
PROTOTYPE DESIGN COLLECTION

SERIES 4

Universiti Teknologi MARA Pasir Gudang Campus

Prototype Design Collection Series 4

Ahmad Najmie Rusli

Copyright © 2025 Universiti Teknologi MARA Cawangan Johor, Kampus Pasir Gudang, Jalan Purnama, Bandar Seri Alam, 81750 Masai Johor.

All rights reserved. No part of this digital book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the written permission of the Head of the Centre for Studies, Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.

CHIEF EDITOR:

Ahmad Najmie Rusli

EDITOR:

Nurul Nadiah Rasdi

PUBLISHER:

Universiti Teknologi MARA

Cawangan Johor Kampus Pasir Gudang,

Jalan Purnama, Bandar Seri Alam, 81750 Masai, Johor

September 2025

eISBN: 978-967-0033-62-4

FOREWORD

This digital book on Prototype Design Collection Series 4 (PDC Series 4) is published as a reference design for mechanical engineering students. The designs presented experience a few phases of analysis before fabrication of prototype. Each project summarises the project description, prototype, figures, and design parameter. The design products vary in tools or equipment for household, workshop, entrepreneur, etc. Suggested material and detail of prototype dimension are also mentioned in this book.

It is hoped that this book will assist the students to have more ideas on innovation design products in the future.

Table of Contents

CHAPTER 1	1
Design and Fabrication of a Multipurpose Baby Cot	1
Nabil Qayyum Bin Roslan ¹ and Miqdad Bin Khairulmaini ^{2*}	1
CHAPTER 2	3
Design and Fabrication of a Weather Sensing Cloth Drying Rack	3
Mustaqim Syah Bin Kamarul Zaman 1 and Miqdad Bin Khairulmaini 2*	3
CHAPTER 3	5
Design and Fabrication of a Patient Transfer Aid for Seamless Bed to Wheelchair Mo	obility 5
Fateen Aqela Binti Azzaidi 1 and Miqdad Bin Khairulmaini 2*	5
CHAPTER 4	7
Prototype of a Donut Topping Machine	7
Nurul Athirah Binti Ramizan Nassir ¹ and Ahmad Najmie Rusli ^{2*}	7
CHAPTER 5	9
Prototype of a PLA Filament Extruder	9
Abdul Harith Hazim Bin Abd Rashid ¹ and Ahmad Najmie Rusli ^{2*}	9
CHAPTER 6	11
Prototype of a Candy Sorting Machine	11
Hairul Ikhwan Bin Hazizan ¹ and Ahmad Najmie Rusli ^{2*}	11
CHAPTER 7	13
Prototype of a 3D Printing Scrap Recycling Machine	13
Raziq Amir Bin Rosdi ¹ and Ahmad Najmie Rusli ^{2*}	13
CHAPTER 8	15
Manual Compaction Machine for Casting	15
Muhammad Hazim Md Azli ¹ , Najibah Ab Latif ^{2*} and Ainaa Maya Munira Ismail ³	15
CHAPTER 9	17
Convertible Cart-Ladder	17
Mohamad Aimi Zuhairi Fikri Mohd Aimi Zamani ¹ , Najibah Ab Latif ^{2*} and Ainaa May Ismail ³	
CHAPTER 10	19
Design and Fabrication of Mini Firefighting Device	19
Adam Faris Bin Ahmad Zaidy ¹ and Muhamad Faris Syafiq Bin Khalid ^{2*}	19
CHAPTER 11	21
Design and Fabrication of Shuttlecock Launcher Machine	21

Ahmad Amsyar Zuhdi Bin Ahmad Rizal ¹ and Muhamad Faris Syafiq Bin Khalid ^{2*}	21
CHAPTER 12	23
Luggage Scooter	23
Muhammad Yazdane Zalhizra ¹ and Mohd Fadzli Ismail ^{2*}	23
CHAPTER 13	25
Coconut Grating Machine	25
Nur Aina Shamimi Shaiful ¹ and Mohd Fadzli Ismail ^{2*}	25
CHAPTER 14	27
Portable Hydraulic Bending Machine with Various Types of Shape	27
Mustafa Mohamad Salleh ¹ and Hazriel Faizal Pahroraji ^{2*}	27
CHAPTER 15	29
Design Concept of Semi-Automatic Barbeque Grill	29
Muhammad Afiq Najmi Sharudin ¹ and Hazriel Faizal Pahroraji ^{2*}	29
CHAPTER 16	31
Design Concept of Paper Shredder Machine	31
Muhammad Hakim Shamsulzairi ¹ and Hazriel Faizal Pahroraji ^{2*}	31
CHAPTER 17	
Design and Development of Coconut De-Husking Machine	33
Muhammad Azreen Mohammad Shaharom ¹ and Abdul Hadi Abdol Rahim ^{2*}	
CHAPTER 18	
Design and Fabrication of 2-in-1 Sand Sieving Machine	35
Adam Mikhail Zulkharnain ¹ and Norjasween Abdul Malik ^{2*}	35
CHAPTER 19	
Design and Fabrication of Automatic Cat Litter Box	37
Adam Mikhal Masrol ¹ and Norjasween Abdul Malik ^{2*}	
CHAPTER 20	
Design and Fabrication of 2-In-1 Convertible Chair-Ladder	39
Arif Haiqal Bin Roslan ¹ and Mohd Ghazali Mohd Hamami ^{2*}	
CHAPTER 21	
Mini Robotic Arm for Educational Purpose	41
Muhammad Raziq Hudzaifah Mohd Razali ¹ and Wan Muhammad Syahmi bin Wan Fauzi ²	
CHAPTER 22	
Design and Fabrication of an Automated LED Bulb Replacement Device	
Aiman Haikal Bin Mohd Nizam ¹ and Miqdad Bin Khairulmaini ^{2*}	
CHAPTER 23	

RFID Smart Attendance System	45
Mira Elyana binti Mahadi ¹ and Wan Muhammad Syahmi Bin Wan Fauzi ^{2*}	45
CHAPTER 24	47
Portable Water Filter Device	47
Muhammad Irsyad Zufayri bin Azhar 1 and Wan Muhammad Syahmi Bin Wan Fauzi 2*	47
CHAPTER 25	49
Coin Sorter Machine	49
Muhamad Nazif Muhamad Nazir ¹ and Mohd Fadzli Ismail ^{2*}	49
CHAPTER 26	51
Dry Chili Seed Remover	51
Muhammad Ariff Bin Murad ¹ and Nur Aini Sabrin Binti Manssor ^{2*}	51
CHAPTER 27	53
Design and Fabrication of Platform Trolley	53
Ahmad Emir Erfan Mohd Zubri 1 and Nurul Hanna Mas'aud 2*	53
CHAPTER 28	55
Design the Concept of Semi-Automatic Screen-printing Machines	55
Muhammad Zakwan Afif Nazmi 1 and Hazriel Faizal Pahroraji 2*	55
CHAPTER 29	57
Development of an Automatic Wrapping Machine	57
Fauzan Abd Rahman ¹ , Mohd Noor Halmy Ab Latif ^{2*} and Norshadila Ahmad Badela ³	57
CHAPTER 30	59
Design and Fabrication of Manual Gearbox Transmission Systems for STEM Education Kits	
Arief Daniel bin Mohd Nizam 1, Ainaa Maya Munira Ismail 2* and Najibah Ab Latif 3	59
CHAPTER 31	61
Design, Analysis and Assembly of a 4-Axis Left Robotic Arms for STEM Educational	Aids.61
Syed Ahmad Haikal bin Syed Shaharuddin ¹ , Ainaa Maya Munira Ismail ^{2*} and Najibah ³	
CHAPTER 32	63
Lifted Platform Industrial Trolly	63
Ahmad Shaifuddin Sabaruddin 1 and Abdul Hadi Abdol Rahim 2*	63
CHAPTER 33	65
Development of an Automated Sand Sieve Machine	65
Muhamad Akmal bin Othman 1 and Nur Kamarliah Kamardin 2*	65
CHAPTER 34	67
Development of an Innovation Beach Cleaner Machine	67

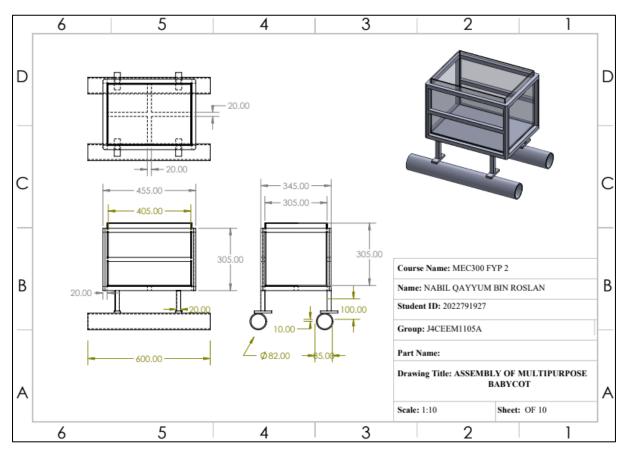
Muhamad Nazrin bin Halim ¹ and Nur Kamarliah Kamardin ^{2*}	67
CHAPTER 35	69
Design and Fabrication of a Helmet Washing Machine	69
Muhammad Fuad Danish Bin Mohd Fauzi 1 and Miqdad Bin Khairulmaini 2*	69
CHAPTER 36	71
Flexydry Rack	71
Jasmeen Emira Binti Nasarudin 1 and Mohd Ghazali Mohd Hamami 2*	71
CHAPTER 37	73
Ezballretriever: The Fast & Simple Tennis Ball Collector	73
Muhamad Izhan Fahmi Bin Mohd Amijar 1 and Mohd Ghazali Mohd Hamami 2*	73
CHAPTER 38	75
Design and Fabrication of Portable Mini Air Cooler	75
Muhammad Amir Zuhair Bin Abd Razak 1 and Mohd Ghazali Mohd Hamami 2*	75
CHAPTER 39	77
Slick & Shine Semi-Automated Shoe Care	77
Siti Noor Syuhada Binti Azhari 1 and Mohd Ghazali Mohd Hamami 2*	77
CHAPTER 40	79
Design and Fabricate Mini Lathe Machine	79
Nik Daniel Haziq Bin Nik Azman Abadi 1 and Ab Aziz Bin Mohd Yusof 2*	79
CHAPTER 41	81
Prototype Solar Hydroponic System	81
Muhammad Ammar Mierza Bin Shuhaimi ¹ and Haszeme Bin Abu Kasim ^{2*}	81
CHAPTER 42	83
Umbrella Dryer Machine	83
Ain Nur Mawaddah Binti Mohd Reduan 1 and Haszeme Bin Abu Kasim 2*	83
CHAPTER 43	85
Free Energy Water Generator	85
Muhammad Farhaan Bin Mohd Fauzan 1 and Haszeme Bin Abu Kasim 2*	85
CHAPTER 44	87
Wind Electric Generator	87
Muhammad Riyadh Luthfil Bin Shahrial 1 and Haszeme Bin Abu Kasim 2*	87
CHAPTER 45	89
Amir Automatic Wrapping Machine	89
Amir Fitri Bin Mohd Rais ¹ , Mohd Noor Halmy Ab Latif ^{2*} and Norshadila Ahmad Badela ³	89
CHAPTER 46	91

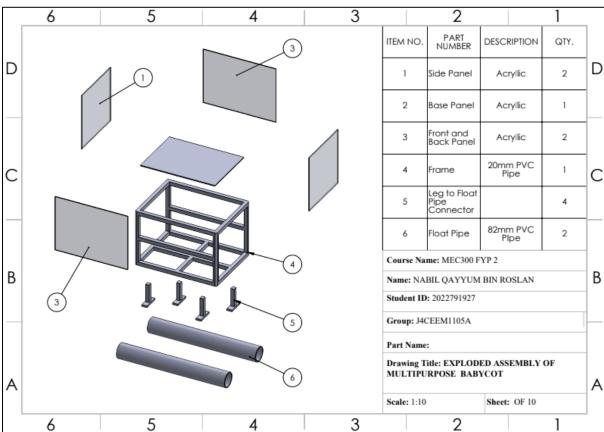
Development of a Prototype for 2 in 1 Folding Smart Chair and Stroller	91
Muhammad Hafiz Syahmi bin Mohamad Fauzi ¹ , Ainaa Maya Munira Ismail ^{2*} and Najiba Latif ³	
CHAPTER 47	93
Prototype of a Multipurpose Pan Machine	93
Muhammad Nazri Bin Muhammad Salme 1 and Nurul 'Ain Haris 2*	93
CHAPTER 48	95
Design and Fabricate A Go – Kart Back Suspension System	95
Muhammad Syafiq Bin Mohd Bakeri 1 and Ab Aziz Bin Mohd Yusof 2*	95
CHAPTER 49	97
Design and Fabrication of Go-kart Front Suspension System	97
Muhammad Irfan Bin Syahriza ¹ and Ab Aziz Bin Mohd Yusof ^{2*}	97
CHAPTER 50	99
Go-Kart Mechanical Linkage Steering System	99
Auni Azira Binti Abdul Razak ¹ and Ab Aziz Bin Mohd Yusof ^{2*}	99
CHAPTER 51	101
Design and Fabricate A Go-kart Motor Fixing Holder and Gearing System	101
Nur Adlin Farhana Binti Mohamed Samud ¹ and Ab Aziz Bin Mohd Yusof ^{2*}	101
CHAPTER 52	103
Design and Fabrication of Steering System for Student Formula Race Car	103
Muhammad Afiq Bin Arpin ¹ and Hazim Sharudin ^{2*}	103
CHAPTER 53	105
Design and Fabrication of Suspension System for Formula Racing Car	105
Muhammad Faiz Najwan Bin Tajul Ariffin ¹ and Hazim Sharudin ^{2*}	105
CHAPTER 54	107
Design and Fabrication of Exhaust and Fuel Systems for a Formula Student Race Car .	107
Muhammad Shahrul Aiman Bin Md Shahrir ¹ and Hazim Sharudin ^{2*}	107
CHAPTER 55	109
Design and Fabrication of Spoilers on A Formula Student Race Car	109
Muhammad Haziq Azizi Bin Noor Ikhsan 1 and Hazim Sharudin 2*	109
CHAPTER 56	111
Design and Fabrication of Body Kit Material for Student Formula Racing Car	111
Muhamad Aiman bin Zaidi 1 and Hazim Sharudin 2*	111
Reference	113

Design and Fabrication of a Multipurpose Baby Cot

Nabil Qayyum Bin Roslan 1 and Miqdad Bin Khairulmaini 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): miqdadkos@uitm.edu.my


PROJECT DESCRIPTION

The increasing demand for space-saving and multifunctional baby furniture has led to the development of a multipurpose baby cot, designed for household use and emergency situations such as floods. This project focuses on the design and fabrication of a modular baby cot that integrates convertibility, buoyancy for flood safety, and structural stability. The design process involved CAD modeling, material selection, and fabrication using lightweight yet durable materials to ensure strength and water resistance. Engineering analysis was conducted to assess load-bearing capacity, stability, and structural integrity under different conditions. Testing results showed that the cot remained stable while floating and maintained its balance under load. However, further improvements in waterproofing, weight distribution, and attachment mechanisms are recommended to enhance durability and long-term usability. This project demonstrates the feasibility of integrating modular and buoyant features into baby furniture, providing a practical and adaptable alternative for modern households and emergency relief applications.

