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Abstract- This paper presents the design and analysis of 4x4 
Smith Waterman’s based DNA sequences alignment accelerator 
using multicore architecture.  The first objective of this paper is 
to design 4 x 4 matrix filling module of DNA sequence alignment 
accelerator. The second objective is to combine matrix filling 
module with traceback and reconstruction module design by 
previous student in order to create single core. The third 
objective is to construct modules that consist of 2, 4 and 8 cores. 
The fourth objective is to simulate and verify the functionality of 
the new matrix filing, single and multicore modules on Xilinx 
FPGA design flow. The last objective is to verify, optimize and 
analyze the multicore modules using VCS, DC, ICC and PT. This 
paper focuses on the timing analysis, power and area of 
multicores architecture using Smith-Waterman algorithm. To 
achieve a higher performance with low latency and high 
throughput data has become a serious concern for today’s DNA 
laboratory as the increase of number of DNA database all around 
the world. Researchers may have done different kind of 
architecture such as pipeline, vector, multicycle to boost up the 
speed performance of DNA sequences alignment. All design is 
written in Verilog language and the result is verified on Synopsys 
EDA tool which are Verilog Compiler Simulator (VCS), Design 
Compiler (DC) and ICCompiler (ICC). 

Keywords: ASIC, multicore architecture analysis, Synopsys 
EDA tools and Smith Waterman algorithm. 

I.  INTRODUCTION 
     DNA is a self-replicating material present in nearly all 
living organisms as the main constituent of chromosomes. It is 
the carrier of genetic information for all cells. Scientists 
realized that DNA molecules have a vertebra backbone unit 
consists of sugar (deoxyribose) and one phosphate. Each 
vertebra unit is attached by nitrogenous bases that are adenine 
(A), guanine (G), cytosine (C) and thymine (T) [1].  

 
 There are many algorithms for DNA sequence alignment. 

For example FASTA and BLAST [2]. FASTA (Fast 
Alignment Search Tool) and BLAST (Basic Local Alignment 
Tool) are most commonly used algorithm to obtain high 
performance system but both have low sensitivity to obtain the 
correct result compared to Smith-Waterman algorithm. 
FASTA and BLAST may have the speed but in term of 

accuracy of DNA sequencing, Smith Waterman is more 
preferable. However, the implementation of this algorithm is 
quite complicated and challenging due to limited space 
memory and speed for long DNA sequence.  

  
     Smith-Waterman algorithm is one of the most basic and 

well known algorithm that performs local sequence alignment 
for DNA [3]. The algorithm was first proposed by Temple 
Smith and Michael Waterman in 1981. Like the Needleman-
Wunsch algorithm, of which it is a variation, Smith-Waterman 
is a dynamic programming algorithm [4]. This algorithm used 
comparison technique of two DNA (A,C,G,T) sequences 
functions based on local alignment in order to find the optimal 
local alignment of that two sequences [5].  

   
     In order to improve the efficiency of computer 

platforms, multithreading processor is introduced as industry-
standard servers and the overwhelming majority of network 
applications can take advantage of the additional processors, 
multiple software threads, and multitasked computing 
environments [6]. All these advantages have enabled 
organizations to scale network applications for a greater 
performance. The next logical step for multiprocessing 
advancement is expected to come in the form of multiple 
logical processing units, or processor cores, within a single 
chip. Multicore processors are good because they have 
multiple memory, I/O, and storage. A multicore processor 
system consists of multiple processors and a method for 
communication between the core processors. The multicore 
processor is the separation of multiple cores on the same chip. 
This architecture is used to run more tasks simultaneously by 
dividing the tasks among the cores [7]. The increase in 
frequency on a single core demands faster switching 
transistors with higher operating voltages hence increase 
power dissipation. 
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II.     SMITH-WATERMAN ALGORITHM 
      There are three modules on finding the optimal sequence 
in Smith-Waterman algorithm and the first module is to fill in 
the dynamic programming matrix, the second is to find the 
maximum score from that matrix and the last is to trace back 
the maximum path from the maximum score to find the 
optimal local alignment [3]. Consider the two comparison of 
DNA sequences are S for sample and T for target. The 
dynamic programming for matrix filling module will be based 
on this sample and target scoring according to this equation: 

