RESEARCH APPROACHES ON THE APPLICATION OF MEDICINAL PLANT EXTRACTION IN INHIBITION OF FUNGAL TOWARDS THE IMPROVEMENT OF INDOOR AIR QUALITY 2010-2020: A SYSTEMATIC REVIEW.

ABSTRACT

By Maizatul Raihanah binti Mokhtarul Kudus (2018292198)

This review provides current information on the application of medicinal plant extraction in inhibition of fungal towards the improvement of indoor air quality 2010-2020 based on analysis of published studies. A systematic literature search of ResearchGate, ScienceDirect, PubMed, Google Scholar and Wiley Online Library from 2010 to 2020 was conducted based on PRISMA Guideline without excluded other relevant articles found during the search. A systematic review search on the topic was conducted using appropriate databases to identify potentially relevant citations. The findings of this review are to listed certain type of medicinal plant extractions against various pathogenic fungi and standardize the method of extraction use in medicinal plants extraction thus evaluate certain medical plant extraction has a potential to inhibit pathogenic fungi that will improve the indoor air quality thus will avoid health issues among community.

Keywords: Fungi inhibition, medicinal plant extraction, pathogenic fungi, indoor air quality, method of extraction.

Abbreviations:

IAQ Indoor Air Quality

SBS Sick Building Syndrome

pH Potential of hydrogen

CO2 Carbon Dioxide

MFC Minimum Fungicide Concentration

MIC Minimun inhibitory concentration

EOs Essential Oil

1.0 INTRODUCTION

Indoor air quality (IAQ) is the air quality around buildings and structures. Poor indoor air quality has been linked to sick building syndrome that will reduced productivity of the workers and impaired learning in schools. A systematic review are conducted in other to avoid sick building syndrome. So, a natural method of medicinal plant extraction to inhibit fungi are search based on this topic to improve indoor air quality.

Air is a basic requirement of life, together with food and water which is maintaining indoor air quality in our office, house and all residential buildings is a must (M Pierpaoli, 2018). The sick building syndrome (SBS) is used to describe a condition in which the resident of a building experience acute health or comfort related effects that seem to be linked directly to the time spent in the building (Joshi, 2008; Author & Shiel, 2021; Environmental Protection Agency & Environments Division, 1991; Stolwijk, 1987).

In 2010, the Department has introduced the Industry Code of Practice on Indoor Air Quality 2010 to increase the compliance of designated workplaces (Axelrad, 2009; Quality et al, 2019). In year 1970s, many buildings are designed to reduced ventilation rate in order to maintain the indoor environment more efficiently thus the construction of buildings with energy-efficient air conditioning system has caused sick building syndrome (SBS) to prevail in Malaysia as a result of poorly maintained air conditioning system, raising the levels of indoor air pollutants (Syazwan Aizat. I et al., 2009; Joshi, 2008; Star and Safety, 2020).

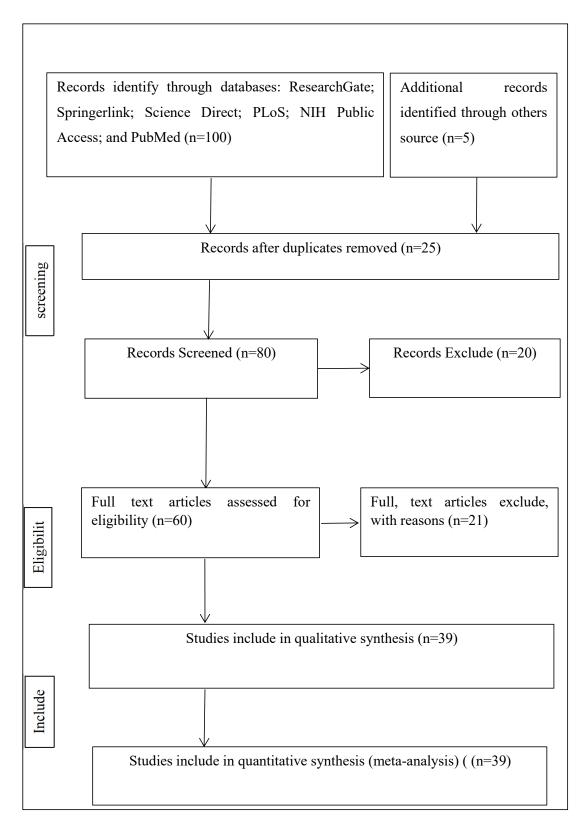
The most important factors influencing mould growth are moisture, temperature, type of substrate and exposure time, whereas less important factors are

availability of mould spores, pH, light, oxygen and surface roughness (Vereecken and Roels, 2012). Specialist concerns on buildings are oriented on the mould growth on surfaces and structures (Gutarowska and Zakowska, 2002). Different solutions for the moulds development were found as the treatment of surfaces with biocidal products (Linder, 2004). A modern orientation is the use the essential oils as biocides because the plant extracts are generally assumed to be more acceptable and less hazardous than the synthetic compounds (Magan and Aldred, 2007).

A synthetic substance or synthetic compound refers to a substance that is man-made by synthesis, rather than being produced by nature. It also refers to a substance or compound formed under human control by any chemical reaction, either by chemical synthesis or by biosynthesis (JSTOR, 2012; Synthetic substance, 2020).

Synthetic chemists routinely perform deep and comprehensive spectral characterization of compounds synthesized in the laboratory, often within 24hour of synthesis (O kayser, 2003). The growing use of synthetic chemicals, including pesticides and pharmaceuticals to attack unwanted organisms, has outpaced rising atmospheric CO2 concentrations and other agents of global change in the last 45 years (Bernhardt et al., 2017). Organic compounds make up the bulk of living organisms, and also comprise an extremely large and varied group of man-made chemicals that can be released to the environment, in which they frequently are regarded as contaminants (Compounds, 2020).

Plant extracts are exceedingly complex, multicomponent mixtures and the level of difficulty in exact quantification of plant hormones is determined mainly by their low concentration in extracts (Hooykaas et al., 1999). Plant extracts are of certain interest because they are almost safe, increase the shelf life of foods, are


widely accepted by consumers, and have the possible to be exploited for multiple uses (Kalpna D. Rakholiya et al., 2013). Medicinal plants have been the source of treatment of abundant diseases in African traditional medicine as well as other forms of treatment from multiple cultures of the world (Metabolite et al., 2020).