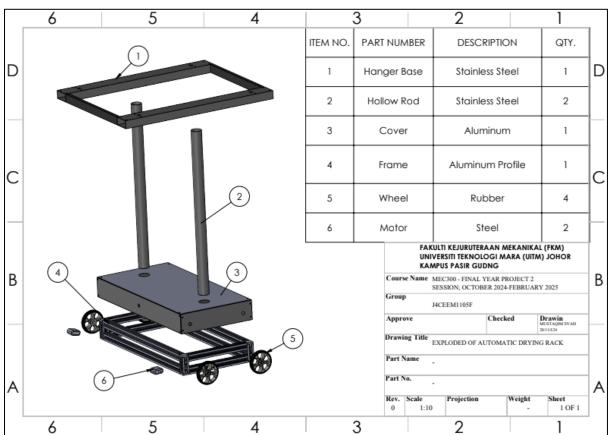
Keywords: Baby Cot, Disaster Aid

Design and Fabrication of a Weather Sensing Cloth Drying Rack

Mustaqim Syah Bin Kamarul Zaman 1 and Miqdad Bin Khairulmaini 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): miqdadkos@uitm.edu.my


PROJECT DESCRIPTION

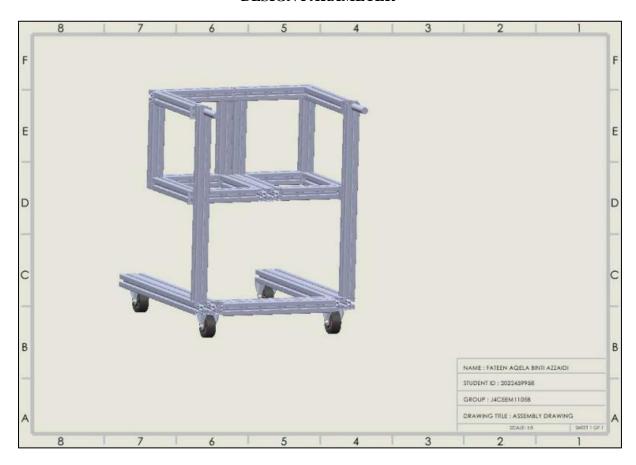
Traditional cloth drying racks pose challenges in unpredictable weather, requiring frequent user intervention. This project focuses on designing and fabricating an automated weather-sensing cloth drying rack equipped with a rain sensor and motorized retractable system to enhance drying efficiency and user convenience. The design process involved concept development, CAD modeling, material selection, and fabrication using mild steel for structural stability. Engineering analysis determined the maximum load capacity (3kg), motor torque requirements, and force distribution to ensure smooth operation. Testing validated that the rain sensor successfully detected precipitation within 3 seconds, triggering the rack's automatic retraction, effectively protecting clothes from rain. Performance evaluation indicated efficient mechanical operation with minimal response delay. However, improvements in sensor calibration, wind resistance, and structural reinforcement are recommended for future enhancements. This project demonstrates the feasibility of integrating automated drying solutions in residential applications, providing a reliable, user-friendly, and weather-adaptive alternative to manual drying methods.

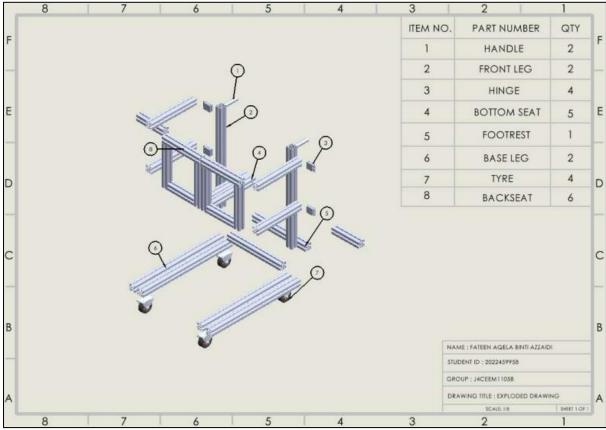
Keywords: Automated Drying Rack, Weather-Sensing System

Design and Fabrication of a Patient Transfer Aid for Seamless Bed to Wheelchair Mobility

Fateen Aqela Binti Azzaidi 1 and Miqdad Bin Khairulmaini 2*

1.2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): miqdadkos@uitm.edu.my

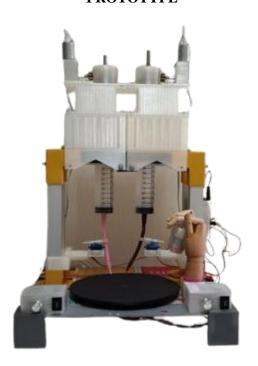

PROJECT DESCRIPTION

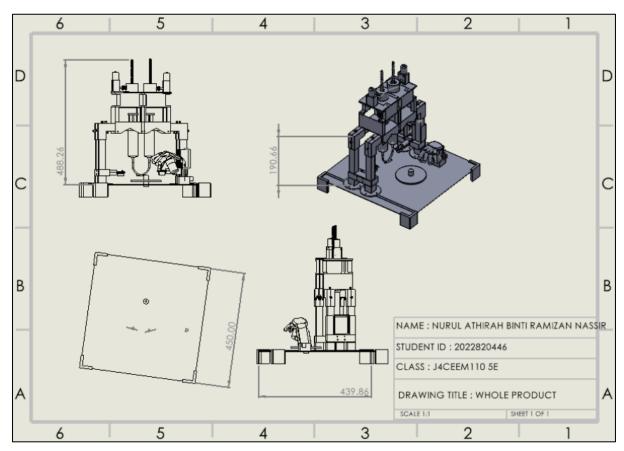
Manual patient transfers between beds and wheelchairs pose significant risks of injury for both caregivers and patients, necessitating the development of a safer and more efficient assistive device. This project focuses on the design and fabrication of a patient transfer aid equipped with a sturdy frame, sliding mechanism, and ergonomic support system to enhance mobility and reduce physical strain. The design process involved concept development, CAD modeling, material selection, and fabrication using lightweight yet durable mild steel for structural stability. Engineering analysis determined the maximum load capacity (120kg), force distribution, and stress analysis on critical components to ensure reliability. The prototype was tested under simulated patient transfer conditions, with results indicating reduction in caregiver effort and decrease in transfer time compared to manual methods. Performance evaluation showed smooth operational movement and adequate weight support, though refinements in frame adjustability, padding comfort, and maneuverability are recommended for future improvements. The findings demonstrate the feasibility of integrating mechanical transfer aids in healthcare environments, offering a safe, user-friendly, and efficient alternative to traditional patient handling methods.

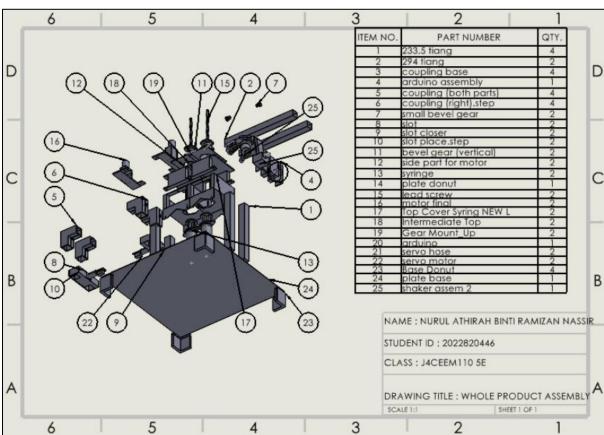
Keywords: *Transfer aid, Mobility*

Prototype of a Donut Topping Machine

Nurul Athirah Binti Ramizan Nassir 1 and Ahmad Najmie Rusli 2*


^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ahmad7586@uitm.edu.my


PROJECT DESCRIPTION

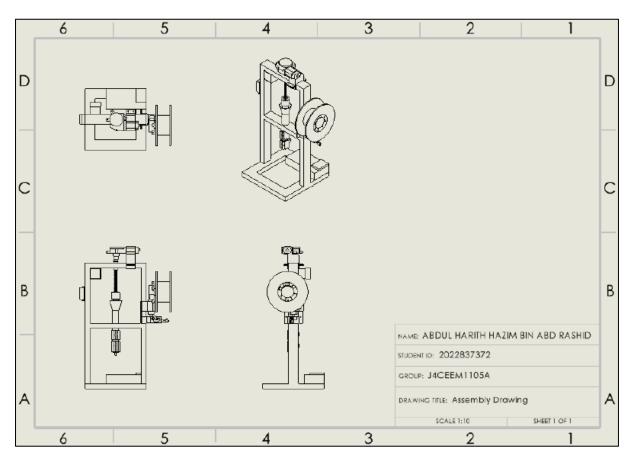
This project presents a prototype of a donut topping machine designed to enhance the efficiency and consistency of topping application in donut production. The system addresses the common challenges faced by donut vendors in achieving uniform topping coverage and fast operation. The machine features two automated dispensers capable of applying various dry toppings, such as sprinkles and icing sugar. During operation, the dispensers move in a zig-zag pattern, while the donut is automatically rotated on its base to ensure full surface coverage. An optional sprinkler function is included to apply an additional layer of topping when selected by the user. The system is powered by a 12V DC motor and controlled via an Arduino microcontroller for precise timing and movement coordination. The dispenser motion is driven by a power screw mechanism, with adjustable speed control enabled by a bevel gear system. This prototype demonstrates a low cost, semi-automated solution aimed at improving topping application consistency and reducing manual labor in small to medium scale donut operations.

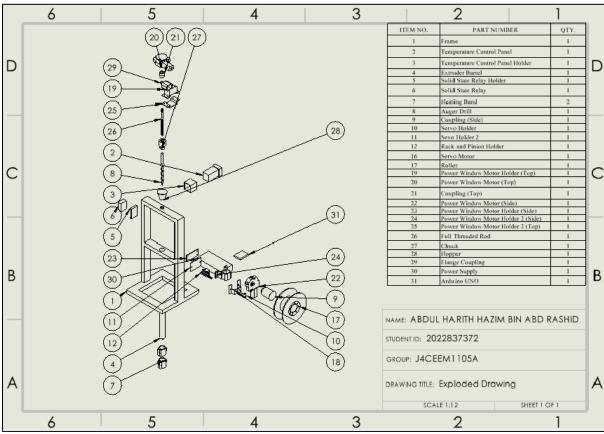
Keywords: Donut machine, Donut topping

Prototype of a PLA Filament Extruder

Abdul Harith Hazim Bin Abd Rashid 1 and Ahmad Najmie Rusli 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ahmad7586@uitm.edu.my


PROJECT DESCRIPTION

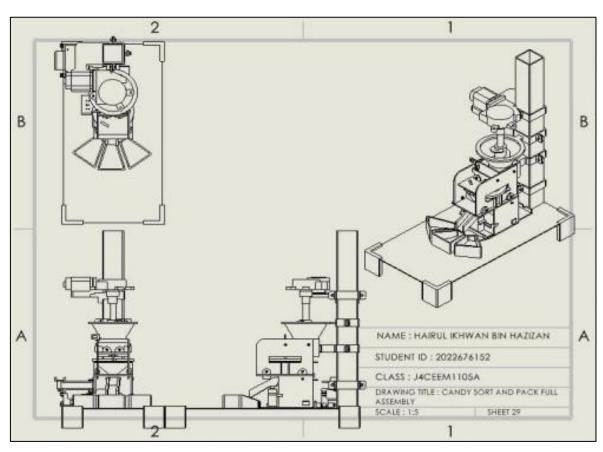
This project aims to design, develop and fabricate a low cost prototype of a PLA filament extruder as a proof of concept. The extruder features a horizontal extrusion process and is equipped with a heating element controlled by a temperature controller to ensure consistent melting. A 12V DC motor is used to regulate the extrusion speed providing better control over filament quality. The system is designed to produce filament with a uniform diameter of 1.7mm. The design process involves studying existing models, redesigning using computer-aided design (CAD) software and performing mechanical and electrical fabrication. This project promotes sustainability, reduces filament cost and makes filament recycling accessible for home users. The goal is to produce a compact, affordable and functional filament extruder that supports sustainable practices, reduces filament costs and increases accessibility for personal or small scale use. This prototype could significantly contribute to eco friendly 3D printing and promote responsible material usage within the growing community of 3D printing enthusiasts and professionals.

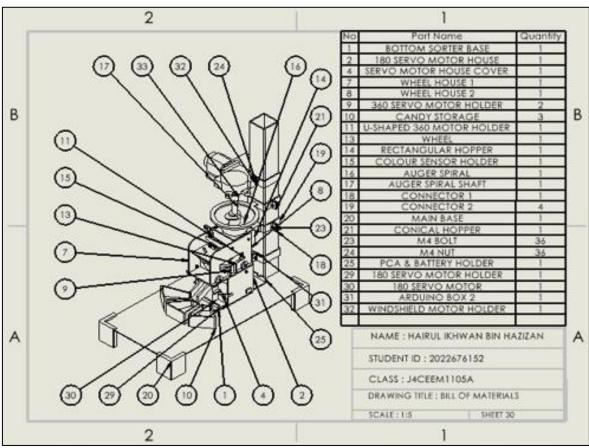
Keywords: Filament, Filament extruder

Prototype of a Candy Sorting Machine

Hairul Ikhwan Bin Hazizan ¹ and Ahmad Najmie Rusli ^{2*}

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ahmad7586@uitm.edu.my


PROJECT DESCRIPTION

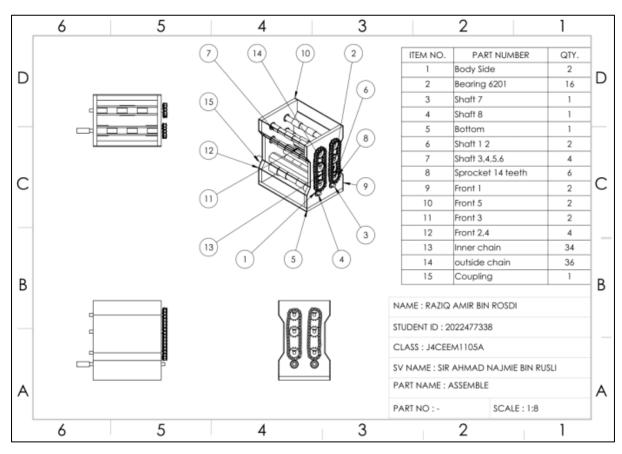
This project presents a prototype of a candy sorting machine designed to streamline the sorting process based on color detection. As the demand for efficient candy production increases, manual sorting becomes time-consuming and prone to errors. The proposed machine addresses this issue by automatically identifying and sorting candies according to their colors in a systematic and organized manner. The main objective is to achieve accurate color detection, uniform distribution, and efficient sorting using Arduino-based control. The system's design incorporates an Arduino microcontroller, color sensors, and motors to drive the sorting mechanism. The development also includes custom Arduino code to handle color detection and implement the sorting logic. This prototype provides a cost-effective and scalable solution to enhance productivity in small- to medium-scale candy manufacturing environments.