  
               For 0 ≤ i ≤ M, 0 ≤ j ≤ N, 
                      Di0 = D0j = 0 
              For 1 ≤ i ≤ M and 1 ≤ j ≤ N 
                        Dij = 0 or   (1) 

               (2) 
Where 
d     = penalty 
Sbt = substitution matrix 
i     = matrix cell row of search sequence 
j     = matrix cell column of target sequence 
M   = maximum length of search sequence 
N   = maximum length of target sequence 
Dij = dynamic matrix cell 
 

     The equation (2) above shows that, comparison match and 
mismatch at every horizontal and vertical move will be given 
penalty of -1. But for every match comparison in diagonal will 
be added +2 and for mismatch in diagonal will be given 
penalty of -1. There is no negative number in Smith-
Waterman algorithm, so the smallest scoring in matrix filling 
will be converted into zero. Consider S = A-C-G-T and T = C-
A-G-T. The comparison results for both sample and target are 
shown in Fig. 1.  

 
 
                  
 
 
 
 
 

        
        Figure 1.  Matrix filling scoring 

    
     The second module is to find the optimal and maximum 
path by finding the maximum score and trace it back until the 
zero value is obtained. There are three rules to consider in 
finding the maximum path in traceback module. The first rule 
is to find the highest value of scoring inside the matrix. For 
second rule, from that highest score value, the next instruction 
is to compare the vertical, horizontal and diagonal scoring. If 

the value for horizontal and vertical are equal, the path will 
follow the diagonal score. If all three values are equal, the path 
will follow the diagonal score. The last rule is, whenever the 
path meet a zero value as diagonal score, the path will be 
automatically stopped. Fig. 2 shows the correct maximum path 
sequences that consider all rules as mentioned before.   

 
 
 
 
 
 
 
 
 
          Figure 2.  The optimal path from trace back module 
 

     After finding the maximum path from traceback module, 
the sequence of sample and target will be reconstructed back 
at the last module which is known as reconstruction. At 
reconstruction module, there will be an insertion of gap 
depending on match and mismatch of sample and target DNA 
along the maximum path.  In Fig. 2, after reconstruction 
modules, the sequence will change into S = C-G-T and T = A-
G-T. 
    

  III.      METHODOLOGY 
    The first step of designing matrix filling module is to assign 
the first column and first row with zero.  Then the row and 
column for each element in 4x4 matrix is represented by r1 to 
r16 as illustrated in Fig. 3. The value of scoring is based on 
comparison for each diagonal, vertical and horizontal in every 
element in the matrix.  The input for sample and target is 
compared starting with r1 to r4, followed by r5 to r8, r9 to r12 
and lastly r13 to r16. All comparison operations run 
continuously until every element is fulfilled by score.  
 

                           Figure 3.  Matrix filling representation 
 
     The output from matrix filling module is then transferred to 
traceback and recombination module that has been designed 
by previous student. At traceback and reconstruction module, 
the scoring is being compared again and checked for the 
longest path. That longest path will be reconstructed back with 
or without gap representation depending on the scoring 
produce by matrix filling. This combination of two modules 

  A C G T 
 0 0 0 0 0 

C 0 0 2 1 0 
A 0 2 1 1 0 
G 0 1 1 3 2 
T 0 0 0 2 5 

  A C G T 
 0 0 0 0 0 

C 0 0 2 1 0 
A 0 2 1 1 0 
G 0 1 1 3 2 
T 0 0 0 2 5 

  S[7:6] S[5:4] S[3:2] S[1:0] 

 0 0 0 0 0 

T[7:6] 0 r1 r2 r3 r4 

T[5:4] 0 r5 r6 r7 r8 

T[3:2] 0 r9 r10 r11 r12 

T[1:0] 0 r13 r14 r15 r16 
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will become the single core in this project. Fig. 4 represents 
the single core block diagram.  