They show various promising effects for several health problems, such as colds, coughs, throat irritations, stomachache, indigestion, and gastrointestinal diseases, and have also positive protecting activities such as spasmolytic, sedative, antiviral, anti-inflammatory, antiseptic, hepatoprotective, antihyperglycemic, and immunostimulating (Metabolite et al., 2020).

Justification, by using medicinal plant extract are less hazardous than synthetics compound which implement nature thus inhibition of fungi growth is to improve poor ventilation in air quality of indoor buildings area.

2.0 METHODOLOGY

Systematic reviews and meta-analyses are importants tools for summarizing evidence precisely and valid. The outlines of a systematic review of fungi inhibition shown in Figure 1 based on preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline (Moher et al., 2009). Searches of published literature for application of plant extracts to inhibit fungi towards the improvement of indoor air quality were conducted between January 2020 and April 2020, by using the following databases: ResearchGate; Springerlink; Science Direct; PLoS; NIH Public Access; and PubMed. Searches were run by using the keyword including "Fungi Inhibition", "Indoor Air Quality", "Medicinal Plant" and "Plant Extraction" where the original papers published in local and international journals from 2010 to 2020 were selected. A total of one hundred were retrieved through initial search using databases (n=70), and Google Scholar (n=30). From this initial search, twenty-five articles were duplicates and hence removed. After removing duplicate citations, the selected full text of published sources was retrieved electronically and final selection of relevant sources to include was performed in a second review which is to certify that the articles follow with the search inclusion and exclusion criteria. Finally, a total of thirthy-nine articles were included in this meta-analysis and critically reviewed as summarized in Figure 1 The outlines of a systematic review of fungi inhibition based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline (Moher et al., 2009).

The outlines of a systematic review of fungi inhibition shown in Figure 1 based on preferred reporting items for systematic reviews and meta-analyses (PRISMA) guideline (Moher *et al.*, 2009).

3.0 RESULTS

AUTHOR	RESEARCH	TYPE OF	FINDINGS
	FOCUS	EXTRACTION	
a 11	71		207
Stangarlin et	Plant extracts	-	• 237 plants from the
al., 2011.	are taken from		Brazilian flora are
	tree species.		antimicrobial potential
			tested by Brazilian
			researchers.
Díaz	Extracts of 10	Aqueous, saline	Extracts exhibit fungicidal
Dellavalle et	plant species	buffer and acid	properties.
al., 2011	against	extracts	
	Alternaria spp.		
Al-Askar,	Antifungal	Ethanolic Extract	• All tested plant extracts of
2012	activites on		seeds, roots, and rinds had
	three types		different level of
	Saudi Plant.		antifungal activity against
			fungi.
Mouafo &	Antimicrobial	Methanol Extract	◆ Plant extracts exhibit
Constant,	activity of		antimicrobial activity and
2012	some		N.latifolia proved to be
	Cameroonian		most effective as an
	medicinal plant		antibacterial and

	extracts.			antifungal.
Amini et al.,	(MIC) and	Essential Oil	•	Growth inhibition studied
2012	(MFC)			for essential oils that have
				potential to control of
				some plant pathogenic
				fungi thus considered in
				developing fungicides.
Timothy et	Cassia alata	Aqueous and	•	Cassia alata exhibit a
al., 2012	linn as medical	ethanol		greater antifungal activity
	plant			against some human
				pathogenic fungi.
Rahmoun et	Henna as	Water and five	•	The results has antifungi
al., 2013	traditional	organic extract		activity related to the
	medicine			presence of lawsone in the
				leaves plant thus can
				exploited largely in
				research of new antifungal
				drugs.
Aala et al.,	Effects of	Aqueous	•	Garlic extract as an
2013	garlic			alternative to treat
				dermatophytes.
Kumar &	Antifungal	Acetone,	•	Extracts exhibit amazing

Academy,	activity of	methanol,		fungicidal properties thus
2013	solvent based	benzene, ethyl		used as herbal fungicides.
	extracts	acetate and		
	common	chloroform		
	weeds	extracts		
Stević et al.,	Antifungal	Essential Oil	•	Combination of particular
2014	properties			oils showed reduction of
	determined by			the MIC values when
	in vitro			combined, commendatory
	microdilution			mixtures thus the
	method			reduction of the total
				number of fungi, in situ,
				using selected essential
				oils was determined.
Singh et al.,	In vitro	Methanol	•	Phytochemical analysis of
2014	screening of	extracts		leaf extracts shows
	selected plant			presence of Alkaloids,
	extracts against			Terpenoids, Phenols,
	Alternaria			Saponins and Tannins at
	alternata			various concentrations.
Pandey &	Overview of	Standardization	*	Extraction methods used
Tripathi,	certain	of Extraction		pharmaceutically involves

2014	extractants and			the separation of
	extraction			medicinally active
	processes with			portions of plant tissues
	their			from the inactive/inert
	advantages and			components by using
	disadvantages.			selective solvents.
Rogawansa	Treatment of	Liquid and	•	Tea tree oil are effective
my et al.,	Fungal in	Vapour form		antifungal agent tested
2015	Indoor Air			thus industrial application
	Environments			for the remediation of
				fungal contamination in
				residential and
				occupational buildings.
Mayuri C.	Antifungal	Aqueous and	•	The acetone extracts of
Rathod,	activity of two	acetone extracts		plant are more efficient as
2015	plant species.			compared to the water
				extract.
Moghaddam	Antifungal	Essential oil	•	Great potential of
et al., 2015	activity of			antifungal activity as a
	essential oil			mycelia growth inhibitor
	from seed of			against the tested
	E.platyloba.			phytopathogenic fungi.

