best clock cycle that suitable for this design is from 15 ns
and above since there is no violation occurs. Power
consumption increases in high frequency because a faster
switching activity is needed in every module in order to meet
the specifications. The real area of the design is measured in
ICC synthesis because it uses standard cell library to optimize
every module. This design also has been developed using
ASIC design flow from RTL coding until GDSII level.
Finally, the overall IC layout is illustrated in Fig. 20.

REFERENCES

[1] E. Willett, Genetics Demystified. United States of America: McGraw
Hill, 2006.

[2] S. A. M. Al Junid, M. A. Haron, Z. Abd Majid, F. N. Osman, H.
Hashim, M. F. M. Idros, and M. R. Dohad, "Optimization of DNA
Sequences Data to Accelerate DNA Sequence Alignment on FPGA," in
Mathematical/Analytical Modelling and Computer Simulation (AMS),
2010 Fourth Asia International Conference on, pp. 231-236

[3] F. ZHANG, X.-Z. QIAO, and Z.-Y. LIU, "A Parallel Smith-Waterman
Algorithm Based on Divide and Conquer," in Proceedings of the Fifth
International Conference on Algorithms and Architectures for Parallel
Processing: IEEE, 2002, p. 8.

[4] S. A. M. Al Junid, M. A. Haron, Z. Abd Majid, A. K. Halim, F. N.
Osman, and H. Hashim, "Development of Novel Data Compression
Technique for Accelerate DNA Sequence Alignment Based on
Smith–Waterman Algorithm," in Computer Modeling and
Simulation, 2009. EMS '09. Third UKSim European Symposium on,
2009, pp. 181-186

[5] S. A. M. Junid, Z. A. Majid, and A. K. Halim, "Development of DNA
sequencing accelerator based on Smith Waterman algorithm with
heuristic divide and conquer technique for FPGA implementation," in
Computer and Communication Engineering, 2008. ICCCE 2008.
International Conference on, 2008, pp. 994-996

[6] D. Gohringer and J. Becker, "High performance reconfigurable multi-
processor-based computing on FPGAs," in Parallel & Distributed
Processing, Workshops and Phd Forum (IPDPSW), 2010 IEEE
International Symposium on, pp. 1-4.

[7] D. M. Harris and S. L. Harris, Digital Design and Computer
Architecture: Morgan Kaufmann, 2007

[8] H. B. Kommuru and H. Mahmoodi, "ASIC Design Flow Tutorial Using
Synopsys Tools," San Francisco, CA: San Francisco State University,
2009, p. 10.

[9] J. Li, G. Du, D. Zhang, Y. Song, L. Li, and H. Pan, "High throughput
memory data-path design for multi-core architecture," in Informatics in
Control, Automation and Robotics (CAR), 2010 2nd International Asia
Conference on, pp. 28-31.

[10] I. Bolsens, "Programming customized parallel architectures in FPGA,"
in Parallel & Distributed Processing, Workshops and Phd Forum
(IPDPSW), 2010 IEEE International Symposium on, pp. 1-1

9

	I. Introduction
	II. Smith-Waterman Algorithm
	iii. Methodology
	Table I. DNA Sequence Variables
	iv. Result and Discussion
	table ii: Matrix Filling Scoring Result
	References