             
                         Figure 4. Single core block diagram 
 

                           TABLE I.  DNA SEQUENCE VARIABLES 

 
Character 

 
Input Data 

 
Output Data 

A 2’b 00 3’b 000 

C 2’b 01 3’b 001 

G 2’b 10 3’b 010 

T 2’b 11 3’b 011 

Gap - 3’b 100 

    
       In matrix filling module, the comparison of DNA scoring 
is based on two bits binary number. In traceback and 
reconstruction module, the data must be converted into three 
bits binary number with the addition of gap insertion.  The 
characters of each DNA sequence representative are tabulated 
in Table I. In order to design the multicore architecture, the 
single core block diagram is multiplied by the number of core. 
For this project, multicores are designed in two, four and eight 
cores. The clock remains synchronous all the time. Fig. 5 
shows the block diagram for eight core of multicore.   
 

                              
                          Figure 5.  The block diagram for 8 cores 
 

       This project began with writing the verilog coding using 
Xilinx for matrix filling module and the coding is checked for 
any syntax error. After all syntax are clear from any error, the 
coding is then synthesized to view the RTL schematic circuit. 
Then, the verilog coding is examined by testbench to view the 
output waveform. This output waveform is checked to verify 
its consistency with the input. The finalize verilog coding is 
compiled using Verilog Compiler Simulator (VCS) for 
debugging and viewing the waveform. The RTL coding is 
simulated and verified the output with respect to its input. The 
next synthesis is the hardware synthesis using Synopsys 
Design Compiler (DC).  At this stage, the RTL design is 
converted into an optimized Gate Level Netlist. It is the 
structural representation of standard cells based on the cells in 
the standard cell library. The RTL hardware description and a 
standard cell library are taken as the input to produce an 
output of gate-level netlist. The DC synthesis tools will 
attempt to meet the constraints specifications such as timing, 
area and power by calculating the cost of various 
implementation [8].  All the reports on timing, power and area 
analysis of current design are stated at the end of the DC 
analysis. The clock cycle in design constraint is changed 
according to the desired frequency. The timing analysis is 
used to find the operating frequency range that meet the 
timing requirement of the design module. The analysis 
procedure is continued by physical implementation in IC 
Compiler (ICC). There are three stages in this compiler which 
are floorplanning, placement and routing. Floorplanning is to 
map the design to the physical description by minimizing area 
and timing. In placement step, the standard cells are defined to 
a particular position in a row while the last step is routing that 
is used to build the connection between all the blocks and the 
nets. The last method is to optimize the design with the Prime 
Time (PT) analysis. This PT is the standard time off for gate 
level static timing analysis in the industry. Once PT analysis 
met the requirement, the design is capable to work if there is 
no other damage during fabrication. Fig. 6 shows the 
flowchart for ASIC design flow that illustrates the whole 
process of this project.  
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Figure 6.  ASIC design flow 
 

                       IV.    RESULT AND DISCUSSION 
     All input and output for the simulation waveform for all 
single, two cores, four cores and eight cores will be based on 
Table II and all the waveforms are shown in appendices from 
Fig. 16 until Fig. 19. The score for each input on sample and 
target are tabulated in Table II. Fig. 7 shows the schematic of 
the top single core module generated by Xilinx. Fig. 8 to Fig. 
11 shows the RTL schematic for single and multicore 
generated by Design Vision. 

TABLE II:  MATRIX FILLING SCORING RESULT   

S T  
Score Code  Binary Code Binary 

ACAC 00010001 AGCA 00100100 9 

CGTA 01101100 CTAG 01110010 9 

ATTA 00111100 ACTC 00011101 7 

AGCG 00100110 GGCA 10100100 6 

GGAA 10100000 CAAA 01000000 6 

TGCA 11100100 TACA 11000100 11 

CTAG 01110010 CTAA 01110000 12 

TGCC 11100101 TAAG 11000010 2 

ACAT 00010011 ACAT 00010011 20 

 

                         
Figure 7.  RTL schematic for single top core generated by Xilinx simulation 

 

 
 

Figure 8.  RTL schematic for single core generated by Design Vision 
 

 
Figure 9. RTL schematic for 2 cores generated by Design Vision 
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Figure 10. RTL schematic for 4 cores generated by Design Vision 
 