Nn, 2015	Comparison of	-	•	All stages of extractions,
	extraction			from the pre-extraction
	method.			and extraction are equally
				important in the study of
				medicinal plants.
Aghazadeh	Effect of	Aqueous	•	Ginger extract has good
et al., 2016	zinger			antifungal and antibiofilm.
Onaran et	Plant Extracts	Methanol	•	Plant extracts of natural
al., 2016	against			antifungal subtract as a
	Different Plant			biological pesticide for
	Pathogenic			alternative management
	Fungi			methods against plant
				diseases.
Of	Antifungal	Chloroform,	•	Some plant extracts tested
&Polymer,	activity of	ethanol, acetone,		possess antifungal
2016.	zingiber	petroleum		activities against fusarium
	officinale			oxysporum.
Kerkeni et	antifungal	-	•	Natural products, either as
al., 2016	activities of			pure phytocompounds or
	various plant			as standardized plant
	components			extracts, provide unlimited
	and novel			opportunities for new drug

	approaches			lads because of normally
				matchless chemical
				diversity.
Jahani et al.,	The antifungal	Methanol	•	Antifungal activity
2016	effects of the	Extraction		Peganum harmala,
	extracts of the			Echinophora platyloba,
	plants against			Rosmarinus officinalis and
	Candida			Heracleum persicum has
	albicans			expressed Feb plants can
				be used to treat infections.
Şesan et al.,	Efficacy of	Aqueous	•	Plant extracts with highly
2016	different plant	extraction		efficacy could be an
	extracts against			alternative in the
	A.alternata,			protection of blackcurrant
				as medicinal crop against
				Alternaria leaf spot and
				fruit rot especially in
				organic horticulture
				system.
Prakash et	Effects of	Aqueous	•	The extract of dried Kadali
al., 2017	Banana of	extraction		banana peel powder and
	Aspergillus			ash exhibited antifungal
	niger			activity against

				Aspergillus niger
Njoki et al.,	The	Aqueous	•	Medicinal plant extracts
2017	effectiveness	Extraction		can control toxigenic
	of medicinal			fungal spread.
	plant extracts			
	in the control			
	of aflatoxin			
	production.			
Reza et al.,	Antimicrobial	Aqueous and	•	All extracts of the plants
2018	Activities of	Alcoholic		tested showed varying
	some Plant	extraction		level of antimicrobial
	Extracts			activities against
	against Fungi			phytopathogenic fungi and
				clinical isolates.
Umaru, 2018	Antifungal	Methanol Extract	•	All plants extract was
	activity of			found maximally affected
	three different			against the activity of
	plant.			Aspergillus niger,
				Aspergillus Flavin,
				Candida tropicalis and
				Fusarium oxysporium and
				aggressively inhibits the
				growth of species in

				various plant extracts.
Rani, 2018	Plant extract	Aqueous	•	Garlic clove extract at
	against	Extraction		10% was found most
	Alternaria leaf			effective giving 84.31%
	blight of			inhibition against
	pigeonpea			Alternaria alternata
Hu et al.,	Antifungal	Plant essential	•	The in vivo inhibitory
2019.	Activity from	oil		activity of selected EOs on
	seven different			naturally infected bread
	species by agar			demonstrated that
	diffusion			cinnamon and clove EOs
	againts three			thus used as natural
	fungi			antifungal agents.
Mogashoa et	The Acetone	Methanol,	•	The acetone leaf extract
al., 2019	leaf extract	butanol, acetone,		used to control P.
		ethyl acetate,		janthinellum infections
		chloroform,		
		dichloromethane		
		and n-hexane.		
Butassi et	Antifungal	Aqueous	•	Anti-Candida activity of
al., 2019	activity of P.	extraction		P. tetramera extracts led
	tetramera			to the most suitable extract

	berry, leaf and			thus antifungal properties
	root extracts			of the threatened species
				P. tetramera.
Meela et al.,	Extract of	Ethyl acetate,	•	Extracts of certain
2019	plant against	methanol, water,		invasive plant species had
	eight plant	Chloroform,		better activity against
	fungal	ethyl acetate,		some fungal pathogens
	pathogens	formic acid,		than some commercial
		Benzene,		fungicides
		ethanol,		
		ammonia		
		hydroxide		
		extraction.		
Darmadi et	Cinnamon	Acetone Extract	•	The acetone extract of
al., 2019	leaves			cinnamon leaves has the
	extraction			potential as a
				biofungicide.
Bonifácio et	Extracts from	Aqueous Extract	•	A. urundeuva leaves
al., 2019	Astronium sp.			extract to be further
	Against			investigated and
	Candida			developed as an antifungal
	albicans			

Wu et al.,	Medicinal	Ethanol Extract	•	Antimicrobial activity of
2020	plant and its			fungal endophytes
	potential for			suggests that fungal
	providing			endophytes harbored
	antimicrobial.			inside the root tubers of S.
				dielsiana hold great
				promise as biocontrol
				agents against a broad
				spectrum of economically
				signifificant pathogens.
Jiang et al.,	52 herb	Ethanol extract	•	Rosa chinensis,
2020	extracts againts			Neopicrorhiza
	pathogenic			scrophulariiflora,Phellode
	fungi			ndron chinense and
				Syzygium aromaticum
				displayed the strongest
				antifungal effects.
Rabiu &	Various	-	•	Procedures include
Haque, 2020	methods used			maceration, digestion,
	in the			decoction, infusion,
	preparation			percolation, Soxhlet
	and screening			extraction, supercial
	of medicinal			extraction,

	plants			ultrasound-assisted, and
				microwave assisted
				extractions.
Ibrahim &	Medicinal	Methanol and	•	Plant material can be
Kebede,	plant for	Aqueous		affected as the temperature
2020	treatment	extraction		of treatment is increases
				with respect to various
				times of exposures.
Khuseib et	Aloe	Aqueous	•	Endophytic fungi of A.
al., 2020	dhufarensis	Extraction		dhufarensis with
	Lavranos is an			antagonistic activity
	important			against phytopathogenic
	medicinal plant			fungi.
Huang et al.,	Ability of	Isolation method	•	The strains are
2020.	endophytic			commercially potential for
	fungi isolated			the biocontrol of plant
	from cucurbit			diseases
	plants			

Table above listed the findings and type of extraction used by each of the article.

4.0 DISCUSSION

4.1 medicinal plants extraction againts certain pathogenic fungi.

According to table above there are findings has been list out sort to 39 articles. All of 39 Articles find that all type of plant listed use to inhibit fungi are succeed towards certain species of fungi according to extraction has been used.

First and foremost, plants extract are commonly taken from tree species that has been proven by researcher and government that can be taken for inhibition of fungi. There are other 237 plants from the Brazilian flora whose antimicrobial potential was tested by Brazilian researchers (Stangarlin et al., 2011).