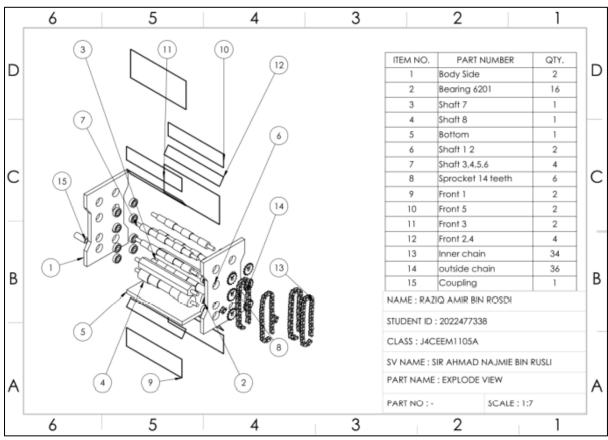
Keywords: Candy sorting, Color sensors

Prototype of a 3D Printing Scrap Recycling Machine

Raziq Amir Bin Rosdi 1 and Ahmad Najmie Rusli 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ahmad7586@uitm.edu.my


PROJECT DESCRIPTION

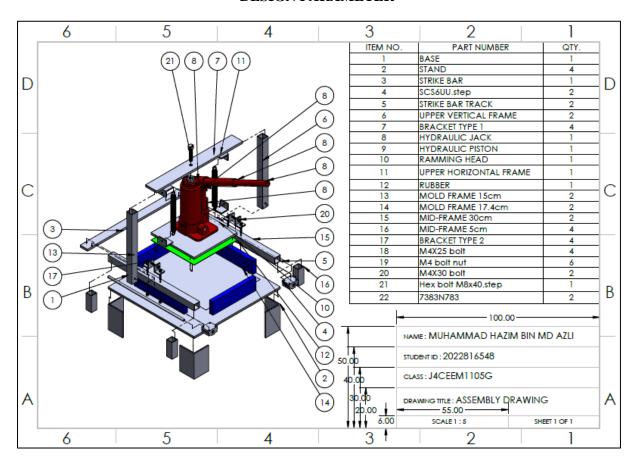
This project presents a prototype of a 3D printing scrap recycling machine, designed to process and reduce waste from failed or excess PLA prints. The structure of the prototype is constructed primarily from acrylic and wood, providing a lightweight yet stable frame for demonstration purposes. The core component of the machine is a shredder unit made from solid mild steel cylinders, featuring a three layers shredder system. Each layer having a different shredder diameter. This design enables the machine to efficiently shred large 3D printed parts up to 50mm x 50mm in size. The output from the shredder consists of coarse PLA debris, which can then be further processed into finer particles using an external blender machine for filament re-extrusion or other recycling processes. The system is powered by a 12V DC motor, with power transmission to the shredder layers achieved via a gear and chain mechanism ensuring synchronized and efficient operation across all layers. This prototype demonstrates a scalable and low cost solution for reducing 3D printing waste in small scale or desktop 3D printer.

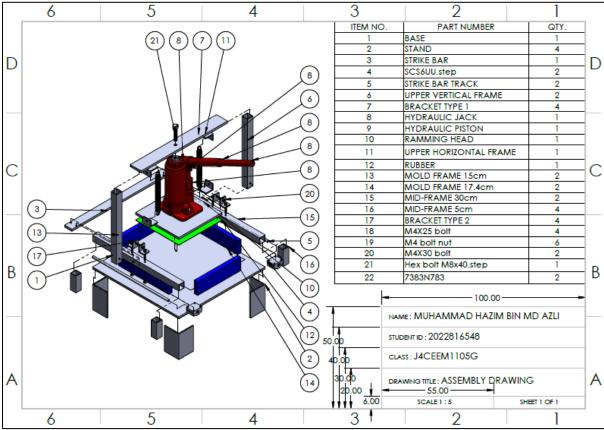
Keywords: *Shredder, Waste 3D printer*

Manual Compaction Machine for Casting

Muhammad Hazim Md Azli ¹, Najibah Ab Latif ^{2*} and Ainaa Maya Munira Ismail ³

1,2,3 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): najibahlatif@uitm.edu.my


PROJECT DESCRIPTION

The production of sand molds for casting is a critical process in modern manufacturing, particularly in industries such as automotive, construction, and machinery. However, existing ramming tools and machines face several inefficiencies, including uneven compaction, high costs, and ergonomic concerns. This study focused on the design and fabrication of a manual ramming machine tailored for small-scale workshops and educational purposes, offering a low-cost and user-friendly solution for efficient mold-making. The proposed manual ramming machine is designed using SolidWorks and incorporates a 2-ton hydraulic jack to ensure uniform sand compaction. Fabrication methods included cutting, welding, and mechanical assembly using durable and recyclable materials. The final prototype is compact, portable, and manually operated, reducing energy consumption and promoting sustainability. Testing confirmed the machine's capability to achieve uniform compression with minimal operator effort, producing high-quality molds in under one minute. The design prioritizes safety and simplicity, making it ideal for students and small-scale manufacturers. Furthermore, the incorporation of recyclable materials and manual operation underscores its environmental benefits. This research highlights the potential of the manual ramming machine to address inefficiencies in current tools, improve accessibility, and enhance the learning experience in casting workshops.

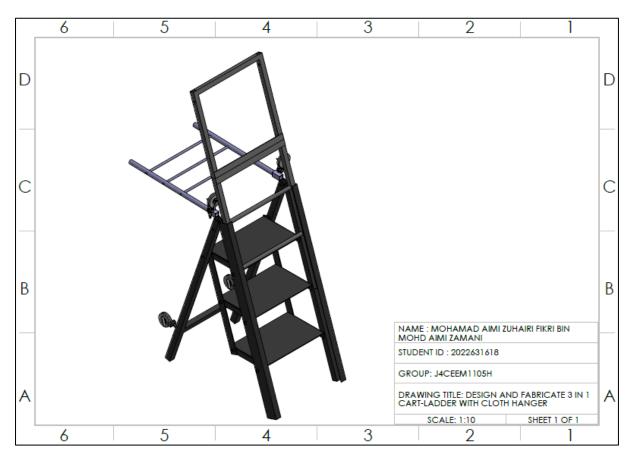
Keywords: Manual, Casting

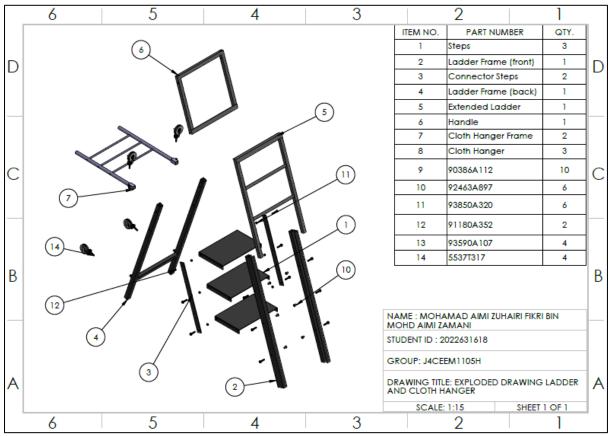
Convertible Cart-Ladder

Mohamad Aimi Zuhairi Fikri Mohd Aimi Zamani ¹, Najibah Ab Latif ^{2*} and Ainaa Maya Munira Ismail ³

1,2,3 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): najibahlatif@uitm.edu.my


PROJECT DESCRIPTION

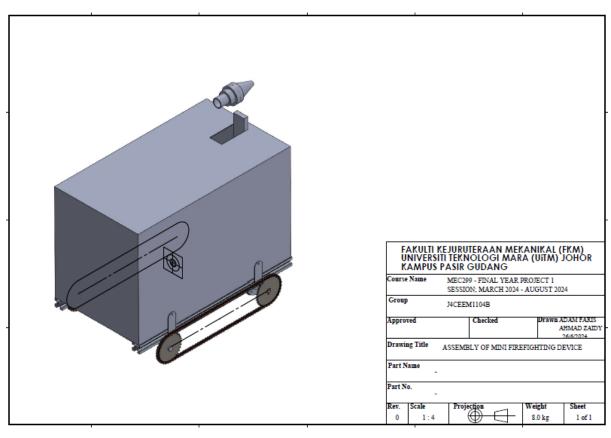

A multipurpose product is one that can be used for a variety of functions or tasks, making it versatile and cost-effective as well as allowing consumers to save space, money, and time by purchasing a single item that can handle different needs. In this case, a convertible cart-ladder with a built-in cloth hanger is an innovative solution that combines versatility and efficiency in a compact, multi-functional unit has been developed. The fabrication process was taking three phases. The first phase includes the ladder frame followed by the ladder step and its extended. Second phase is including the hanger part and last phase is for cart function. This compact design, with all parts that can be folded, makes it easy to store and saves a lot of space when not in use. The frame is designed to support all its functions, with a folding mechanism that allows it to be easily transformed between the three modes. The cart section consists of a platform for carrying materials, while the ladder section used the platform as a step for climbing. The cloth hanger components have its own feature to hang the cloth and supported by a connecter. In conclusion, the multipurpose cart-ladder helped to improve the productivity of the work and solved the storage problem when it not in use. This makes it ideal for use in various settings, including warehouses, retail stores, and homes, where space is limited..

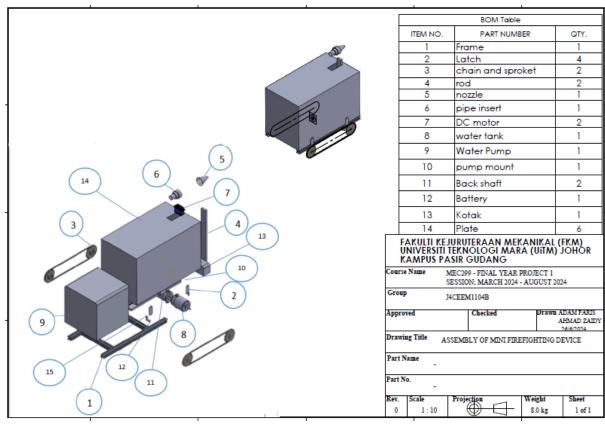
Keywords: *Convertible*, *Cart-ladder*

Design and Fabrication of Mini Firefighting Device

Adam Faris Bin Ahmad Zaidy ¹ and Muhamad Faris Syafiq Bin Khalid ^{2*}

^{1,2}Faculty of Mechanical Engineering Studies, College of Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): mfarissyafiq@uitm.edu.my

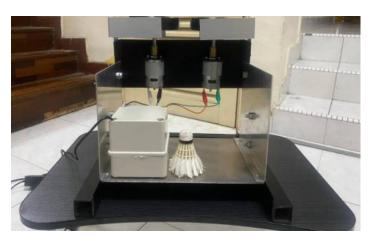

PROJECT DESCRIPTION

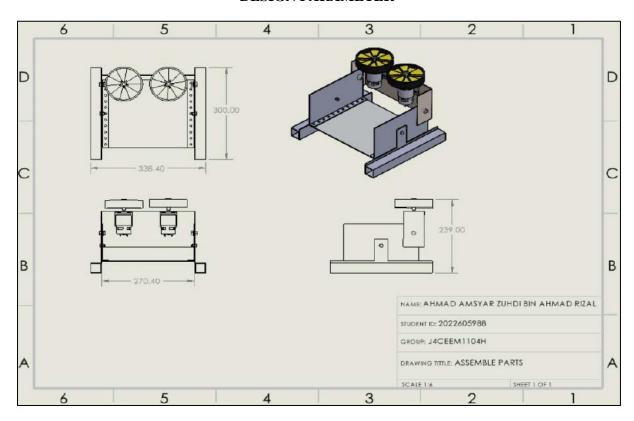
Firefighting remains one of the most hazardous occupations, with personnel frequently required to navigate confined and unstable environments. In such conditions, limited manoeuvrability and delayed response times can result in severe injuries or fatalities. This project presents the design and development of a compact, automated firefighting device intended to address the limitations of existing market solutions, which are often oversized, irregularly shaped, and cumbersome to deploy in restricted spaces. The proposed device features a streamlined form factor optimised for navigating narrow gaps within collapsed structures. An integrated flame sensor enables autonomous water discharge, eliminating the need for manual activation and reducing critical response time. Components are selected based on cost-effectiveness, availability, and ease of maintenance to ensure practicality in large-scale deployment. The design is modelled in SolidWorks 2021 and manufactured using appropriate techniques, with emphasis on minimising weight and enhancing portability. Fabrication involves three primary mechanical processes: bending, joining, and cutting. Control is managed by an Arduino-based system, which aims to reduce operational errors under high-stress emergency conditions. The anticipated outcome is a lightweight, agile, and user-friendly firefighting device capable of operating effectively in confined environments while supporting faster, safer intervention. By combining compact mechanical design, autonomous sensing, and low-cost production, this project seeks to advance firefighting technology, improving both efficiency and safety in critical rescue operations.