 

 
Figure 11.  RTL schematic for 8 cores generated by Design Vision 

 

       All reports on power and timing analysis on DC analysis 
are based on wire load model but for ICC analysis the reports 
are based on actual device model. A wire load model allows 
the tool to estimate the effect of wire length, resistance, and 
capacitances, area of nets, wire delays, circuit speeds, area and 
timing information for each standard cell. DC uses this 
information to optimize the synthesis process [8]. For any 
design to work at a specific speed, timing analysis has to be 
performed to check whether the design is meeting the speed 
requirement. It is use to check the design for all possible 
timing violations for example, set up time and hold time. 

TABLE III:  SIMULATION RESULT ON TIMING ANALYSIS BY VARYING 
FREQUENCY FOR SINGLE CORE 

Clk 
Cycle 
(ns) 

DC (ns) ICC (ns) PT (ns) 

max min max min max min 

5 0.00 0.00 -0.24 0.21 -0.04 0.10 

10 0.86 0.00 0.76 0.23 1.05 0.16 

15 1.99 0.00 2.02 0.25 1.80 0.16 

20 6.60 0.00 4.16 0.27 4.39 0.16 

25 11.60 0.00 9.02 0.25 9.33 0.16 

50 36.61 0.01 34.00 0.25 34.33 0.16 

 
        Results in Table III show the timing analysis for ICC and 
PT at 5ns because it gives negative slack at maximum time. It 
shows the violation happened at 5ns. At 10ns to 50ns there is 
no time violation. PT analyzes the timing delays in the design 
and flags violation that must be corrected. 

TABLE IV:  SIMULATION RESULT ON TIMING ANALYSIS BY VARYING 
FREQUENCY FOR 2 CORES 

Clk 
Cycle 
(ns) 

DC (ns) ICC (ns) PT (ns) 

max min max min max min 

5 0.00 -0.08 -0.11 0.19 0.03 0.06 

10 0.85 0.00 0.17 0.23 0.36 0.03 

15 1.99 0.00 0.15 0.23 0.71 0.14 

20 6.56 0.00 3.66 0.24 3.91 0.12 

25 11.55 0.00 8.46 0.24 8.98 0.14 

50 36.55 0.00 33.33 0.24 34.01 0.13 

 
          Table IV shows the violation occurred at 5ns because it 
gives negative slack at minimum DC analysis and maximum 
ICC analysis. There are no time violations at 10ns to 50ns. 
Although it passes PT both max and min which are positive 
slack, it is not advisable to work because the positive output is 
very marginal.   
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TABLE V.  SIMULATION RESULT ON TIMING ANALYSIS BY VARYING 
FREQUENCY FOR 4 CORES 

Clk 
Cycle 
(ns) 

DC (ns) ICC (ns) PT (ns) 

max min max min max min 

5 0.00 -0.27 -0.11 0.19 -0.15 -0.05 

10 0.85 0.00 0.33 0.24 0.80 0.04 

15 1.25 0.00 1.01 0.24 0.90 0.04 

20 6.55 0.00 3.86 0.24 4.38 0.04 

25 11.55 0.00 8.97 0.24 9.35 0.03 

50 36.53 0.00 33.61 0.24 34.26 0.03 

      
         Results in Table V show the violation timing analysis 
happened at 5ns for ICC and PT since it gives negative slack 
at maximum time. It shows the device could not work at 5ns. 
At 10ns to 50ns there is no time violation since the timing 
analysis gives the positive slack. 

TABLE VI.  SIMULATION RESULT ON TIMING ANALYSIS BY VARYING 
FREQUENCY FOR 8 CORES 

Clk 
Cycle 
(ns) 

DC (ns) ICC (ns) PT (ns) 

max min max min max min 

5 0.00 -0.29 -0.27 0.19 -0.13 -0.07 

10 0.85 0.00 -0.07 0.24 0.36 0.03 

15 1.99 0.00 0.04 0.24 0.46 0.02 

20 6.55 0.00 3.86 0.24 3.91 0.12 

25 11.55 0.00 8.53 0.25 9.03 0.02 

50 36.53 0.00 33.84 0.24 37.68 0.04 

 
         Timing violation happened at both 5ns and 10ns in Table 
VI because it illustrated negative slack in DC, ICC and PT 
analysis for 5ns and  maximum ICC analysis for 10ns. Larger 
negative slack values mean that the design is missing the 
desired clock frequency by a greater amount. It shows the 
possibility that many paths are too slow. But if the negative 
slack is a small negative number, it indicates that only a few 
paths are too slow.   