Next, there are 34 article from the table above has been prove that their medicinal plant species succed in inhibition of fungi (Díaz Dellavalle et al., 2011; Al-Askar 2012; Mouafo & Constant, 2012; Amini et al., 2012; Timothy et al., 2012; Rahmoun et al., 2013; Aala et al., 2013; Kumar & Academy, 2013; Stević et al., 2014; Singh et al., 2014; Rogawansamy et al., 2015; Mayuri C. Rathod, 2015; Moghaddam et al., 2015; Aghazadeh et al., 2016; Onaran et al., 2016; Of & Polymer, 2016; Jahani et al., 2016; Şesan et al., 2016; Prakash et al., 2017; Njoki et al., 2017; Reza et al., 2018; Umaru, 2018; Rani, 2018; Hu et al., 2019; Mogashoa et al., 2019; Butassi et al., 2019; Meela et al., 2019; Darmadi et al., 2019; Bonifácio et al., 2019; Wu et al., 2020; Jiang et al., 2020; Ibrahim & Kebede, 2020; Khuseib et al., 2020; Huang et al., 2020).

Lastly, there four article from the table above stated an overview of certain extractants and extraction processes with the advantages and disadvantages thus a comparison of plants extraction method (Pandey & Tripathi, 2014; Nn, 2015; Kerkeni et al., 2016; Rabiu & Haque, 2020).

4.2 method of extraction used in inhibition of fungi.

First and foremost, there are 15 articles using an aqueous solution in their method of plant extraction (Díaz Dellavalle et al., 2011; Timothy et al., 2012; Rahmoun et al., 2013; Aala et al., 2013; Mayuri C. Rathod, 2015; Aghazadeh et al., 2016; Şesan et al., 2016; Prakash et al., 2017; Njoki et al., 2017; Reza et al., 2018; Rani, 2018; Butassi et al., 2019; Bonifácio et al., 2019; Ibrahim & Kebede, 2020; Khuseib et al., 2020). It is important because by using an aqueous extraction, the natural product in inhibition of fungi occurs but this type of method extraction usually not very effective as alcoholic extraction.

Besides, there are 30 of the article using alchoholic extraction either Acetone, methanol, benzene, ethyl acetate and chloroform extracts, ammonia hydroxide extraction (Al-Askar, 2012; Mouafo & Constant, 2012; Timothy et al., 2012; Kumar & Academy, 2013; Singh et al., 2014; Mayuri C. Rathod, 2015; Onaran et al., 2016; Of &Polymer, 2016; Jahani et al., 2016; Reza et al., 2018; Umaru, 2018; Mogashoa et al., 2019; Meela et al., 2019; Darmadi et al., 2019; Wu et al., 2020; Jiang et al., 2020; Ibrahim & Kebede, 2020). Most of the researcher suggest in using of alchoholic extraction as it is more effective in enhance the antifungal activity.

Lastly, there are four article prefer in using a ready essential oil of medicinal plant extraction in their method as it save time and more faster in result (Amini et al., 2012; Stević et al., 2014; Moghaddam et al., 2015; Hu et al., 2019).

5.0 CONCLUSION

This present study shown that most of the medical plant extraction has a potential to inhibit pathogenic fungi that will improve the indoor air quality thus will avoid health issues among community. The most effective plant species based on the result are Cameroonian, *Algerian Lawsonia Inermis* (henna plant), *Cassia Alata Linn.*, Tea Tree oil, *P. tetramera* berry, Zinger, Ginger, Banana, Cinnamon, *Astronium* sp., Curcubit plant and *Aloe dhufarensis Lavrano* that already proven by the articles above has a potential in inhibition of pathogenic fungi that can be use in further research as it will improve the indoor air quality. Lastly, according to findings above alchoholic extraction is more effectively in enhance the antifungal activity of plants species compare to aqueous extraction. So, there are 34 articles has been prove that their type of medicinal plant extraction by using certain method of extraction are proven in inhibition of fungi thus further research in technologies by using this organic compound to improve the indoor air quality should be done.

REFRENCES

- Aala, F., Yusuf, U. K., & Nulit, R. (2013). Electron microscopy studies of the effects of garlic extract against trichophyton rubrum. *Sains Malaysiana*, 42(11), 1585–1590.
- Abubacker, M. N., Ramanathan, R., & Senthil Kumar, T. (2008). In vitro antifungal activity of cassia alata linn. Flower extract. *Indian Journal of Natural Products* and Resources, 7(1), 6–9.
- Access, O. (n.d.). We are IntechOpen, the world's leading publisher of Open Access books Built by scientists, for scientists TOP 1% Introductory Chapter: Plant Extracts.
- Aghazadeh, M., Bialvaei, A. Z., Aghazadeh, M., Kabiri, F., Saliani, N., Yousefi, M., Eslami, H., & Kafil, H. S. (2016). Survey of the antibiofilm and antimicrobial effects of Zingiber officinale (In vitro study). *Jundishapur Journal of Microbiology*, 9(2), 1–8. https://doi.org/10.5812/jjm.30167
- Aizat, S. (2010). Poor ventilation and the Sick Building Syndrome | EdgeProp.my.

 Edge Property, 1–9.

 https://www.edgeprop.my/content/poor-ventilation-and-sick-building-syndrome
- Al-Askar, A. A. (2012). In vitro antifungal activity of three Saudi plant extracts against some phytopathogenic fungi. *Journal of Plant Protection Research*, 52(4), 458–462. https://doi.org/10.2478/v10045-012-0073-9
- Ali, M., Aro, A. O., Gado, D., Kumar, A., Kumar, V., Pratap, B., & Mcgaw, L. J. (2020). South African Journal of Botany Isolation of endophytic fungi from South African plants, and screening for their antimicrobial and extracellular

- enzymatic activities and presence of type I polyketide synthases. *South African Journal of Botany*, *134*, 336–342. https://doi.org/10.1016/j.sajb.2020.03.021
- Al-Rejaboo, M. A., & Jalaluldeen, A. M. (2019). Studying the Airborne Fungi of some rooms in the internal sections of Mosul university campus and the Possibility of using Sage plants to control it. *Journal of Advanced Pharmacy Education and Research*, 9(3), 17–22.
- Altemimi, A., Lakhssassi, N., Baharlouei, A., Watson, D. G., & Lightfoot, D. A. (2017). Phytochemicals: Extraction, isolation, and identification of bioactive compounds from plant extracts. *Plants*, *6*(4). https://doi.org/10.3390/plants6040042
- Ames, B. N., Profet, M., & Gold, L. S. (1990). Nature's chemicals and synthetic chemicals: Comparative toxicology. *Proceedings of the National Academy of Sciences of the United States of America*, 87(19), 7782–7786. https://doi.org/10.1073/pnas.87.19.7782
- Amini, M., Safaie, N., & Salmani, M. J. (2012). Antifungal activity of three medicinal plant essential oils against some phytopathogenic fungi. 10(1), 1–8.
- Antimicrobial potential of some plant extracts against Candida species. (2010). 1065–1068.
- APU Writing Center. (2015). Literature review Literature review. *Literature Review*, *November*, 33–37.
- Bernhardt, E. S., Rosi, E. J., & Gessner, M. O. (2017). Synthetic chemicals as agents of global change. *Frontiers in Ecology and the Environment*, *15*(2), 84–90. https://doi.org/10.1002/fee.1450