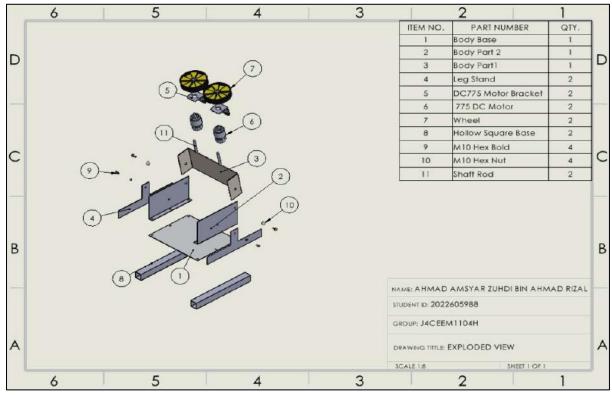
Keywords: Firefighting, Automation

Design and Fabrication of Shuttlecock Launcher Machine

Ahmad Amsyar Zuhdi Bin Ahmad Rizal ¹ and Muhamad Faris Syafiq Bin Khalid ^{2*}


1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): mfarissyafiq@uitm.edu.my


PROJECT DESCRIPTION

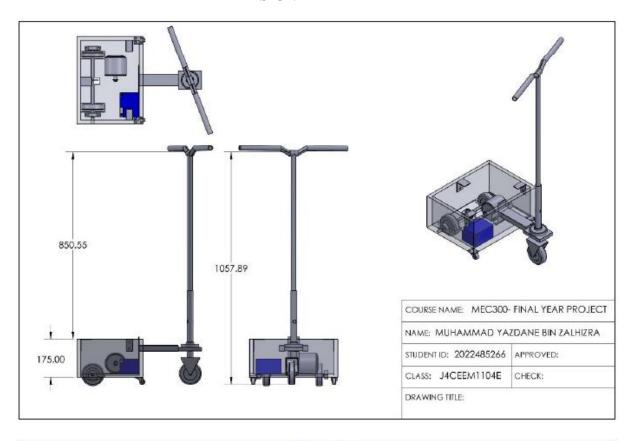
This project focuses on the design and fabrication of a shuttlecock launcher specifically developed to enhance badminton training without reliance on a playing partner. Conventional practice methods often depend on the skill and consistency of a training partner, limiting practice opportunities and reducing training efficiency. To address this limitation, a compact and efficient shuttlecock launching machine is developed, utilising DC motor technology to deliver shuttlecocks at adjustable speeds, trajectories, and directions. The system integrates a motor-driven pitching mechanism with a shuttlecock hopper, supported by safety features designed to prevent accidental operation and ensure user protection. The machine's versatility allows players to independently practice a variety of shots, improving technical precision, reaction time, and overall performance. Its user-friendly design ensures accessibility for players of varying skill levels, while its portable structure supports convenient transport and setup. In addition to functionality, the project incorporates sustainability considerations, including energy-efficient operation, responsible material selection, and an environmental impact assessment to reduce the device's ecological footprint. These measures align with sustainable manufacturing and usage practices, reinforcing the project's commitment to environmental responsibility. By combining engineering design principles, sports technology, and sustainable innovation, this project contributes to the advancement of autonomous training tools in badminton. The resulting device offers a practical, safe, and effective solution for skill development, enabling athletes to train more frequently, independently, and efficiently.

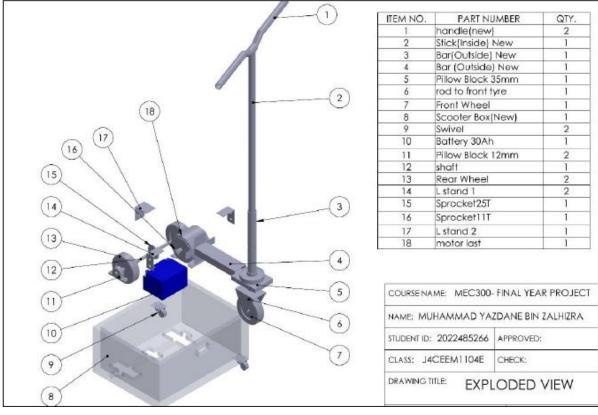
Keywords: Shuttlecock Launcher, Sports Technology

Luggage Scooter

Muhammad Yazdane Zalhizra 1 and Mohd Fadzli Ismail 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): mohdfadzli@uitm.edu.my


PROJECT DESCRIPTION

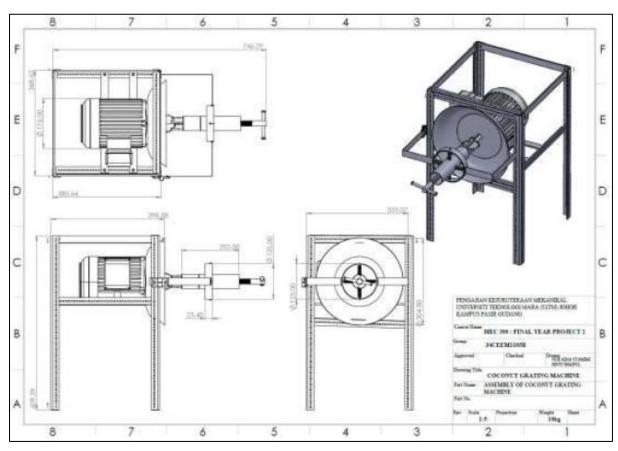
The use of luggage is essential for travelers navigating airports, train stations, and urban environments. Conventional luggage, however, frequently presents logistical and ergonomic difficulties. Travelers frequently experience fatigue and inefficiency when transporting heavy bags across large transit hubs. Furthermore, the motorized luggage options currently available on the market are often prohibitively expensive and inaccessible to budget-conscious users. This study tackles these problems by designing and developing a motorized luggage scooter as an affordable and practical substitute. The aim of this project is to design and fabricate a prototype that combines a 38-liter luggage compartment with a small electric scooter. The methodology involves 3D modelling and structural simulation using SolidWorks, followed by rigorous engineering calculations to determine torque requirements and optimize gear ratios. Fabrication was carried out using MIG welding, precision drilling, threading and assembly, employing materials selected for their strength-to-weight ratio and affordability. The resulting prototype, powered by a 36V, 350W brushed DC motor, successfully demonstrated reliable propulsion, maneuverability and structural stability under a load of up to 100 kg. The prototype achieved all functional and economic objectives with a total production cost of RM383.73. In conclusion, the project confirms the feasibility of a low-cost, sustainable and ergonomically efficient rideable luggage solution, offering a practical and scalable alternative for lastmile mobility and short-distance travel.

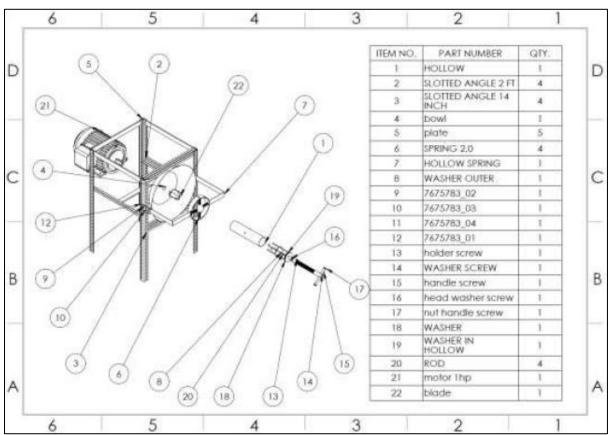
Keywords: Luggage Scooter, Low-cost

Coconut Grating Machine

Nur Aina Shamimi Shaiful 1 and Mohd Fadzli Ismail 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): mohdfadzli@uitm.edu.my


PROJECT DESCRIPTION

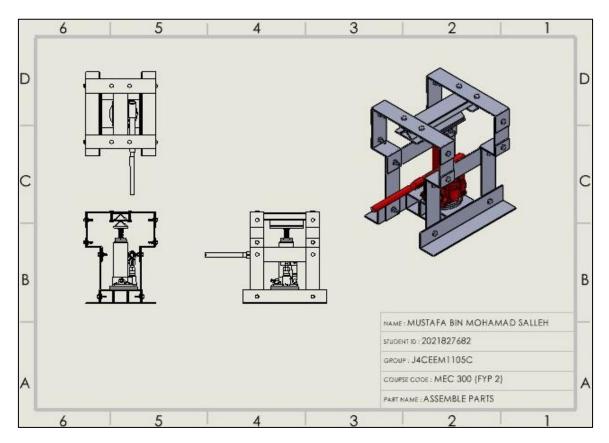
Coconut is a widely used ingredient in traditional and modern cooking. Existing grating methods, however, often pose safety hazards, require high physical effort, involve bulky and expensive equipment. This study addresses the dual challenges of user safety and machine compactness in conventional coconut grating machines. The aim of this project is to design and fabricate a low-cost coconut grating machine that is safe, efficient and suitable for household and small-scale use. The methodology involves a systematic engineering approach comprising conceptual design, material selection and computer-aided design using SOLIDWORKS. Fabrication processes were carried out through a series of operations including cutting, drilling, welding and assembling. A coconut clamping mechanism was incorporated to prevent direct hand contact with the rotating blades and reduce the risk of injury. The machine prototype incorporates a slotted angle bar frame, a 2800 rpm AC motor and a stainless-steel bowl as the grating base. The final prototype demonstrated effective coconut grating performance, user-friendly and improved safety, all in a compact design and at a cost below RM300. In conclusion, the developed machine provides a cost-effective and practical solution for safe and efficient coconut grating. Future improvements in ergonomics and automation could further enhance its performance and support sustainability in household food processing.

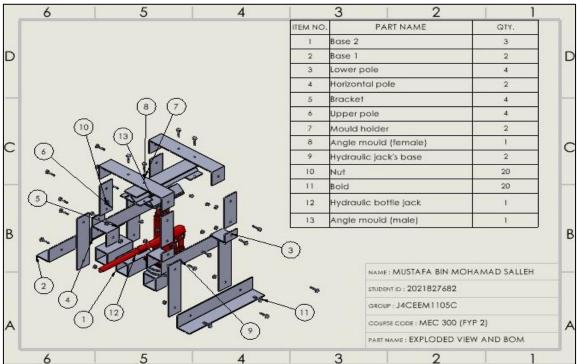
Keywords: Coconut Grating, Low-cost

Portable Hydraulic Bending Machine with Various Types of Shape

Mustafa Mohamad Salleh ¹ and Hazriel Faizal Pahroraji ^{2*}

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): hazriel@uitm.edu.my


PROJECT DESCRIPTION

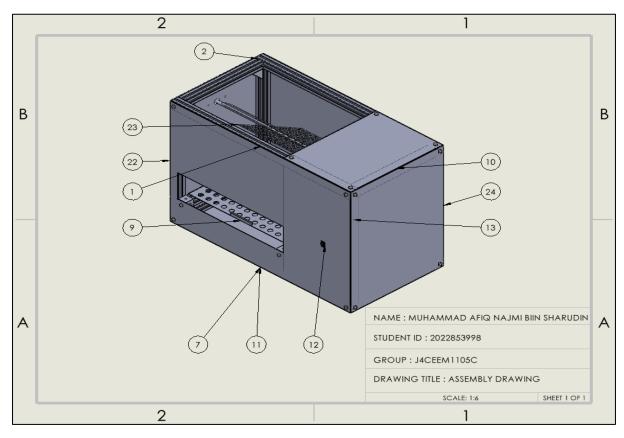
Sheet metal hydraulic bending machine is used to bend the sheet metal to get the required shape. For example, V-shape, and U-shape. The standard of existing bending machine for sheet metal is commonly placed at a single location which is fixed and there will be a limit for user to use the machine due to the machine location. So, to improve the existing design, the objective of this project is to create a portable hydraulic sheet metal bending machine which is very affordable and reasonable for the user. This project will show how detail the process to make the machine, such as final comprehensive design, cost-efficiency of material, product specifications and how to fabricate a new design of improvement for portable hydraulic sheet metal bending machine that will make the user become easier to complete the production. The expected result from this planning is the bender will function very well to withstand the forces which are applied to bend the sheet metal. The most important component for this project is the hydraulic jack because it is the main item that must function to bend the workpiece. In conclusion, this affordable and reasonable project will give a lot of benefit to the user because it is very easy to handle it, especially to those who have the bending task, such as college student and vocational also technical school.

Keywords: Sheet metal bender, Hydraulic jacks, Various shape

Design Concept of Semi-Automatic Barbeque Grill

Muhammad Afiq Najmi Sharudin ¹ and Hazriel Faizal Pahroraji ^{2*}

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim. *Corresponding author (e-mail): hazriel@uitm.edu.my


PROJECT DESCRIPTION

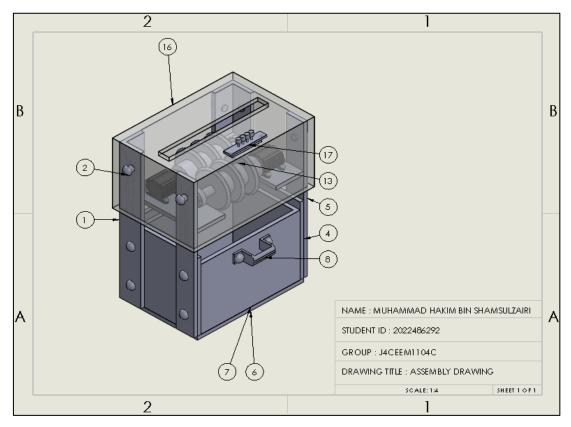
The semi-automatic barbeque grill is a project targeted at designing and fabricating a novel barbeque grilling solution that will involve convenience as well as modern technological advancement. Major objectives of this paper include the design a semi-automatic barbeque grill using SolidWorks, produce as a proof of its concept, enhance creativity and productivity using mechanical systems. Issues in traditional grilling addressed here are uneven heat distribution, potential health risks from environmental dust and waste or inefficiency in energy application. This semi-automatic barbeque grill achieves consistent results with minimal supervision and easy to disassemble and reassemble. In addition, saving energy remains one of the features with which the grill design is concerned, hence environmentally friendly. The outcome anticipated is a hassle-free, time-saving and reliable grilling experience while upholding the high quality of food preparation standards. It will also serve as a learning resource for Do-It-Yourself (DIY) electronics and mechanical design skills due to the fact that it will give out new skills and knowledge. The semi- automatic barbeque grill will bring revolution in this outdoor cooking by making the grilling solution practical, enjoyable and technologically advanced.

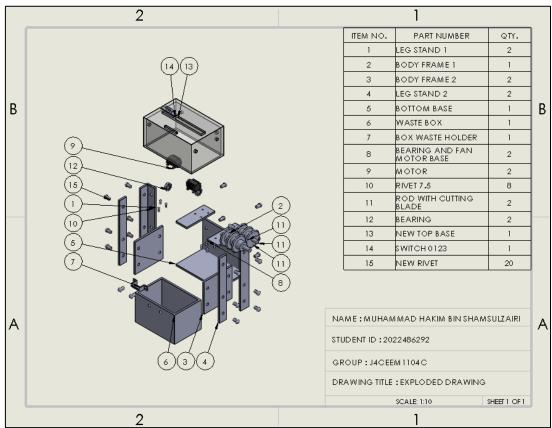
Keywords: Barbeque, Design, Semi-automatic

Design Concept of Paper Shredder Machine

Muhammad Hakim Shamsulzairi 1 and Hazriel Faizal Pahroraji 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): hazriel@uitm.edu.my


PROJECT DESCRIPTION

This paper deals with the design of a paper shredder machine that will safely, efficiently, and without wastes shred documents. Much information is very private in nature, so it must be protected with the advent of information technology; hence, efficient destruction by way of document shredding remains a need at offices and personal levels. The goal is the realization of an affordable, user-friendly machine able to shred paper into small, unreadable pieces to ensure all useful data are destroyed, thus preventing unauthorized disclosure of any information. The project is intended to address the current weaknesses in document disposal methods, including inefficient manual tearing and unsafe burning implications on the environment. These will incorporate a detailed mechanical design phase, careful choice of materials and components, rigorous testing aimed at ensuring operational safety and efficiency, and complete documentation of the process from the development of a concept to the constructed prototype. The result should be an operative paper shredder that has predefined shredding capacities and is constructed ensuring noise reduction with a little disturbance effect, also including all the necessary precautions as to its safe use, and applicable in all situations where one needs a practical means for the secure disposal of documents. Such a project does not only meet technical requirements but also helps raise awareness with respect to data security and further track sustainable waste management practices in modern society.

