

STEADY STATE SECURITY ANALYSIS USING ARTIFICIAL NEURAL NETWORK

NURUL HUDA BINTI MOHD NOR 2005645461 B ENG.(HONS.)ELECTRICAL

FACULTY OF ELECTRICAL ENGINEERING UNIVERSITY TEKNOLOGI MARA MALAYSIA

MAY 2008

ACKNOWLEDGEMENTS

I would like to say Alhamdulillah to the Almighty ALLAH S.W.T, the most merciful and caring

for giving me the strength and will to complete this project. This project would not have been

possible without the generous guidance and expert assistance of many people.

First and foremost, my special thanks to my academic Advisor Dr Zuhaina Hj Zakaria who has

given me the directions, guidance and consistent support in making this project a reality. I am

indebted to her for the sacrifice of her valuable time spent on us for discussions and consultation

moment. Thank you for the knowledge, concern, and for making learning as a fun and exciting

experience. It has been an honor to be under your guidance.

My appreciation also goes to my dad for giving extended information on Artificial Intelligent

since he had taught them in one of his lectures.

I would also wish to express my gratitude to Assoc Prof Dr Ismail Musirin for providing the

implemented 6 bus system program to enable to perform the analysis. And also to Dr Chan Sei

due to his handbook laboratory on contingency analysis for the initial procedure for starting the

project.

My special thanks to the coordinator of majoring power of EE220 programme, Faculty of

Electrical Engineering, UiTM, Shah Alam, Assoc Prof Pn Pauziah Arsad for allowing me to do

the final project and not forgetting all the lecturers especially those who have taught me. Thank

you for equipping me with the strong foundation, without the relevant knowledge it would not

have been easy and possible to do the project.

Lastly, special thanks to my families and friends who have given continuous moral support and

boundless understanding from the start until the end of this project. May God Bless You All.

Yours truly,

Nurul Huda Mohd Nor

iii

ABSTRACT

Steady state security analysis aims at assessing the risk a contingency would entail for an electrical network operating at a certain point. System operators' expertise and even human intuition in many ways are successful at assessing the risk a contingency would pose to a network. The objective of the project is to describe how artificial neural networks can be used to bypass the traditional load flow cycle, resulting in significantly faster computation times for online contingency analysis. The cases where operating violations are observed are considered as alert, while the cases for which the load flow algorithm exhibits a diverging algorithmically solution, are considered as emergency.

The most important task in real time security analysis is the problem of identifying the critical contingencies from a large list of credible contingencies and ranks them according to their severity. The artificial neural network (ANN)-based approach for contingency ranking. A set of feed forward neural networks are developed to estimate the voltage stability level at different load conditions for the selected contingencies. The effectiveness of the proposed method has been demonstrated through contingency ranking in IEEE 30-bus system. The performance of the developed model is compared with the unified neural network trained with the full feature set. Simulation results show that the proposed method takes less time for training and has good generalization.

TABLE OF CONTENTS

	PAGE
ACKNOWLEDGEMENTS	iii
ABSTRACT	iv
TABLE OF CONTENTS	v
LIST OF FIGURES	vii
LIST OF TABLES	viii
DEFINITIONS	ix
CHAPTER I	
1.0 INTRODUCTION	1
1.1 Background	1
1.2 Problem Statement	3
1.3 Objectives	4
1.4 Rationale of Study	4
1.5 Scope of Study	5
1.6 Limitation of Study	5
1.7 Summary	5
CHAPTER II	
2.0 ARTIFICIAL NEURAL NETWORK	8
2.1 Introduction	
2.2 Historical Background	8
2.3 Why use ANN?	10
2.3.1 Neural Network versus Conventionl Computers	
2.3.2 Neural Network Toolbox	
2.3.3 The Structure of The NN Toolbox	
2.4 A Classification Task	12
2.5 Creating Perceptron	
2.6 Application of Matlab with ANN	14

CHAPTER I

INTRODUCTION

1.1 Background

Consumption energy in power system have been increasing in line with the development of technology. The increasing energy demands on power system coupled with a low rate of additional capacity installation are causing the power systems to be operated close to their security limits. Traditionally, these limits are associated with the problems of thermal loading and transient stability. Line and transformer thermal limits have become less restrictive as the power systems have become denser. Fast fault clearing, high performance excitation systems, and other controls have raised the transfer limits in stability limited systems. However, voltage instability has become the limiting constraint for many power systems. It has been responsible for severe system disturbances including major blackouts. As a result, much attention has been given to the study of voltage stability and the development of analytical tools to be used for on-line voltage assessment. However this proposal focused to a method of assessment based on steady state security analysis of power system. The security of the system is assessed on the basis on the voltage profile at each bus with reference to changes in generation and load in the system. In the assessment, the steady states corresponded to a number of parameters that examined the loading conditions.

During power system operation, it is important that load demands be met without violations of system operational constraints. Over the years, a number of researches on security assessment have been carried out in order to resolve the problem occurs in the system. Besides, for a given operating condition, the system should be capable of resisting the loss of any component, with no operational problems. Thus, contingencies