- Bhalodia, N. R., Nariya, P. B., & Shukla, V. J. (2011). Antibacterial and antifungal activity from flower extracts of Cassia fistula L.: An ethnomedicinal plant.

 International Journal of PharmTech Research, 3(1), 160–168. https://doi.org/10.4103/2231-4040.82956
- Bonifácio, B. V., Vila, T. V. M., Masiero, I. F., da Silva, P. B., da Silva, I. C., de Oliveira Lopes, É., dos Santos Ramos, M. A., de Souza, L. P., Vilegas, W., Pavan, F. R., Chorilli, M., Lopez-Ribot, J. L., & Bauab, T. M. (2019). Antifungal Activity of a Hydroethanolic Extract From Astronium urundeuva Leaves Against Candida albicans and Candida glabrata. *Frontiers in Microbiology*, *10*(November), 1–12. https://doi.org/10.3389/fmicb.2019.02642
- Bopp, C., & Wells, J. (2003). Bacterial Agents of Enteric Diseases of Public Health Concern Salmonella serotype Typhi, Shigella, Vibrio Cholerae. *Manual for the Laboratory Identification and Antimicrobial Susceptibility Testing of Bacterial Pathogens of Public Health Importance in the Developing World*, 359.
- Bullerman, L. B. (2003). SPOILAGE | Fungi in Food An Overview. *Encyclopedia*of Food Sciences and Nutrition, 5511–5522.

 https://doi.org/10.1016/b0-12-227055-x/01129-9
- Butassi, E., Svetaz, L. A., Zhou, S., Wolfender, J. L., Cortés, J. C. G., Ribas, J. C., Díaz, C., Palacio, J. P. del, Vicente, F., & Zacchino, S. A. (2019). The antifungal activity and mechanisms of action of quantified extracts from berries, leaves and roots of Phytolacca tetramera. *Phytomedicine*, 60(March), 152884. https://doi.org/10.1016/j.phymed.2019.152884
- CDC. (2020). CDC and Fungal Diseases: What is CDC doing to combat fungal diseases? https://www.cdc.gov/fungal/cdc-and-fungal.html

- Chen, T., Lu, J., Kang, B., Lin, M., Ding, L., Zhang, L., Chen, G., Chen, S., & Lin, H.
 (2018). Antifungal Activity and Action Mechanism of Ginger Oleoresin Against
 Pestalotiopsis microspora Isolated From Chinese Olive Fruits. Frontiers in
 Microbiology, 9(October), 1–9. https://doi.org/10.3389/fmicb.2018.02583
- Columnists, L. L., Mco, A., & Makhbul, K. M. (2021). Beware of Sick Building Syndrome. January, 8–11.
- Communication, S. (2004). Growth inhibition of plant pathogenic fungi by extracts of Allium sativum and Tulbaghia violacea. 70(4), 671–673. https://doi.org/10.1016/S0254-6299(15)30210-6
- Compounds, O. (2020). Hazardous (Organic) Air Pollutants. 1–15.
- Cray, J. A., Houghton, J. D. R., Cooke, L. R., & Hallsworth, J. E. (2015). A simple inhibition coefficient for quantifying potency of biocontrol agents against plant-pathogenic fungi. *Biological control*, *81*, 93–100. https://doi.org/10.1016/j.biocontrol.2014.11.006
- Cross Sectional Study. (2006). In *Encyclopedia of Pain* (pp. 494–494). https://doi.org/10.1007/978-3-540-29805-2_936
- Dall'Asta, C., Cirlini, M., & Falavigna, C. (2014). *Mycotoxins from Alternaria*. 107–121. https://doi.org/10.1016/b978-0-444-63406-1.00003-9
- Darmadi, A. A. K., Sudirga, S. K., Suriani, N. L., & Wahyuni, I. G. A. S. (2019).

 Antifungal Activities of Cinnamon Leaf Extracts Against Sigatoka Fungus

 (Pseudocercospora Fijiensis). *IOP Conference Series: Earth and Environmental Science*, 347(1). https://doi.org/10.1088/1755-1315/347/1/012051
- Díaz Dellavalle, P., Cabrera, A., Alem, D., Larrañaga, P., Ferreira, F., & Dalla Rizza, M. (2011). Antifungal activity of medicinal plant extracts against

- phytopathogenic fungus Alternaria spp. *Chilean Journal of Agricultural Research*, 71(2), 231–239. https://doi.org/10.4067/s0718-58392011000200008

 Fluconazole. (2021). 1–8.
- Gow, N. A. R., & Netea, M. G. (2016). Medical mycology and fungal immunology:

 New research perspectives addressing a major world health challenge.