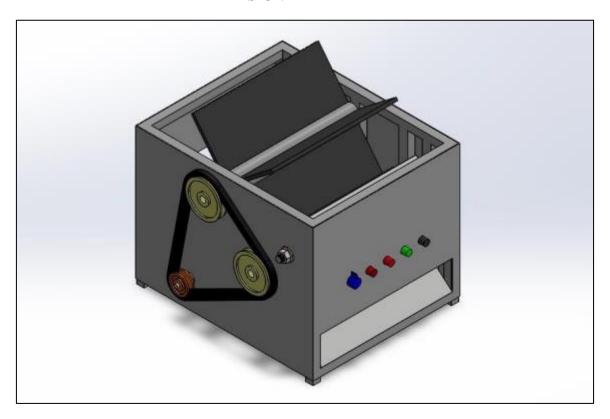
Keywords: paper shredder, design, machine

Design and Development of Coconut De-Husking Machine

Muhammad Azreen Mohammad Shaharom ¹ and Abdul Hadi Abdol Rahim ^{2*}

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): abdulhadi@uitm.edu.my


PROJECT DESCRIPTION

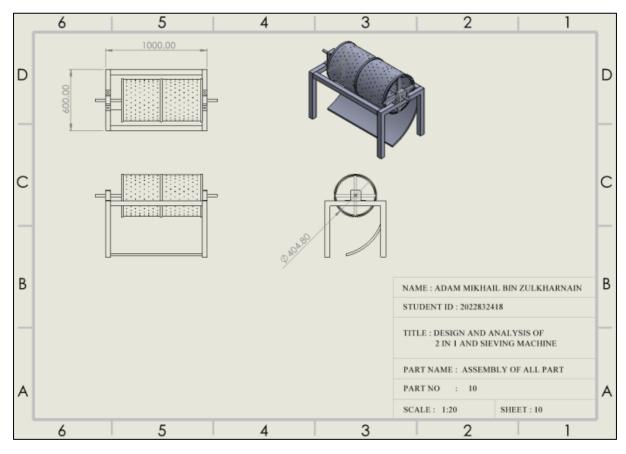

In Malaysia, the coconut industry faces challenges related to the labor-intensive and hazardous de-husking process. This project aims to design and develop a coconut de-husking machine to address these issues. The main objectives are to enhance the efficiency, safety, and cost-effectiveness of the dehusking process. The proposed machine will be designed using SolidWorks 2023 and powered by a single motor. Key methodologies include the conceptual design, engineering analysis, and fabrication of the machine. The expected outcomes are improved processing speed, reduced labor costs, and enhanced worker safety. This project not only aims to benefit the local coconut industry but also has the potential to contribute to global agricultural practices.

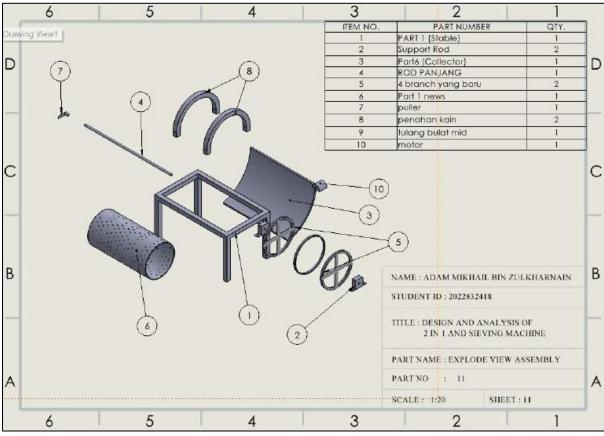
Keywords: Coconut, Machine

Design and Fabrication of 2-in-1 Sand Sieving Machine

Adam Mikhail Zulkharnain 1 and Norjasween Abdul Malik 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

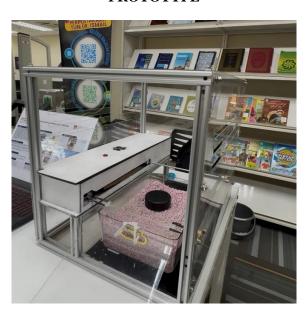

*Corresponding author (e-mail): norjasween@uitm.edu.my

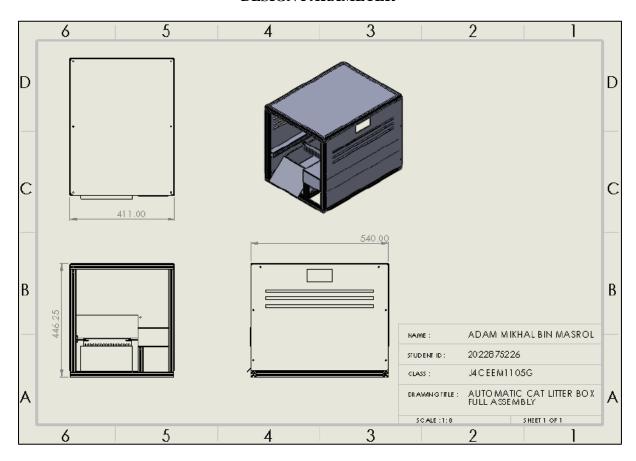

PROJECT DESCRIPTION

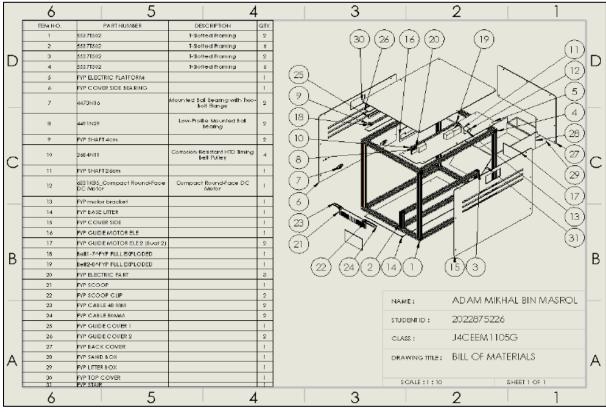
Sand sieving is a crucial process in construction, manufacturing, and other industrial applications where fine and coarse particles must be separated to ensure optimum material used. Conventional sieving methods, which often rely on manual labor, are time-consuming, inefficient, and physically demanding. Thus, this project aims to design and fabricate a 2-in-1 sand sieving machine, which integrates both manual and motorized operations to enhance efficiency and flexibility. The combination of manual and automated sieving mechanisms makes the system cost-effective, reducing labor thus improving productivity. This machine operates using a roller sieving mechanism, where a rotating cylindrical sieve filters sand particles based on size. As the roller rotates, finer sand particles pass through the mesh while larger impurities are separated, ensuring high-quality sieved sand. In manual mode, the user rotates the roller by hand, while in motorized mode, an electric motor drives the roller, automating the sieving process for improved efficiency and reduced labor effort. For the fabrication part, the process involves designing the product, selecting raw materials, and shaping them through machining and forming.

Keywords: Sand Sieving, Sieving

Design and Fabrication of Automatic Cat Litter Box


Adam Mikhal Masrol 1 and Norjasween Abdul Malik 2*


^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim. *Corresponding author (e-mail): norjasween@uitm.edu.my


PROJECT DESCRIPTION

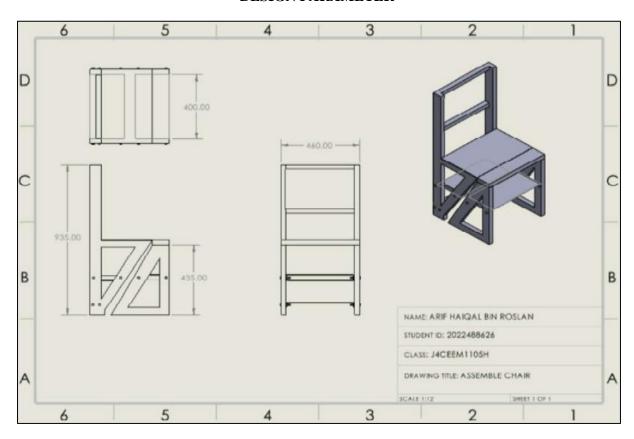
Many cat owners face challenges in maintaining a clean litter box due to time constraints, hygiene concerns, and the manual effort required for regular cleaning. These issues can lead to unpleasant odors and potential health risks for human. Hence, this project presents the development of an automatic cat litter box, consist of self-cleaning system designed to reduce human intervention in managing feline waste. The main objective of this project is to design and fabricate a fully functional automatic litter box that improves hygiene, saves time, and reduces the owner's workload. The design is developed using SolidWorks, while the control system is programmed using an Arduino UNO microcontroller. The litter box utilizes sensors and a timer-based mechanism to detect when a cat enters and exits the box. After a preset countdown, the cleaning system is activated, automatically raking the waste into a separate compartment. The completed product has an approximate dimension of 540mm (L) \times 411mm (W) \times 446mm (H), weighs 9kg, supports a sand capacity of 2.5kg, and is powered by a 12V battery. The project has successfully achieved its stated objectives, resulting in a fully operational automatic litter box that has been tested and proven to function effectively under real conditions.

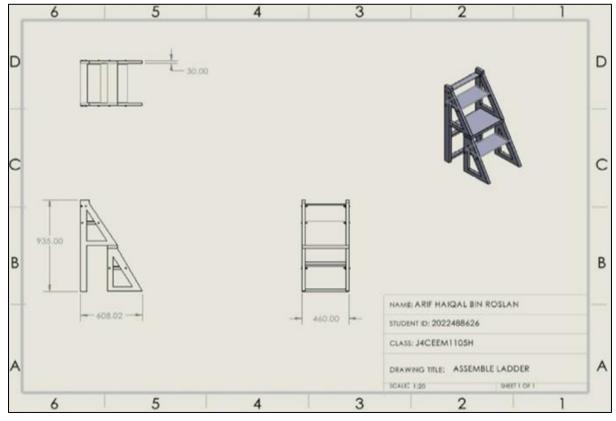
Keywords: Automatic cat litter, Cat litter

Design and Fabrication of 2-In-1 Convertible Chair-Ladder

Arif Haiqal Bin Roslan 1 and Mohd Ghazali Mohd Hamami 2*

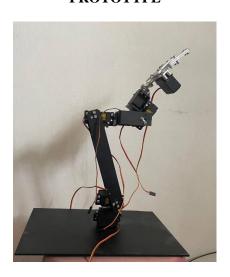
^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim. *Corresponding author (e-mail): ghazali.hamami@uitm.edu.my

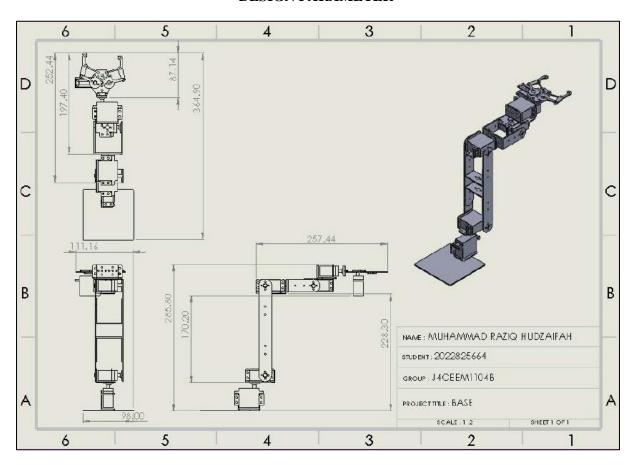

PROJECT DESCRIPTION

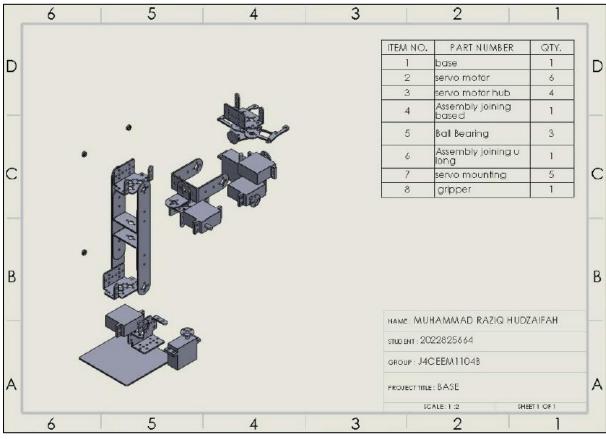

This project introduces a practical solution for optimizing workspace in workshops by designing and fabricating a 2-in-1 convertible chair-ladder. Workshops often struggle with clutter and limited space, which can lead to stress and inefficiency. This innovative product combines the functionality of a chair and a ladder into one compact design. As a chair, it offers comfortable seating, and as a ladder, it provides a stable platform for reaching elevated areas. Built with durable materials and designed with safety and ergonomics in mind, this chair-ladder not only saves space but also simplifies tasks, making it a versatile and cost-effective addition to any workshop.

