ELECTRICAL TRANSPORT ANALYSIS OF Sr^{2+} SUBSTITUTION AT THE Ca SITE OF DIVALENT-DOPED La_{0.5}Ca_{0.5-x}Sr_xMnO₃ (x = 0.00, 0.10, 0.20) MANGANITE USING SCATTERING AND HOPPING MODELS

SITI ZAINATUL AIN BINTI MAT SAIT

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA

JULY 2025

This Final Year Project Report entitled "Electrical transport analysis of Sr^{2+} substitution at the Ca site of divalent-doped doped La_{0.5}Ca_{0.5-x}Sr_xMnO₃ (x = 0.00, 0.10, 0.20) manganite using scattering and hopping models" was submitted by Siti Zainatul Ain Binti Mat Sait in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons) Physics, in the Faculty of Applied Science, and was approved by

DR ROZILAH RAJMI

Supervisor

B. Sc. (Hons.) Physics
Faculty of Applied Sciences
Universiti Teknologi MARA
Perlis Branch, Arau Campus,
02600, Arau, Perlis

DR. SITI ZULAIKHA MOHD YUSOF

Project Coordinator

B. Sc. (Hons) Physics

Faculty of Applied Sciences

Universiti Teknologi MARA

Perlis Branch, Arau Campus,

02600, Arau, Perlis.

DR. ROSYAINI BINTI AFINDI ZAMAN

Programme Coordinator

B. Sc. (Hons) Physics

Faculty of Applied Sciences

Universiti Teknologi MARA

Perlis Branch, Arau Campus,

02600, Arau, Perlis.

Date: 25 JULY 2025

ABSTRACT

ELECTRICAL TRANSPORT ANALYSIS OF Sr^{2+} SUBSTITUTION AT THE Ca SITE OF DIVALENT-DOPED La_{0.5}Ca_{0.5-x}Sr_xMnO₃ (x = 0.00, 0.10, 0.20) MANGANITE USING SCATTERING AND HOPPING MODELS

This research explores the effect of Sr²⁺ ion replacement at the Ca-site in divalentdoped La_{0.5}Ca_{0.5}MnO₃ manganites, which are a type of perovskite-structured materials exhibiting fascinating magnetic and electronic transport characteristics. While La_{0.5}Ca_{0.5-x}Sr_xMnO₃ is recognized for its metal-insulator transition and charge-ordering characteristics, a detailed comprehension of the impact of different Sr^{2+} doping concentrations (x = 0.00, 0.10, 0.20) on electrical resistivity remains limited. The objectives of this research are to synthesize La_{0.5}Ca_{0.5-x}Sr_xMnO₃ samples via the solid-state method and to evaluate their temperature-dependent electrical transport properties using scattering and small polaron hopping (SPH) models. All synthesized samples were characterized via resistivity measurements taken over a temperature range of 30-300 K under zero magnetic fields (0 T) and with a magnetic field of 0.8 T. The metals region (T \leq T_{MI}) best fit a combination scattering model ($\rho = \rho_0 + \rho_{2.5} T^{2.5}$), with clear trends of decreasing residual resistivity (ρ_0) and scattering coefficient $(\rho_{2.5})$ as Sr content increased which is indicative of enhanced conduction and higher connectivity between various grains. The insulating region (T>T_{MI}) best matched the SPH model of carrier transport with activation energy (Ea) showing the consistent decrease away from zero as compared to the structural disorder caused by the Sr²⁺ substitution and thus, further confirming better carrier mobility. Overall, these findings shows that Sr²⁺ doping not only reduces structural disorder and lattice distortion but also significantly enhances electrical transport, thus offering a promising route for optimizing manganites in next-generation electronic and spintronic applications.

TABLE OF CONTENTS

	Page
ACKNOWLEDGMENT	iii
ABSTRACT	iv
ABSTRAK	V
TABLE OF CONTENT	vi
LIST OF TABLES	ix
LIST OF FIGURES	X
LIST OF ABBREVIATIONS	xii
CHAPTER 1: RESEARCH BACKGROUND	
1.1 Introduction	1
1.2 Problem statement	2
1.3 Research questions	3
1.4 Objectives	4
1.5 Significance of study	4
1.6 Scope of study	5
CHAPTER 2: LITERATURE REVIEW	
2.1 Introduction of manganite	6
2.1.1 Crystal structure	6
2.1.2 Crystal field splitting	8
2.1.3 Jahn-Teller (JT) effect	9
2.1.4 Double exchange	11
2.2 Electrical transport properties in manganites	13
2.2.1 Metallic region	14
2.2.2 Insulating region	16

2.3 Study on La _{1-x} Ca _x MnO ₃ manganites	19
2.4 A-site substitution	21
2.5 Application of manganites	23
CHAPTER 3: RESEARCH METHODOLOGY	
3.1 Introduction	24
3.2 Preparation of samples	24
3.2.1 Selection of chemicals	24
3.2.2 Composition of samples	25
3.2.3 Equation and calculation of preparation of samples	26
3.2.4 Description of preparation of samples	28
3.3 Characterization of sample	33
3.3.1 Electrical resistivity measurement	33
CHAPTER 4: RESULTS AND DISCUSSION	
4.1 Introduction	35
4.2 Metallic region (T <t<sub>MI)</t<sub>	35
4.2.1 Graph T <t<sub>MI discussion</t<sub>	37
4.3 Insulating region (T>T _{MI})	45
4.3.1 Graph T>T _{MI} discussion	46
CHAPTER 5: CONCLUSION AND RECOMMENDATION	
5.1 Introduction	51
5.2 Conclusion	51
5.3 Recommendation	52