 Philosophical Transactions of the Royal Society B: Biological Sciences,

 371(1709), 1–11. https://doi.org/10.1098/rstb.2015.0462
- Hu, F., Tu, X. F., Thakur, K., Hu, F., Li, X. L., Zhang, Y. S., Zhang, J. G., & Wei, Z. J. (2019). Comparison of antifungal activity of essential oils from different plants against three fungi. *Food and Chemical Toxicology*, 134(September), 110821. https://doi.org/10.1016/j.fct.2019.110821
- Huang, L., Niu, Y., Su, L., Deng, H., & Lyu, H. (2020). The potential of endophytic fungi isolated from cucurbit plants for biocontrol of soilborne fungal diseases of cucumber. *Microbiological Research*, *231*(July 2019), 126369. https://doi.org/10.1016/j.micres.2019.126369
- I., S. A., J., J., O., N., A., A. Z., & J., K. (2009). Indoor Air Quality and Sick Building Syndrome in Malaysian Buildings. *Global Journal of Health Science*, 1(2). https://doi.org/10.5539/gjhs.v1n2p126
- Ibrahim, N., & Kebede, A. (2020). Saudi Journal of Biological Sciences In vitro antibacterial activities of methanol and aqueous leave extracts of selected medicinal plants against human pathogenic bacteria. *Saudi Journal of Biological Sciences*, 27(9), 2261–2268. https://doi.org/10.1016/j.sjbs.2020.06.047

- Jahani, S., Bazi, S., Shahi, Z., Sheykhzade Asadi, M., Mosavi, F., & Sohil Baigi, G. (2016). Antifungal Effect of the Extract of the Plants Against Candida albicans. *International Journal of Infection*, 4(2), 0–4. https://doi.org/10.5812/iji.36807
- Ji, J., Bhatia, M., & Second, C. (2013). Pluripotent Stem Cells Deposition, Ligand Removal, and Applications of Atomically Precise, Chemical-ly Synthesized Clusters on Metal Oxide Surfaces.
- Jiang, B. C., Shen, J. Y., Wu, J., Lu, R. Y., Zheng, W., Dong, J. X., Yan, L., & Jin, Y. S. (2020). In vitro antifungal activity of 163 extracts from traditional Chinese medicine herbs. *European Journal of Integrative Medicine*, 39(September), 101213. https://doi.org/10.1016/j.eujim.2020.101213
- Kerkeni, L., Ruano, P., Delgado, L. L., Picco, S., Villegas, L., Tonelli, F., Merlo, M., Rigau, J., Diaz, D., & Masuelli, M. (2016). We are IntechOpen, the world 's leading publisher of Open Access books Built by scientists, for scientists TOP
 1 %. Intech, tourism, 13.
 https://www.intechopen.com/books/advanced-biometric-technologies/liveness-detection-in-biometrics
- Khuseib, F., Al-rashdi, H., Al-sadi, A. M., Al-riyamy, B. Z., Maharachchikumbura, S. S. N., Al-sabahi, J. N., & Velazhahan, R. (2020). Endophytic fungi from the medicinal plant Aloe dhufarensis Lavranos exhibit antagonistic potential against phytopathogenic fungi. *South African Journal of Botany*, 000. https://doi.org/10.1016/j.sajb.2020.05.022
- Kilburn, K. H. (2004). Role of molds and mycotoxins in being sick in buildings:

 Neurobehavioral and pulmonary impairment. *Advances in Applied Microbiology*, 55, 339–359. https://doi.org/10.1016/S0065-2164(04)55013-X

- Kumar, G., & Academy, P. (2013). Antifungal activity of some common weed extracts against wilt causing fungi, Fusarium oxysporum. *Current Discovery*, *april*, 5–14. http://www.ijcdi.com/FILEPath/82.pdf
- Lee, S. H., Chang, K. S., Su, M. S., Huang, Y. S., & Jang, H. Der. (2007). Effects of some Chinese medicinal plant extracts on five different fungi. *Food Control*, 18(12), 1547–1554. https://doi.org/10.1016/j.foodcont.2006.12.005
- Li, M., Zhu, L., Liu, B., Du, L., Jia, X., Han, L., & Jin, Y. (2016). Colloids and Surfaces B: Biointerfaces Tea tree oil nanoemulsions for inhalation therapies of bacterial and fungal pneumonia. *Colloids and Surfaces B: Biointerfaces*, *141*, 408–416. https://doi.org/10.1016/j.colsurfb.2016.02.017
- Makhuvele, R., Naidu, K., Gbashi, S., Thipe, V. C., Adebo, O. A., & Njobeh, P. B. (2020). The use of plant extracts and their phytochemicals for control of toxigenic fungi and mycotoxins. *Heliyon*, 6(10), e05291. https://doi.org/10.1016/j.heliyon.2020.e05291
- Malcolm, D., Hope, W., & Second, M. (2014). Aspergillus Learn more about Aspergillus Aspergillus Infectious Endophthalmitis Understanding the Diversity of As- pergillus by Next-Generation Sequenc- ing.
- Martins, N., Barros, L., Henriques, M., Silva, S., & Ferreira, I. C. F. R. (2015). In vivo anti- candida activity of phenolic extracts and compounds: Future perspectives focusing on effective clinical interventions. *BioMed Research International*, 2015. https://doi.org/10.1155/2015/247382
- Mayuri C. Rathod, V. J. G. and D. A. D. (2015). Antifungal Activity of Some Medicinal Plant Material Extract Against Fungus Aspergillus Niger. *World Journal of Pharmacy and Pharmaceutical Sciences*, 4(10), 1323–1332.

- Meela, M. M., Mdee, L. K., Masoko, P., & Eloff, J. N. (2019). Acetone leaf extracts of seven invasive weeds have promising activity against eight important plant fungal pathogens. *South African Journal of Botany*, *121*, 442–446. https://doi.org/10.1016/j.sajb.2018.12.007
- Metabolite, S., Medicine, T., & Oils, E. (2020). *Diversity of Ethno-Medicinal Plants of Tropical Islands*.
- Miró-Canturri, A., Ayerbe-Algaba, R., & Smani, Y. (2019). Drug repurposing for the treatment of bacterial and fungal infections. *Frontiers in Microbiology*, 10(JAN). https://doi.org/10.3389/fmicb.2019.00041
- Mogashoa, M. M., Masoko, P., & Eloff, J. N. (2019). Different Combretum molle (Combretaceae) leaf extracts contain several different antifungal and antibacterial compounds. *South African Journal of Botany*, *126*, 322–327. https://doi.org/10.1016/j.sajb.2019.06.035
- Moghaddam, M., Taheri, P., Pirbalouti, A. G., & Mehdizadeh, L. (2015). Chemical composition and antifungal activity of essential oil from the seed of Echinophora platyloba DC. against phytopathogens fungi by two different screening methods. *LWT Food Science and Technology*, 61(2), 536–542. https://doi.org/10.1016/j.lwt.2014.12.008
- Mordi, R. M., Osula, A. N., Igeleke, C. L., Odjadjare, E. E., Oboh, F. O. J., & Uwadiae, E. O. (2016). The evaluation of the antimicrobial property of *Cassia alata* leaves in Benin city, Nigeria. *Biomedicine and Nursing*, 2(3), 14–23. https://doi.org/10.7537/marsbnj020316.03.Key
- Mouafo, E., & Constant, A. (2012). Investigations of antimicrobial activity of some Cameroonian medicinal plant extracts against bacteria and yeast with