Keywords: Convertible, Chair-ladder

Mini Robotic Arm for Educational Purpose


Muhammad Raziq Hudzaifah Mohd Razali 1 and Wan Muhammad Syahmi bin Wan Fauzi 2*


^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim. *Corresponding author (e-mail): wmsyahmi@uitm.edu.my


PROJECT DESCRIPTION

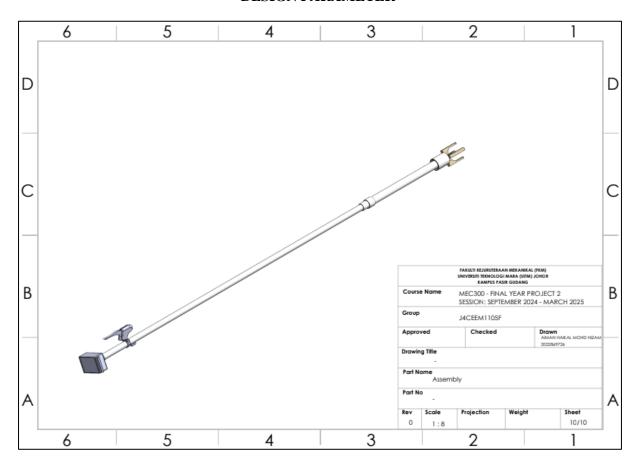
The rapid advancements in robotics have increased the demand for hands-on educational tools that enhance students' understanding of automation, control systems, and programming. However, many existing robotic arms are either too expensive or too complex for beginners, limiting accessibility in educational settings. To address this issue, this project focuses on the design and fabrication of a mini robotic arm with six degrees of freedom (DOF) for educational purposes. The methodology involves the design of mechanical components, selection of appropriate servo motors, electronic circuit integration, and programming using Arduino IDE. The robotic arm is constructed from aluminum, ensuring durability while maintaining a lightweight structure. It is powered by servo motors for precise movement and is controlled via an Arduino microcontroller, making it an ideal platform for learning embedded systems and robotics programming. The system is operated using a 3-axis analog controller, providing an intuitive and user-friendly interface for students to manipulate the arm in real-time. The performance of the robotic arm is evaluated based on movement accuracy, response time, and ease of control. The results indicate that the mini robotic arm successfully performs basic pick-and-place operations with considerable articulation and precision. It provides an affordable and effective tool for students to explore robotics concepts, motion control, and automation techniques. Future improvements may include integrating sensors for enhanced functionality and expanding control options through wireless connectivity.

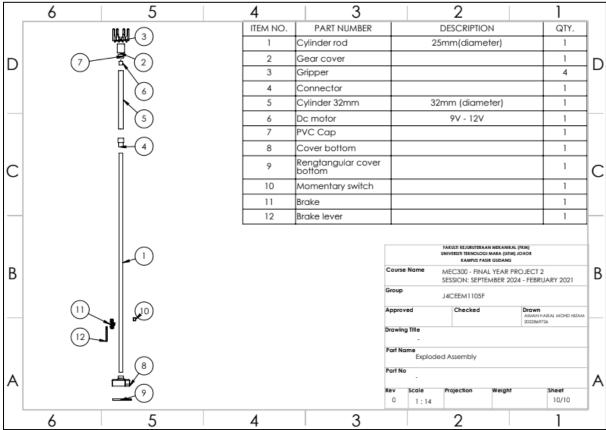
Keywords: Robotic, Arm

Design and Fabrication of an Automated LED Bulb Replacement Device

Aiman Haikal Bin Mohd Nizam 1 and Miqdad Bin Khairulmaini 2*

1.2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): miqdadkos@uitm.edu.my


PROJECT DESCRIPTION

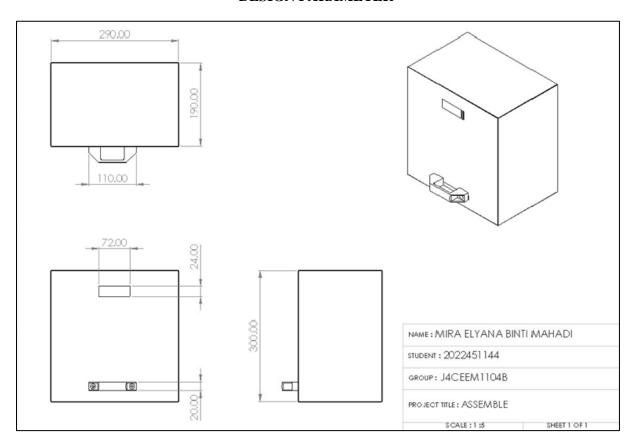
Manual LED bulb replacement poses safety risks, particularly in high-ceiling installations where ladder use increases the likelihood of falls. This project focuses on the design and fabrication of an automated LED bulb replacement device equipped with a motorized gripping mechanism enhance efficiency. The design process involved concept development, CAD modeling, material selection, and fabrication using lightweight aluminum for durability and ease of handling. Engineering analysis determined the motor torque specifications, and stability considerations for various ceiling heights. Testing validated that the device successfully removed and installed LED bulbs with the gripper ensuring a secure hold without damaging the bulb. Performance evaluation indicated smooth mechanical operation, though refinements in grip adjustability, automation response time, and improved maneuverability are recommended for future iterations. The findings demonstrate the feasibility of automated bulb replacement systems in reducing workplace hazards and providing a convenient, user-friendly alternative to traditional methods.

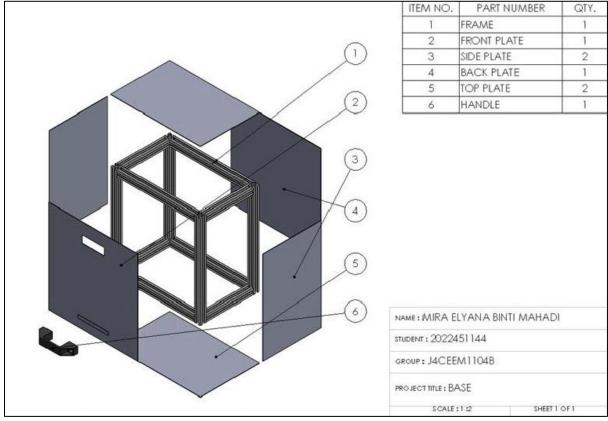
Keywords: Automated Bulb Replacement, Motorized Gripping Mechanism

RFID Smart Attendance System

Mira Elyana binti Mahadi 1 and Wan Muhammad Syahmi Bin Wan Fauzi 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): wmsyahmi@uitm.edu.my


PROJECT DESCRIPTION

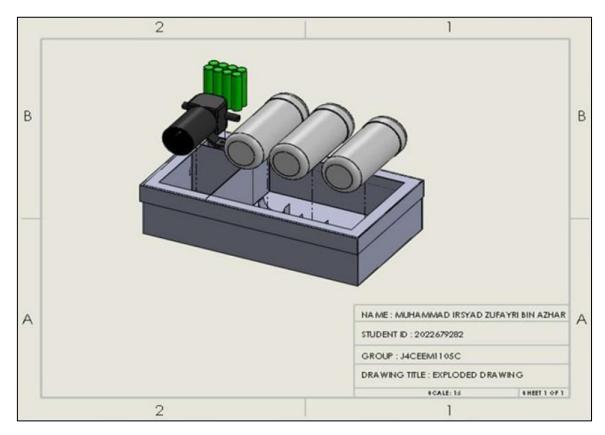
The concept of attendance involves people, either individually or as a group, appearing at a location for a previously scheduled event. The measurement of attendance is of significant concern for many organizations, as such information can be used to gauge the effectiveness of their efforts and to plan for future endeavours. Attendance has traditionally been done manually, fostering student-teacher relationships but prone to errors and time-consuming. The RFID (Radio Frequency Identification) Smart Attendance System project aims to revolutionize the traditional method of tracking attendance by leveraging Radio Frequency Identification (RFID) technology to streamline the process efficiently and accurately. This innovative system seeks to address the problem of time-consuming manual roll calls and the potential for inaccuracies in attendance records. The objective of this project is to develop a user-friendly, automated attendance management system that minimizes human error and maximizes reliability. This project involves integrating RFID tags with an attendance management software, which records each student or employee's attendance as they enter or exit the premises. This system not only simplifies the attendance tracking process but also provides real-time data analytics for better management. By minimizing human intervention, this solution not only streamlines attendance tracking but also strengthens data integrity and operational efficiency.

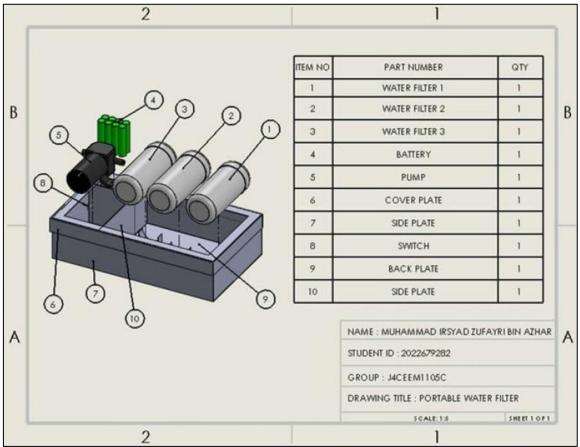
Keywords: RFID, Attendance

Portable Water Filter Device

Muhammad Irsyad Zufayri bin Azhar ¹ and Wan Muhammad Syahmi Bin Wan Fauzi ^{2*}

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): wmsyahmi@uitm.edu.my


PROJECT DESCRIPTION

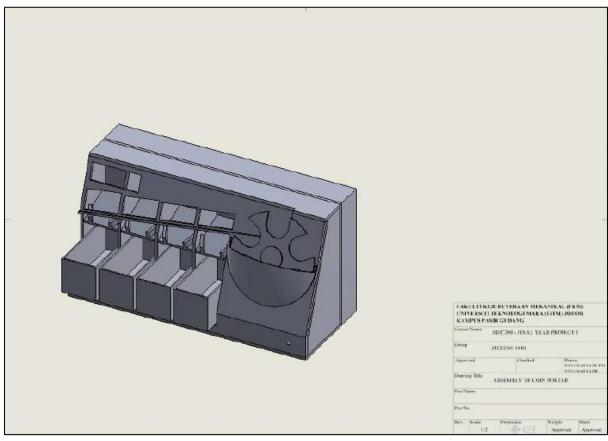
Access to clean and safe drinking water remains a critical global challenge, especially in remote and disaster-stricken areas. Contaminated water sources pose severe health risks, leading to waterborne diseases that affect millions worldwide. To address this issue, this project focuses on the design and fabrication of a portable water filter device that provides a reliable, cost-effective, and user-friendly solution for water purification. The proposed device utilizes a multi-stage filtration system, including 12V water pump, ceramic filtration and activated carbon to effectively remove impurities, bacteria, and harmful contaminants. The methodology involves material selection, prototype development, and performance testing under different water conditions to ensure optimal efficiency. The design emphasizes portability, durability, and ease of use, making it suitable for outdoor activities, emergency situations, and rural communities with limited access to clean water. The results demonstrate that the device able to improve water quality by reducing turbidity, eliminating harmful microorganisms, and removing odor and undesirable tastes. By offering an affordable and practical solution, this portable water filter device contributes to public health improvements, disaster relief efforts, and sustainable access to safe drinking water. Future advancements may incorporate additional purification technologies and smart monitoring features to enhance usability and efficiency.

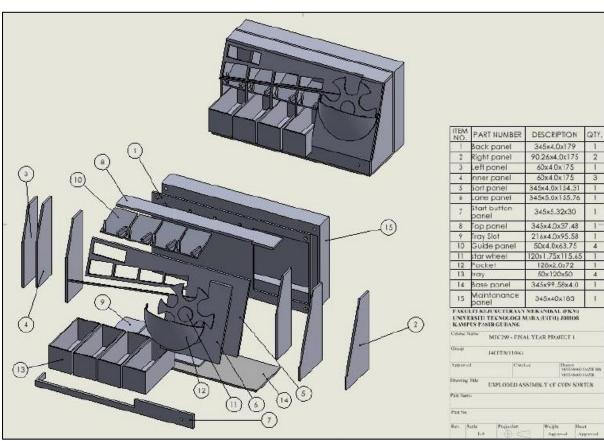
Keywords: Water, Filter

Coin Sorter Machine

Muhamad Nazif Muhamad Nazir 1 and Mohd Fadzli Ismail 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): mohdfadzli@uitm.edu.my


PROJECT DESCRIPTION

Manual coin handling poses significant challenges for small businesses due to its inefficiency, inaccuracy and labour-intensive nature. It made even more difficult by the expensive and bulky nature of commercial sorting machines. This study addresses these issues by developing a low cost and compact prototype coin sorter machine designed for Malaysian coin denominations. The aim of this project is to design and fabricate a user-friendly sorting device that enhanced sorting accuracy and operational reliability. The methodology involved a structured design approach using SolidWorks for modelling and analysis, followed by material selection such as steel for the body and acrylic for coin trays. The prototype was then fabricated through cutting, joining, and assembly processes. Experimental results demonstrate that the coin sorter machine operates effectively, accurately distinguishing and sorting 5, 10, 20, and 50 cent coins using size-calibrated channels. The machine demonstrated reliable performance in terms of sorting speed, energy efficiency, and ease of use. In conclusion, the project proves the viability of an affordable automated coin sorter, offering improved productivity, cost savings and convenience for small-scale applications.

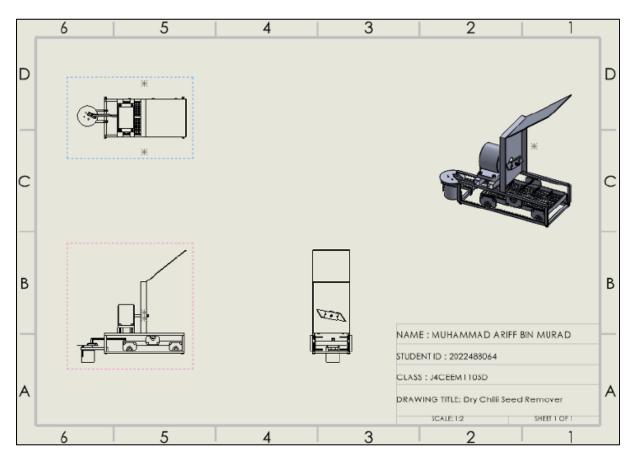
Keywords: Coin Sorter, Sorting Device

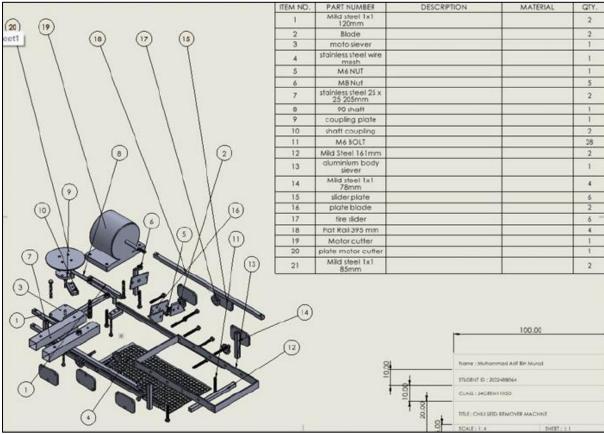
Dry Chili Seed Remover

Muhammad Ariff Bin Murad 1 and Nur Aini Sabrin Binti Manssor 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): nuraini0175@uitm.edu.my


PROJECT DESCRIPTION

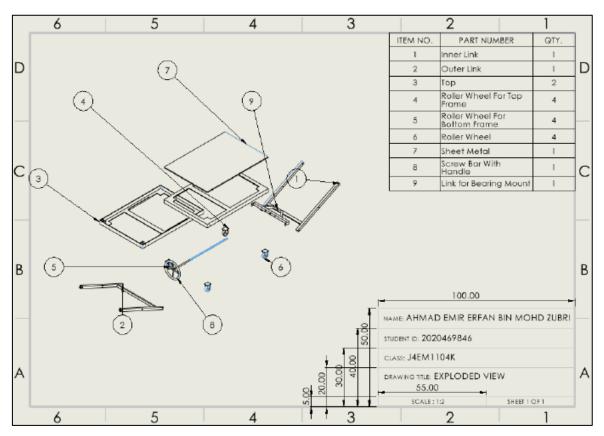

This project presents the design and fabrication of a dry chili seed remover machine aimed at improving the efficiency, safety and hygiene of separating seed from dried chili peppers. Traditional manual methods are labor intensive, time consuming and pose risks of injury. The main objective of this project were to design and fabricate a cost effective prototype suitable for domestic and small scale use. The prototype features a compact design, incorporating a motor powered rotating blade to cut chili peppers and a crank slider mechanism that drives a sieve for seed separation. The machine is constructed using mild steel and stainless steel to ensure strength and food safety. The final prototype, measuring 600 x 270 x 210 mm was successfully tested and demonstrated efficient seed removal with minimal effort and reduced risk of injury. This project offers a practical solution for small food processing operations, promoting productivity, safety and sustainability.

