INVESTIGATION OF CeO-BaO CATALYST MATERIALS FOR METHANE-FED PROTON CERAMIC FUEL CELLS: DC CONDUCTIVITY IN HYDROGEN AND SURFACE STABILITY IN METHANE

NURATIQAH ASYIQIN BINTI MOHD NASHARUDIN

Final Year Project Proposal Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Sciece (Hons.) Materials Science and Technology In The faculty of Applied Sciences Universiti Teknologi MARA This Final Year Project Report entitled "Investigation Of Ceo-Bao Catalyst Materials For Methane-Fed Proton Ceramic Fuel Cells: Dc Conductivity In Hydrogen And Surface Stability In Methane" was submitted by Nuratiqah Asyiqin Binti Mohd Nasharudin in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Physics, in the Faculty of Applied Sciences, and was approved by

Prof Nafisah Binti Osman @ Ali Supervisor B. Sc. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi Mara 26000 Arau Perlis

Dr. Siti Zulaikha Mohd Yusof Project Coordinator B. Sc. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi Mara 26000 Arau Perlis Dr Rosyaini Afindi Zaman Head of Programme B. Sc. (Hons.) Physics Faculty of Applied Sciences Universiti Teknologi Mara 26000 Arau Perlis

Date: 25 JULY 2025

ABSTRACT

INVESTIGATION OF CeO-BaO CATALYST MATERIALS FOR METHANE-FED PROTON CERAMIC FUEL CELLS: DC CONDUCTIVITY IN HYDROGEN AND SURFACE STABILITY IN METHANE

Dry Methane Reforming (DRM) is an important method in hydrogen production and reduces greenhouse gas emissions. DRM utilizes methane and carbon dioxide then produces syngas, a mixture of hydrogen and carbon monoxide. However, carbon deposition often restricts catalyst's performance. Carbon buildup will block catalyst pores, reduce efficiency and increase operational costs. To address these issues, this study focuses on the CeO-BaO catalysts. CeO-BaO has great thermal stability and resistance to carbon deposition. In this research, there are two objectives which are i) To synthesize CeO-BaO catalysts using sol gel method and ii) To investigate the surface stability and electrical conductivity in H₂ atmosphere of CeO-BaO catalysts using FTIR, Raman and DC surface conductivity. Different CeO-BaO compositions were prepared and analyzed to understand their chemical structure and bonding. DC conductivity results showed the 60:40 CeO-BaO composition had the highest conductivity. Due to the composition that has good balance or oxygen vacancies and ionic movement. Raman analysis also confirmed that CeO-BaO remain stable and there are no major signs of degradation after CH₄ exposure. These findings contribute to the development of potential support materials in PCFCs operating in methane fuel.

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF ABBREVIATIONS			
_		INTRODUCTION	1
1.1		ch background]
1.2		n statement	3
1.3		ch questions	2
1.4	Objecti		2
1.5	Signific	cance of study	2
_		LITERATURE REVIEW	(
2.1	•	ethane Reforming (DRM)	6
	2.1.1	Challenges in DRM	
	2.1.2		9
2.2	2.1.3	Significance of DRM	10
2.2		arth metal oxides catalyst	11
	2.2.1	Role of catalyst	12
2.2	2.2.2	•	13 15
2.3	Sol-gel method for sample preparation		
2.4	Characterizations of CeO-BaO catalyst		16
	2.4.1	Fourier-transform infrared spectroscopy (FTIR)	17
	2.4.2	Raman spectroscopy	18
	2.4.3	DC conductivity measurement	21
		RESEARCH METHODOLOGY	22
3.1	Introdu		22
3.2		tion of CeO-BaO pellet	22
	3.2.1	Synthesis of BaO	22

	3.2.2	Synthesis of CeO ₂	23
	3.2.3	Synthesis of Bao-CeO	23
	3.2.4	CeO-BaO pellet	24
3.3 S	ample cha	aracterization	26
	3.3.1	Fourier-transform infrared spectroscopy (FTIR)	26
	3.3.2	Raman spectroscopy	27
	3.3.3	DC conductivity measurement	27
3.2.4 CeO-BaO pellet 3.3 Sample characterization 3.3.1 Fourier-transform infrared spectroscopy (FTIR) 3.3.2 Raman spectroscopy		29 29	
т.1		FTIR analysis before CH ₄ exposure	29
		-	31
4.2		•	33
			35
CHA	APTER 5	CONCLUSION AND RECOMMENDATIONS	39
5.1	Conclu	sion	39
5.2	Recom	mendations	40
			47
CUK	ILULUN	/I VIIAL	48