- gastrointestinal relevance. 142, 265–273. https://doi.org/10.1016/j.jep.2012.05.005
- Muslim, S. N., & Hussin, Z. S. (2020). Chemical compounds and synergistic antifungal properties of Thymus kotschanus essential oil plus ketoconazole against Candida spp. *Gene Reports*, 21(October), 100916. https://doi.org/10.1016/j.genrep.2020.100916
- Njoki, L. M., Okoth, S. A., & Wachira, P. M. (2017). Effects of Medicinal Plant Extracts and Photosensitization on Aflatoxin Producing Aspergillus flavus (Raper and Fennell). *International Journal of Microbiology*, 2017(2001). https://doi.org/10.1155/2017/5273893
- Nn, A. (2015). Medicinal & Aromatic Plants A Review on the Extraction Methods

 Use in Medicinal Plants, Principle, Strength and Limitation. 4(3), 3–8.

 https://doi.org/10.4172/2167-0412.1000196
- Norhidayah, A., Lee, C. K., Azhar, M. K., & Nurulwahida, S. (2013). Indoor air quality and sick building syndrome in three selected buildings. *Procedia Engineering*, 53(2010), 93–98. https://doi.org/10.1016/j.proeng.2013.02.014
- Nostro, A., Germano, M. P., Angelo, V. D., Marino, A., & Cannatelli, M. A. (2000). Extraction methods and bioautography for evaluation of medicinal plant antimicrobial activity. Atcc 9027, 379–384.
- Of, A. R., Related, S., Sick, T. O., Among, S., & Personnel, O. (2019). a Review of Studies Related To Sick Building Syndrome Among Office Personnel.

- International Journal of Public Health and Clinical Sciences, 6(2), 21. https://doi.org/10.32827/ijphcs.6.2.21
- Of, J., & Polymer, A. (2016). Antifungal Activity of Chitosan against Fusarium oxysporum f. sp cubense Antifungal Activity of Chitosan against Fusarium. 7(January), 5–9. https://doi.org/10.1002/app.33455
- Onaran, A., Sağlam, H. D., & Materials, A. P. (2016). Antifungal Activity of Some Plant Extracts against Different Plant Pathogenic Fungi. *International Journal of Advances in Agricultural and Environmental Engineering*, 3(2), 284–287. https://doi.org/10.15242/ijaaee.er0616208
- Pandey, A., & Tripathi, S. (2014). Concept of standardization, extraction and pre phytochemical screening strategies for herbal drug. 2(5), 115–119.
- Parveen, S., & Shahzad, A. (2015). A Review on In vitro Culture of Cassia alata

 Linn. (Senna alata): Analysis of Metabolites and Biological Activities. *Journal*of Functional And Environmental Botany, 5(2), 78.

 https://doi.org/10.5958/2231-1750.2015.00016.5
- Patil, M. P., & Patil, R. H. (2019). Data on the inhibitory effect of endophytic fungi of traditional medicinal plants against pancreatic lipase (PL). *Data in Brief*, 27, 104797. https://doi.org/10.1016/j.dib.2019.104797
- Perilla, M. J., Ajello, G., Bopp, C., Elliott, J., Facklam, R., Popovic, T., & Wells, J. (2003). Manual for the laboratory identification and antimicrobial susceptibility testing of bacterial pathogens of public health importance in the developing world. Haemophilus influenzae Neisseria meningitidis Streptococcus pneumoniae Neisseria gonorrhoeae Salm. *Atlanta Georgia United States*

- Centers for Disease Control and Prevention [CDC] National Center for Infectious Diseases, 1–62. http://www.dec.org/pdf docs/PNACW461.pdf
- Pirzada, A. J., Shaikh, W., Ghani, K. U., & Laghari, K. A. (2009). *Sindh Univ. Res. Jour.* 41(2), 15–19.
- Poojar, B., Ommurugan, B., Adiga, S., Thomas, H., Sori, R. K., Poojar, B., Hodlur, N., Tilak, A., Korde, R., Gandigawad, P., In, M., Sleep, R., Albino, D., Rats, W., Article, O., Schedule, P., Injury, C. C., Sori, R. K., Poojar, B., ... Gandigawad, P. (2017). Methodology Used in the Study. *Asian Journal of Pharmaceutical and Clinical Research*, 7(10), 1–5. https://doi.org/10.4103/jpbs.JPBS
- Prabhakar, K., Kumar, L. S., Rajendran, S., Chandrasekaran, M., Bhaskar, K., & Khan, A. K. S. (2008). Antifungal activity of plant extracts against candida species from oral lesions. *Indian Journal of Pharmaceutical Sciences*, 70(6), 801–803. https://doi.org/10.4103/0250-474X.49128
- Prakash, B., Sumangala, C. H., Melappa, G., & Gavimath, C. (2017). Evaluation of Antifungal activity of Banana peel against Scalp Fungi. *Materials Today:*Proceedings, 4(11), 11977–11983. https://doi.org/10.1016/j.matpr.2017.09.119
- Pretorius, J. C., Magama, S., & Zietsman, P. C. (2003). Growth inhibition of plant pathogenic bacteria and fungi by extracts from selected South African plant species. 69(2), 186–192. https://doi.org/10.1016/S0254-6299(15)30344-6
- Rabiu, A., & Haque, M. (2020). Preparation of Medicinal Plants: Basic Extraction and Fractionation Procedures for Experimental Purposes. January. https://doi.org/10.4103/jpbs.JPBS
- Rahmoun, N., Boucherit-Otmani, Z., Boucherit, K., Benabdallah, M., & Choukchou-Braham, N. (2013). Antifungal activity of the Algerian Lawsonia