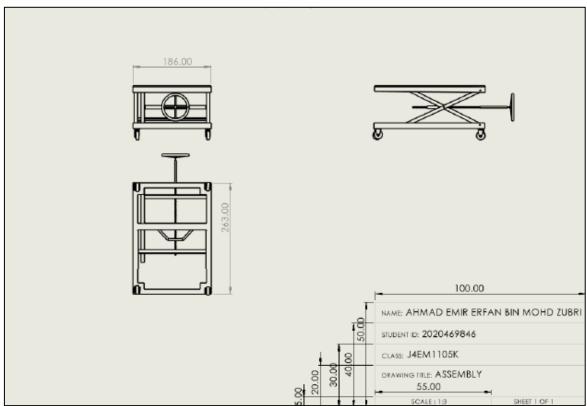
Keywords: Chili Seed Remover, Agricultural Machinery

Design and Fabrication of Platform Trolley

Ahmad Emir Erfan Mohd Zubri 1 and Nurul Hanna Mas'aud 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim. *Corresponding author (e-mail): nurul989@uitm.edu.my

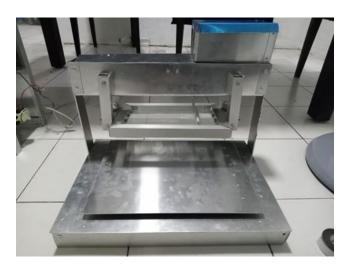

PROJECT DESCRIPTION

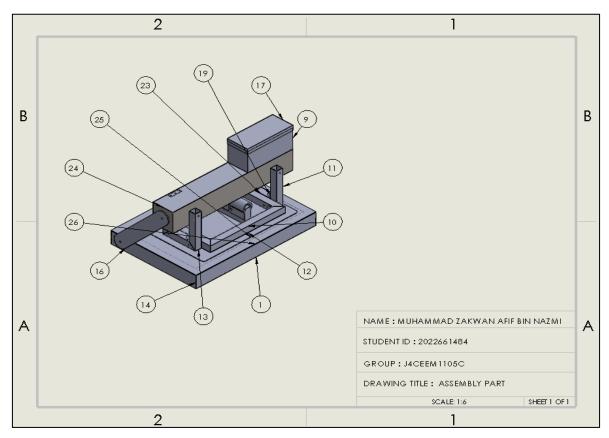

Material handling is a critical operation in manufacturing, warehousing, and logistics sectors, where the movement and positioning of heavy loads are frequent. Manual lifting not only reduces productivity but also poses a risk of musculoskeletal injuries to workers. In many small and mediumscale industries, workers are often required to lift and move heavy objects manually, which can lead to physical strain, reduced productivity, and long-term musculoskeletal injuries. This project addresses these issues by developing a manually operated lift trolley that combines both mobility and vertical lifting capability. The primary objective is to design a cost-effective, user-friendly, and durable platform that can be easily maneuvered and adjusted in height without the use of electrical power. This makes the system especially suitable for environments where electricity is limited or where powered lifting devices are not economically feasible. The problem being solved is the lack of affordable lifting equipment that offers both transportation and vertical lift functionality in a compact form. The proposed trolley incorporates a scissor lift mechanism actuated by a mounted on a wheeled base for easy movement. The design process involves detailed CAD modeling, selection of appropriate materials such as mild steel for structural strength, and fabrication using welding, cutting, and machining techniques. The platform is reinforced to ensure stability during load lifting, while swivel caster wheels with brakes are added for enhanced control and safety.

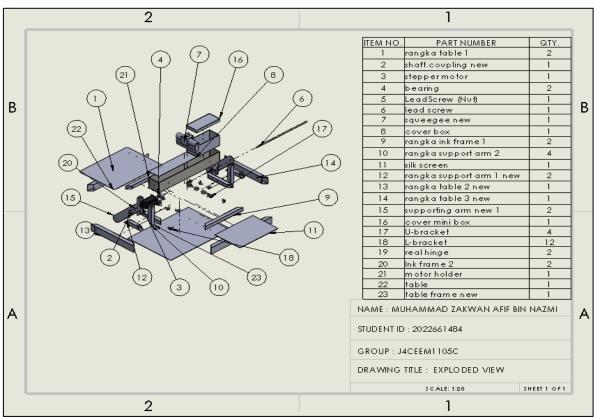
Keyword 1, Keyword 2

Design the Concept of Semi-Automatic Screen-printing Machines

Muhammad Zakwan Afif Nazmi ¹ and Hazriel Faizal Pahroraji ^{2*}


^{1,2}Faculty of Mechanical Engineering Studies, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): hazriel@uitm.edu.my


PROJECT DESCRIPTION

Printing is rather a text and image reproduction process. Usually, this process is carried out through print machines. This is a machine that exerts ink on other objects. With regrets, many people out there do not take a story of the importance of printer machines. Most of the printer machines out there are large sizes. This makes the printer machine hard to carry. Probably the printing section is far away from where the document needs to be used. But in general, most of the printing machines are big in size. The objective of this project is to design and develop our mission for a user-friendly, easy-to-carry printing machine. We also aspire to support new entrants in the printing sector to limit the investment cost they would wish to bear. The characteristic of this machine would be that it needs no connection with a plug and hence reduces energy extractions.

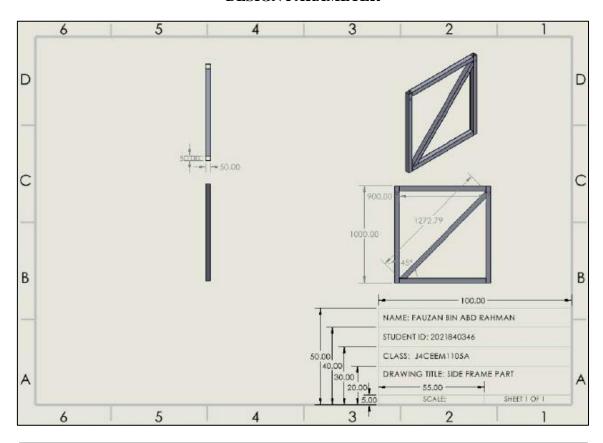
Keywords: Print, Design, Semi-automatic

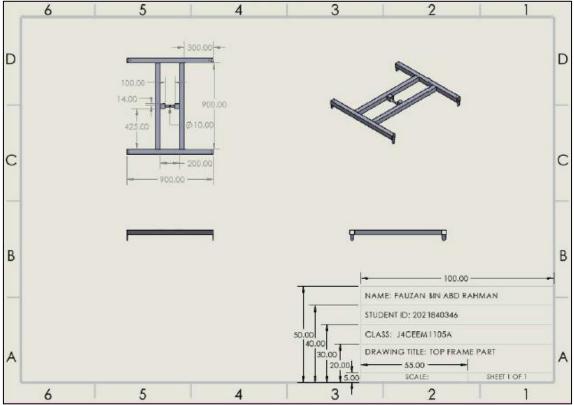
Development of an Automatic Wrapping Machine

Fauzan Abd Rahman ¹, Mohd Noor Halmy Ab Latif ^{2*} and Norshadila Ahmad Badela ³

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): halmy@uitm.edu.my


PROJECT DESCRIPTION


Current automatic wrapping machine that being develop has the problem in terms of design and performance. Available automatic wrapping machine that's being develop previously cannot withstand the load subjected to it which causing the wrapper machine to tilt. The objective of this project is to redesign and reanalyse the force that are acting on the body frame of the machine. This project fabricates a wrapping machine. Mild steel is cut and welded (SMAW, 80-120V) into a frame, then ground smooth. 5cm drilling allows frame disassembly and caster attachment. Rotating arms (rectangular and 'U' shaped mild steel) connect to a 24V DC motor and handle; 9cm holes adjust wrapping size. Aluminium 30 series profiles are attached with M6 hardware. An AC-DC converter and power regulator power the motor. The final product created a portable, automatic pallet wrapper. It works well, is made of strong steel, and helps factories wrap pallets faster with less work. It's easy to use and move.

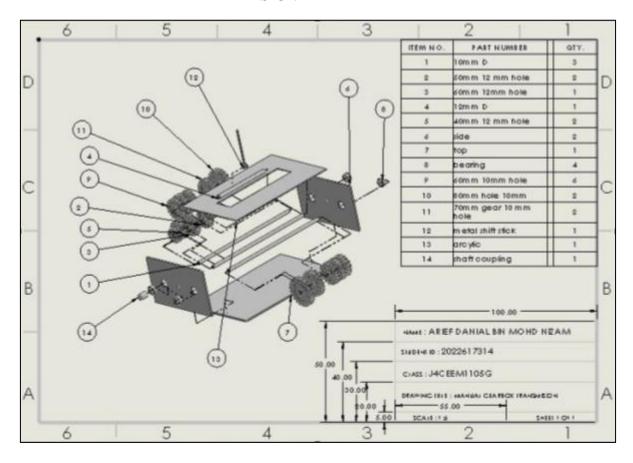
Keywords: Automatic, Wrapping

³Jabatan Teknologi Maklumat & Komunikasi, Politeknik Ungku Omar, Jalan Raja Musa Mahadi 31400, Ipoh, Perak Darul Ridzuan.

Design and Fabrication of Manual Gearbox Transmission Systems for STEM Educational Kits

Arief Daniel bin Mohd Nizam 1, Ainaa Maya Munira Ismail 2* and Najibah Ab Latif 3


1,2,3 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ainaa7609@uitm.edu.my

PROJECT DESCRIPTION

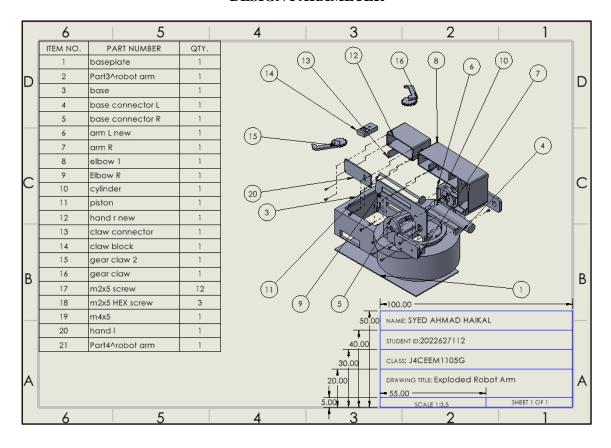
This project aims to enhance the Science, Technology, Engineering, and Mathematics (STEM) education of Malaysian students by introducing them to the practical application of manual gearbox transmissions. The project addresses the gap in students' understanding of manual transmission systems, which are commonly used in vehicles, but often not thoroughly grasped in educational settings. By providing an engaging, hands-on kit, students will explore the fundamental principles of manual gearboxes, developing a deeper comprehension of how these systems work. The kit is designed to integrate key STEM concepts while encouraging students to engage in real-world problem-solving and practical investigations. Through activities focused on the diagnosis, repair, and assembly of manual transmissions, students gain valuable skills applicable to automotive engineering careers. This initiative not only aims to improve STEM education but also sparks an interest in the automotive field, preparing students for future employment in related industries. The project includes a combination of theoretical lessons, hands-on exercises, and evaluations, ensuring students understand both the science behind and the practical application of manual gearbox systems.

Keywords: STEM, Transmissions

Design, Analysis and Assembly of a 4-Axis Left Robotic Arms for STEM Educational Aids

Syed Ahmad Haikal bin Syed Shaharuddin ¹, Ainaa Maya Munira Ismail ^{2*} and Najibah Ab Latif ³

1,2,3 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ainaa7609@uitm.edu.my

PROJECT DESCRIPTION

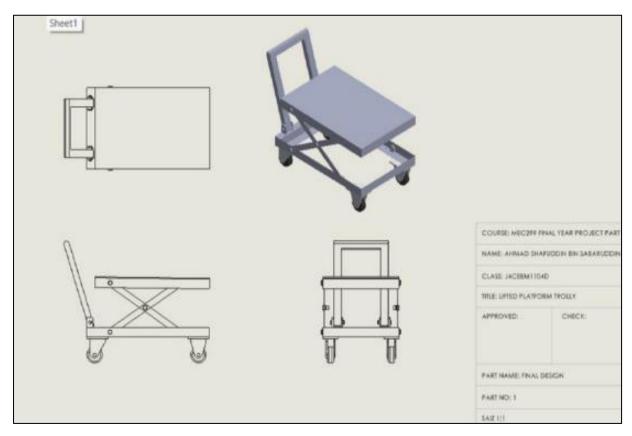
This initiative seeks to tackle the difficulties encountered by Malaysian students in comprehending Science, Technology, Engineering, and Mathematics (STEM) subjects, with a specific focus on engineering. The typical curriculum's emphasis on theoretical knowledge leaves many students insufficiently equipped for the actual application of these principles. Current trends, including heightened absenteeism at pivotal evaluations such as the SPM, indicate a deterioration in academic involvement, particularly in theoretical disciplines. The project implements a 4-axis left robotic arm as an educational tool to connect STEM theory with practical application. The robotic arm prototype was developed with SolidWorks, amalgamating mechanical engineering ideas with programming notions. It was meticulously designed, produced, and assembled to guarantee both operational efficacy and pedagogical worth. This initiative offers an interactive and engaging method for students to cultivate vital STEM abilities, so enriching their educational experience and equipping them for future challenges in automation and engineering.

