UNIVERSITI TEKNOLOGI MARA

SPATIAL AND TEMPORAL PATTERN DISTRIBUTION OF DENGUE CASES IN A LOCALITY NEARBY MRT LINE KUALA LUMPUR: (A Retrospective Study from 20152019)

MUHAMMAD ASYARAF BIN ZULKIFLI

Project submitted in fulfillment of the requirements for the degree of **Bachelor of Environmental Health and Safety (Hons.)**

Faculty of Health Sciences

January 2021

ACKNOWLEDGEMENT

In the name of Allah, The Most Gracious, The Most Merciful.

Above all, I would like to thank Allah for His blessings and guidance in the completion of this project. I would like to express my deepest gratitude to my supervisor, Prof Madya Nazri Che Dom for their guidance, encouragement and advices in this project, Not to forget, I would like to thank all the lecturers in Department of Environmental Health and Safety, Faculty of Health Sciences who always share their thoughts, knowledge and advice throughout my study in UiTM Puncak Alam. Only God can reward all of you with goodness I would also like to dedicate my appreciation to my group mates and friends for their care, knowledge and materials shared throughout the completion of this project. My special thanks also to my parents and family for their encouragement and moral support. Finally, I would like to thank everyone else who has been directly or indirectly contributed in this study.

TABLE OF CONTENTS

	E PAGE		
DECLARATION BY STUDENT			ii
INTELECTUAL PROPERTIES			ii
APPROVAL BY SUPERVISOR ACKNOWLEDGEMNT			ii
			iii
TABLE OF CONTENT LIST OF TABLES LIST OF FIGURES ABSTRACT ABSTRAK		iv	
		vi	
		vii	
		viii	
			ix
СНА	PTER O	NE: INTRODUCTION	1x 1
CHA		NE: INTRODUCTION Background of study	
]		1
1.1]	Background of study	1 1-2
1.1]	Background of study Problem statement	1 1-2 3-4
1.1 1.2 1.3]	Background of study Problem statement Significance of study	1 1-2 3-4 4-5
1.1 1.2 1.3]	Background of study Problem statement Significance of study Objectives	1 1-2 3-4 4-5 5

5-6

Hypothesis

1.5

ABSTRACT

Malaysia, with a population of approximately 27.7 million and a population density of 84 per sq. km, has continuously recorded rising annual cases of dengue infection since 1980. The pattern of dengue transmission is influenced by complex factors including the environment, climate and weather, human behaviour and dengue virus serotype-specific herd immunity among the human population. The condition of Malaysia itself as tropical climate country provides conductive sites for Aedes mosquitoes to breed and eventually facilitate the distribution of dengue viruses into the population. Data of confirmed dengue cases were collected from 2015 to 2019 in 500 metre radius and 1000 metre radius from twelve MRT stations studied in Kuala Lumpur. The data was analyse to study the the temporal distribution of dengue cases nearby MRT stations. The dengue cases reported were highly influenced by the density of the population lived nearby locality. This result thought to be helpful and relevant to leaders to stay away from this sort of difficult issue by considering proper control measures. This goes about as a notice that the community should not take with this expansion, as the dengue illness shows a higher contamination and transmission rate contrasted with the other comunicable disease in Malaysia.

CHAPTER ONE

INTRODUCTION

1.1 BACKGROUND OF STUDY

Dengue fever (DENF), chikungunya (CHIK), and Zika are three vector-borne diseases (VBDs) transmitted by the Aedesaegypti and Ae. albopictus mosquitos (Harrington et al., 2001; Chouin-Carneiro et al., 2016). In general, VBDs are responsible for approximately 1 billion infections and 1 million deaths per year globally (World Health Organization, 2014). Dengue was established in Malaysia with its first reported cases of DF and DHF in 1900s and 1970, respectively (Cheong., et all, 2013).

Malaysia, with a population of approximately 27.7 million and a population density of 84 per sq. km, has continuously recorded rising annual cases of dengue infection since 1980. Major, national dengue outbreaks were reported in 1974, 1978, 1982 and 1990, exhibiting a 4-year cycle [9]. According to the 2008 Health Facts by Malaysian Ministry of Health, the incidence rate of dengue was 167.76 per 100 000 population with a mortality rate of 0.02 [10]. In the process of becoming a developed nation, massive infrastructure development in this country has contributed towards a high incidence of dengue infection, as urbanization is a favourable factor for *Ae. aegypti* breeding and subsequently facilitates the spread of DENV [11-13].

The pattern of dengue transmission is influenced by complex factors including the environment, climate and weather, human behaviour and dengue virus serotype-specific herd immunity among the human population. The condition of Malaysia itself as tropical climate country provides conductive sites for *Aedes* mosquitoes to breed and eventually facilitate the distribution of dengue viruses into the population. Aside from that, construction sites, factories and schools in developing areas, industrial and