- inermis (henna). *Pharmaceutical Biology*, 51(1), 131–135. https://doi.org/10.3109/13880209.2012.715166
- Rani, N. (2018). In-Vitro Evaluation of Fungicides, Bioagents and Plant Extracts against In-Vitro Evaluation of Fungicides, Bioagents and Plant Extracts against Alternaria sp . infecting Pigeonpea. January. https://doi.org/10.13140/RG.2.2.31035.85281
- Reza, M., Khoshkholgh, M., Darsanaki, R. K., & Bidarigh, S. (2018). *Journal of Medical Bacteriology Antimicrobial Activities of some Plant Extracts against Phytopathogenic Fungi and Clinical Isolates in Iran.* 7(3), 5–16.
- Rimpau, P. (2016). What Is Sick Building Syndrome? *Kementerian Kesihatan Malaysia*, 1–5.
- Rogawansamy, S., Gaskin, S., Taylor, M., & Pisaniello, D. (2015). An evaluation of antifungal agents for the treatment of fungal contamination in indoor air environments. *International Journal of Environmental Research and Public Health*, 12(6), 6319–6332. https://doi.org/10.3390/ijerph120606319
- Salhi, N., Mohammed Saghir, S. A., Terzi, V., Brahmi, I., Ghedairi, N., & Bissati, S. (2017). Antifungal Activity of Aqueous Extracts of Some Dominant Algerian Medicinal Plants. *BioMed Research International*, 2017. https://doi.org/10.1155/2017/7526291
- Samadi, F. M., Suhail, S., Sonam, M., Sharma, N., Singh, S., Gupta, S., Dobhal, A., & Pradhan, H. (2019). Antifungal efficacy of herbs. *Journal of Oral Biology and Craniofacial Research*, 9(1), 28–32. https://doi.org/10.1016/j.jobcr.2018.06.002

- Şesan, T. E., Enache, E., Iacomi, B. M., Oprea, M., Oancea, F., & Iacomi, C. (2016).

 Antifungal activity of some plant extracts against Alternaria alternata (Fr.) keissl. in the black currant crop (Ribes nigrum L.). *Acta Scientiarum Polonorum-Hortorum Cultus*, 15(5), 57–68.
- Singh, G., Gupta, S., & Sharma, N. (2014). Journal of Experimental Biology and Agricultural Sciences in vitro screening of selected plant extracts against Alternaria alternata. 2(2320).
- Stangarlin, J. R., Kuhn, O. J., Assi, L., & Schwan-Estrada, K. R. F. (2011). Control of plant diseases using extracts from medicinal plants and fungi. *Formatex*, *May* 2015, 1033–1042.
- Steenkamp, V., Fernandes, A. C., & Van Rensburg, C. E. J. (2007). Screening of Venda medicinal plants for antifungal activity against Candida albicans. *South African Journal of Botany*, 73(2), 256–258. https://doi.org/10.1016/j.sajb.2006.11.003
- Stević, T., Berić, T., Šavikin, K., Soković, M., Godevac, D., Dimkić, I., & Stanković,
 S. (2014). Antifungal activity of selected essential oils against fungi isolated
 from medicinal plant. *Industrial Crops and Products*, 55, 116–122.
 https://doi.org/10.1016/j.indcrop.2014.02.011
- Suttajit, M. (1989). Prevention and control of mycotoxins. *Mycotoxin Prevention and Control in Food Grains*, 1, 1–8.
- Suwannarach, N., Kumla, J., Sujarit, K., Pattananandecha, T., Saenjum, C., & Lumyong, S. (2020). Natural bioactive compounds from fungi as potential candidates for protease inhibitors and immunomodulators to apply for

- coronaviruses. *Molecules*, 25(8), 1–21. https://doi.org/10.3390/molecules25081800
- Syazwan Aizat. I, J., J., O., N., A., A. Z., & J., K. (2009). Sick Building Syndrome in Malaysian Buildings. *Global Journal of Health Science*, 1, 126–136.
- Thakur, A., Sharma, N., Bhatti, M., Sharma, M., & Trukhanov, A. V. (2020). Nano-Structures & Nano-Objects Synthesis of barium ferrite nanoparticles using rhizome extract of Acorus Calamus: Characterization and its efficacy against different plant phytopathogenic fungi. *Nano-Structures & Nano-Objects*, 24, 100599. https://doi.org/10.1016/j.nanoso.2020.100599
- The Research Process: An 8-Step Model. (n.d.).
- Thomma, B. P. H. J. (2003). Alternaria spp.: From general saprophyte to specific parasite. *Molecular Plant Pathology*, 4(4), 225–236. https://doi.org/10.1046/j.1364-3703.2003.00173.x
- Timothy, S. Y., Wazis, C. H., Adati, R. G., & Maspalma, I. D. (2012). Antifungal activity of aqueous and ethanolic leaf extracts of Cassia alata linn. *Journal of Applied Pharmaceutical Science*, 2(7), 182–185. https://doi.org/10.7324/JAPS.2012.2728
- Umaru, I. J. (2018). Antifungal potential of some medicinal plants on selected pathogenic fungi. *MOJ Proteomics & Bioinformatics*, 7(5), 271–276. https://doi.org/10.15406/mojpb.2018.07.00246
- Us, A., Us, C., Conditions, H., Herbs, M., Complementary, T., Knowledge, T., & Medicines, T. (2019). *Content Menu. c*, 1–6.
- Venoactive Drugs Biochemistry and Molecular Biology of Plant Hormones. (2017). 83–85.

- World Health Organization. (2020). First meeting of the WHO Antifungal Expert

 Group on Identifying Priority Fungal Pathogens: meeting report.
- Wu, H., Yan, Z., Deng, Y., Wu, Z., Xu, X., Li, X., Zhou, X., & Luo, H. (2020).
 Endophytic fungi from the root tubers of medicinal plant Stephania dielsiana
 and their antimicrobial activity. *Acta Ecologica Sinica*, 40(5), 383–387.
 https://doi.org/10.1016/j.chnaes.2020.02.008
- Yİğİt, D. (2017). Antifungal Activity of Lawsonia Inermis L. (Henna) Against Clinical Candida Isolates. *Erzincan Üniversitesi Fen Bilimleri Enstitüsü Dergisi*, 10(2), 196–202. https://doi.org/10.18185/erzifbed.328754
- Zain, M. E. (2011). Impact of mycotoxins on humans and animals. *Journal of Saudi Chemical Society*, 15(2), 129–144. https://doi.org/10.1016/j.jscs.2010.06.006
- Zainal, Z. A., Hashim, Z., Jalaludin, J., Lee, L. F., & Hashim, J. H. (2019). Sick Building Syndrome among Office Workers in relation to Office Environment and Indoor Air Pollutant at an Academic Institution, Malaysia. *Malaysian Journal of Medicine and Health Sciences*, 15(3), 126–134.