TABLE VII.  SIMULATION RESULT ON POWER ANALYSIS BY VARYING 
FREQUENCY FOR SINGLE CORE 

Clk Cycle 
(ns) 

DC (W) ICC (W) 
Dynamic Static Dynamic Static 

5 6.8588m 3.3527μ 10.1462m 3.7274μ 

10 3.2838m 2.9696μ 4.3016m 2.8445μ 

15 2.2066m 2.9957μ 2.9396m 2.8602μ 

20 1.6832m 2.9997μ 2.1964m 2.8634μ 

25 1.3466m 2.9985μ 1.7824m 2.8667μ 

50 673.2762μ 2.9963μ 890.3331μ 2.8680μ 

 

TABLE VIII:. SIMULATION RESULT ON POWER ANALYSIS BY VARYING 
FREQUENCY FOR 2 CORES 

Clk Cycle 
(ns) 

DC (W) ICC (W) 
Dynamic Static Dynamic Static 

5 13.8569m 6.6823μ 20.4290m 7.3330μ 

10 6.6047m 5.9396μ 8.7233m 5.6990μ 

15 4.4487m 5.9994μ 5.8400m 5.7294μ 

20 3.3886m 5.9980 μ 4.4742m 5.7375 μ 

25 2.7116m 5.9998 μ 3.5380m 5.7315 μ 

50 1.3556m 5.9933 μ 1.7637m 5.7344 μ 

TABLE IX.  SIMULATION RESULT ON POWER ANALYSIS BY VARYING 
FREQUENCY FOR 4 CORES 

Clk 
Cycle 
(ns) 

DC (W) ICC (W) 

Dynamic Static Dynamic Static 

5 27.3373m 13.3285μ 40.3304m 14.6303μ 

10 13.1810m 11.8853μ 17.4706m 11.3902μ 

15 10.3373m 11.9285μ 12.3241m 11.4303μ 

20 6.7495m 11.9895μ 8.9328m 11.4653μ 

25 5.4016m 11.9920μ 7.1275m 11.4769μ 

50 2.6998m 11.9978μ 3.5644m 11.4788μ 

TABLE X.  SIMULATION RESULT ON POWER ANALYSIS BY VARYING 
FREQUENCY FOR 8 CORES 

Clk Cycle 
(ns) 

DC (W) ICC (W) 

Dynamic Static Dynamic Static 

5 56.2640m 27.0311μ 81.5181m 29.2874μ 

10 26.3182m 23.7660μ 34.9675m 22.7760μ 

15 17.7645m 24.0819μ 23.7891m 22.9694μ 

20 13.4826m 23.9785μ 17.8261m 22.9431μ 

25 10.7893m 23.9772μ 14.2614m 22.9429μ 

50 5.3920m 23.9527μ 7.1172m 22.9550μ 

 

 
 

Figure 12.   Dynamic power consumption in DC 
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Figure 13.   Dynamic power consumption in ICC 
 

      Results in Table VII, VIII, XI and X are illustrated by 
graph in Fig. 11 and Fig. 12. The graph for dynamic power in 
DC analysis shows that power consumption in 8 cores is 
higher than other cores. High number of cores represents high 
number of gates in chips. Dynamic powers for all cores are 
rapidly decreasing from 5ns to 10ns. The graph shows that at 
low frequency, the power consumption is also low. Power 
consumption at two cores is twice higher than at single core. 
The results on power consumption at four cores are twice 
higher of two cores and four times higher than power 
consumption at single core. The same results are obtained for 
eight cores power consumption. Eight cores design consumed 
twice higher power consumption of four cores, four times 
higher than two cores and eight times higher than single core. 
The increase number of cores will increase the number of 
logic gates. Increase number of switching activity will also 
increase the dynamic power. The value of dynamic power in 
DC is different from ICC analysis because in DC the power 
analysis is done on the wire load model that does not contain 
information about some type of delay.  

 

 
 

Figure 14.       Static power in DC 

 
 

Figure 15.  Static power in ICC 
 

        Static powers for both cores are barely constant at 10ns to 
50ns. There are only small changes in static power in DC and 
ICC analysis. Since the technology is being used in 0.18μm2 
this static power is not considered as major power 
consumption. But in smaller size technology such as 19 nano 
and below, this static power will be the main concern in all 
design. 

TABLE XI.  SIMULATION RESULT ON DESIGN AREA FOR SINGLE CORE 

Clk Cycle 
(ns) DC (μm2) ICC (μm2) 

5 107572.451178 113500.096024 

10 102928.796599 99236.492670 

15 104725.052709 101119.235154 

20 104705.094222 100833.164692 

25 104715.073421 100912.998291 

50 104658.524622 100879.734294 

             

TABLE XII.  SIMULATION RESULT ON DESIGN AREA FOR 2 CORES 

Clk Cycle 
(ns) DC (μm2)  ICC (μm2) 

5 214556.129517 226122.022404 

10 205681.293995 198546.166134 

15 209177.340599 201955.726282 

20 209230.562844 201639.718174 

25 209240.542041 201589.822177 

50 209207.278040 201623.086181 
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TABLE XIII:. SIMULATION RESULT ON DESIGN AREA FOR 4 CORES 

Clk Cycle 
(ns) DC (μm2) ICC (μm2) 

5 429840.740624 451073.151999 

10 412297.306393 396403.767531 

15 429840.740624 451073.151999 

20 419289.399292 403309.374013 

25 419056.551301 403163.012417 

50 419169.648889 403389.207617 

             

TABLE XIV.        SIMULATION RESULT ON DESIGN AREA FOR 8 CORES 

Clk Cycle 
(ns) DC (μm2) ICC (μm2) 

5 864538.025198 900975.410968 

10 824657.814330 793033.730175 

15 837308.114419 807217.500337 

20 838642.000128 806595.463147 

25 838585.451337 806565.525556 

50 838459.048120 806771.762359 

       
      All results design area for each core are always changing 
at different frequency. In low frequency, simulation area for 
ICC is lower than DC in all single and multicore. This happen 
because optimization of area in DC is only like the first size 
estimation because it synthesizes the design into a gate-level 
netlist while still meeting the constraints. It uses virtual wiring 
routing to connect every block. In ICC, it uses real 
interconnection and real layout according to the standard cell 
library. This standard cell library is the representation of the 
physical shapes that will be fabricated. It also contains timing 
information about the function such as delay and input pin 
capacitance that are used to calculate output load. But the 
result in high frequency shows the area in ICC is larger than 
DC at all cores. This happen because in ICC synthesis, in 
order to meet the design specification, the standard cell library 
will use high drive cell that are able to operate in high 
frequency. High drive cells are needed because it has bigger 
width that will allow more electrons to flow and made it 
compatible for high frequency.    
 

 
                   Figure 21.        The Throughput data for all cores 

    Fig. 21 show the throughput data for single, 2, 4 and 8 
cores. Throughput data on 8 cores is higher than other cores in 
every latency. It shows that the throughput in high number of 
cores is greater than the lower number of core.  

V.    CONCLUSION 

      All the design of matrix filling module and multicore 
architecture has been successfully constructed. The output for 
every core is exactly correct according to the sensitivity of 
Smith Waterman algorithm. The entire project’s objectives 
have been successfully achieved. The timing analysis shows 
the best clock cycle that suitable for this design is from 15 ns 
and above since there is no violation occurs. Power 
consumption increases in high frequency because a faster 
switching activity is needed in every module in order to meet 
the specifications. The real area of the design is measured in 
ICC synthesis because it uses standard cell library to optimize 
every module. This design also has been developed using 
ASIC design flow from RTL coding until GDSII level. 
Finally, the overall IC layout is illustrated in Fig. 20. 
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