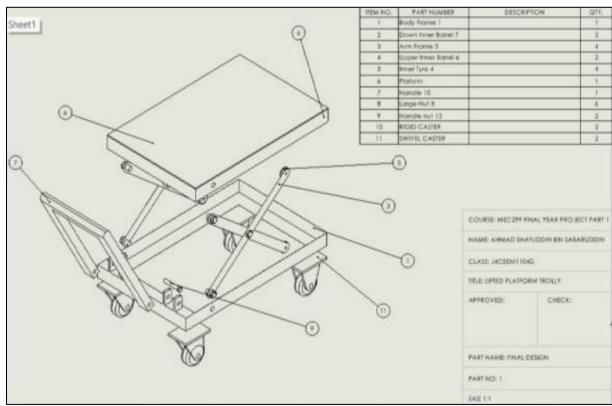
Keywords: STEM, 4-axis left robotic arms

Lifted Platform Industrial Trolly

Ahmad Shaifuddin Sabaruddin 1 and Abdul Hadi Abdol Rahim 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): abdulhadi@uitm.edu.my


PROJECT DESCRIPTION

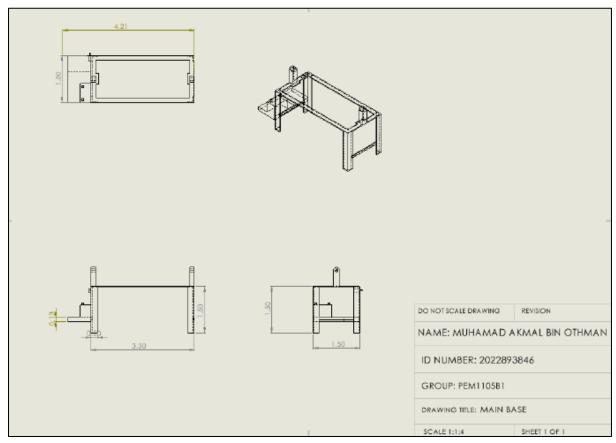
In today's world, industries must produce a large number of products to ensure they reach sellers efficiently. To increase the production rate, workers in these industries must operate and maintain machines smoothly. As we all know, industrial settings involve handling heavy objects, such as large boxes and transfer machines. This makes it challenging for workers to manage these burdens while ensuring their safety. A lifted platform industrial trolley is a versatile material handling device designed to transport and lift heavy loads efficiently in various industrial settings. This equipment typically features a robust steel frame, a hydraulic or electric lifting mechanism, and a platform that can be elevated to different heights. The trolley is equipped with durable wheels or casters for smooth mobility and often includes safety features such as locking mechanisms and guardrails. It is commonly used in warehouses, manufacturing plants, and distribution centers to streamline operations, reduce manual labor, and enhance workplace safety by facilitating the easy movement and positioning of bulky or heavy items. The adaptability and ergonomic design of lifted platform industrial trolleys make them essential tools for improving productivity and operational efficiency in industrial environments.

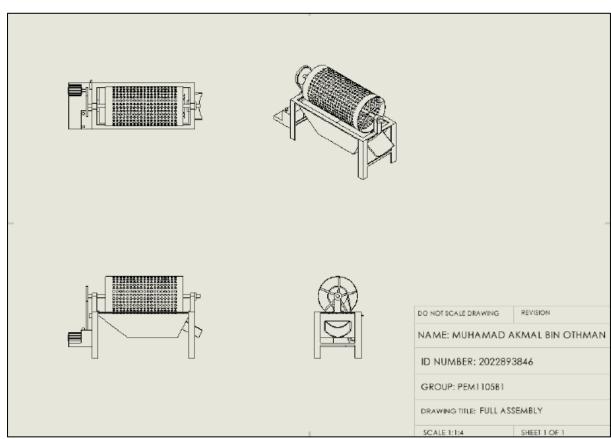
Keywords: *Trolley, Machine*

Development of an Automated Sand Sieve Machine

Muhamad Akmal bin Othman ¹ and Nur Kamarliah Kamardin ^{2*}

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Pulau Pinang Branch, Permatang Pauh Campus, 13500 Permatang Pauh, Penang.


*Corresponding author (e-mail): nurkamarliah@uitm.edu.my


PROJECT DESCRIPTION

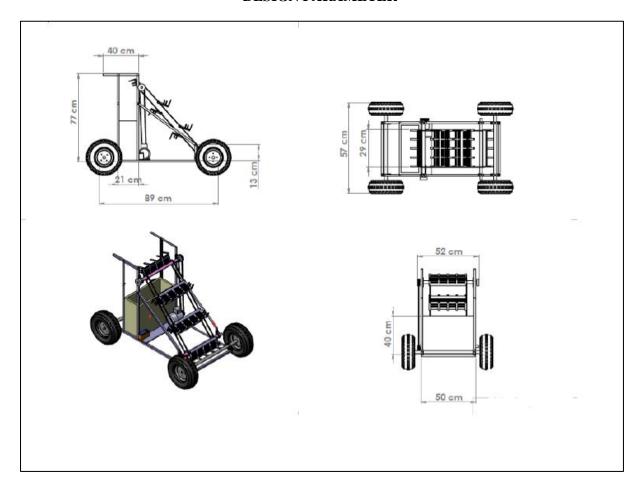
The project aims to develop an automatic sand sieve machine to enhance efficiency at construction sites by separating sand from stones more effectively than traditional manual methods. The manual method requires human effort, more time consuming and labour cost. By using this automated sand sieve machines, these issues can be effectively addressed. The design process begins with studying the limitations of existing methods and examining user requirements to develop improved design concepts. Detailed engineering drawings are produced using SolidWorks to direct the fabrication process, which includes component assembly, cutting, welding, and material selection. Improved sand filtering effectiveness as well as a decrease in the effort and cost involved in the sand sieving process are the expected outcomes.

Keywords: Automated machine, Sand sieve

Development of an Innovation Beach Cleaner Machine

Muhamad Nazrin bin Halim 1 and Nur Kamarliah Kamardin 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Pulau Pinang Branch, Permatang Pauh Campus, 13500 Permatang Pauh, Penang.


*Corresponding author (e-mail): nurkamarliah@uitm.edu.my

PROJECT DESCRIPTION

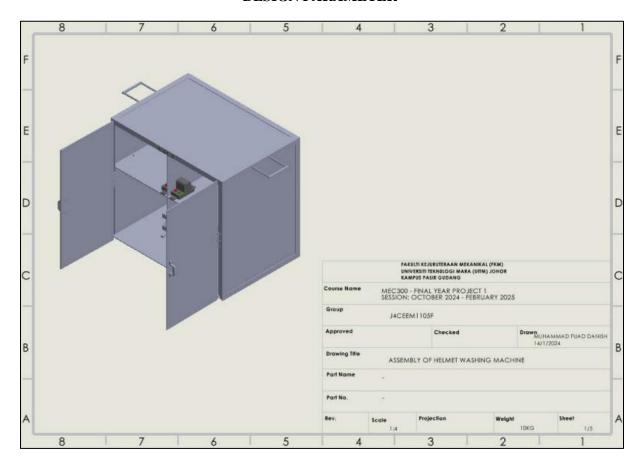
The goal of this project is to develop a beach cleaning machine that is more energy efficient, cost effective, and easy to use. The machine operates using a simple push and pull mechanism, enabled by its wheel-based design. While there are many beach cleaning machines available on the market, most are complex and expensive. This device is designed to automatically collect trash from the beach, eliminating the need to manually dig through the sand for debris. It also includes a mechanism to separate waste from sand, making it easier to maintain and well-suited for use in sandy environments. One of the key innovations in the design is a built-in separation system that efficiently distinguishes between sand and waste materials, ensuring that only trash is collected while the clean sand is returned to the beach. This not only improves the effectiveness of the cleaning process but also minimizes environmental disruption. The machine is lightweight, easy to transport, and requires minimal maintenance, making it suitable for frequent use in various sandy environments. Overall, the development of this machine aims to promote environmental sustainability through practical, accessible and affordable technology.

Keywords: Beach cleaner, Sand cleaner

Design and Fabrication of a Helmet Washing Machine

Muhammad Fuad Danish Bin Mohd Fauzi 1 and Miqdad Bin Khairulmaini 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): miqdadkos@uitm.edu.my

PROJECT DESCRIPTION

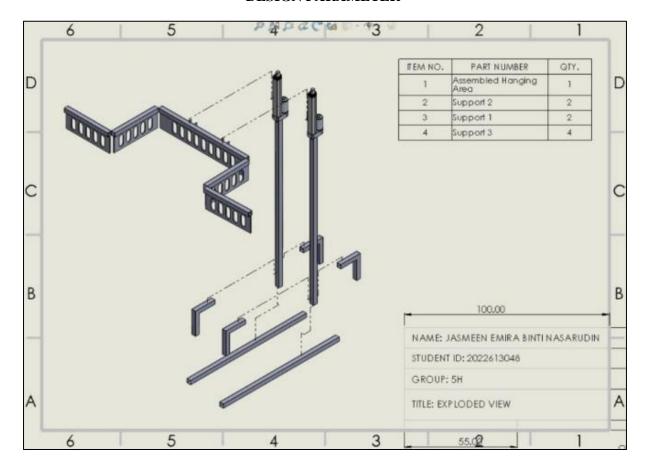
Motorcycle helmets are essential for rider safety, but their inner linings accumulate sweat, dirt, and bacteria over time, leading to hygiene issues and unpleasant odors. Traditional cleaning methods are often time-consuming and ineffective in reaching hidden crevices. This study focuses on the design and fabrication of an automated helmet washing machine to simplify the cleaning process. The machine incorporates a rotating nylon brush for scrubbing, a controlled water spraying system for rinsing, and a PTC air heater for drying. The design was developed using SolidWorks, followed by material selection and prototype fabrication. Mild steel was used for the structural frame, while aluminum composite panels were chosen for their durability and corrosion resistance. Structural integrity was evaluated using stress analysis in SolidWorks, and theoretical calculations were performed to determine the torque requirements for the rotating brush mechanism. The project successfully demonstrates the feasibility of a cost-effective and user-friendly helmet washing machine. While the prototype operates as intended, further testing is required to assess cleaning efficiency, drying performance, and long-term durability. Future improvements include optimizing water usage, enhancing the drying mechanism, and integrating an automated timer for improved user convenience.

Keywords: Helmet washing machine, automated cleaning

Flexydry Rack

Jasmeen Emira Binti Nasarudin 1 and Mohd Ghazali Mohd Hamami 2*

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ghazali.hamami@uitm.edu.my

PROJECT DESCRIPTION

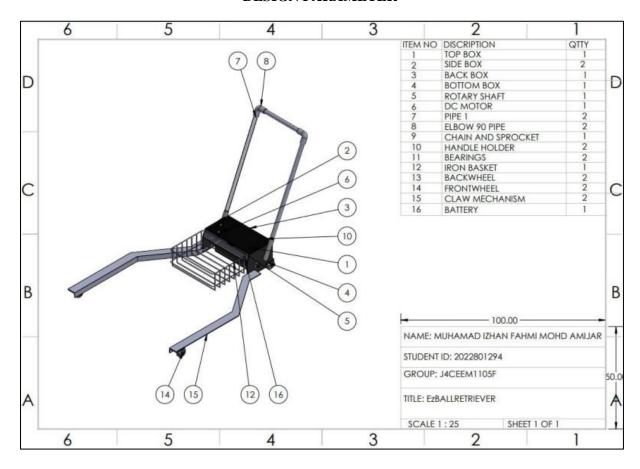
Clothes racks are widely used globally for air-drying laundry, especially for clothes that cannot be dried in a dryer machine. Hanging clothes racks are commonly used by those who live in apartment-style houses. However, due to the minimum hanging space provided, the amount of clothes that can be dried at one time is small, which may result in difficulty for individuals living in an apartment. Therefore, the primary objective of this project is to design a flexible drying rack that can offer maximum versatility, functionality, and space efficiency. The methodologies used in this project are requirements analysis and material selection. This project will be using the concept of expansion and compression. By using this concept and mechanism, individuals will be able to dry more clothes at one time.

Keywords: Flexible, Hanging dry rack

Ezballretriever: The Fast & Simple Tennis Ball Collector

Muhamad Izhan Fahmi Bin Mohd Amijar ¹ and Mohd Ghazali Mohd Hamami ^{2*}

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ghazali.hamami@uitm.edu.my

PROJECT DESCRIPTION

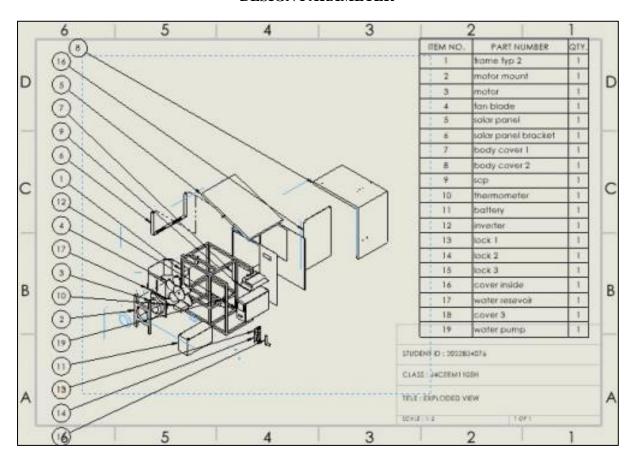
The sport of tennis is becoming increasingly popular, played by millions of people worldwide. However, players face challenges during training sessions, particularly when collecting tennis balls, which is time-consuming, energy-draining, and can lead to spinal strain. The objective of this project is to improve the efficiency and speed of the ball collection process while ensuring player comfort during training. The EZBallRetriever was designed to address these issues by incorporating a simple yet effective mechanism for collecting tennis balls quickly and efficiently. The device uses rollers, brushes, and a collection basket to gather the balls with minimal effort from the player. A battery-powered system ensures portability and ease of use, while the user-friendly design allows for simple operation. The outcome of this project is a functional and efficient tennis ball collector that reduces the time and energy spent by players during training sessions. The EZBallRetriever also helps prevent physical strain, making training more comfortable and productive. Additionally, the device's low-maintenance design ensures long-term reliability, with easily replaceable components to prolong its lifespan.

 $\textbf{Keywords:} \ \textit{Efficiency} \ , \ \textit{Tennis ball retriever}$

Design and Fabrication of Portable Mini Air Cooler

Muhammad Amir Zuhair Bin Abd Razak 1 and Mohd Ghazali Mohd Hamami 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ghazali.hamami@uitm.edu.my

PROJECT DESCRIPTION

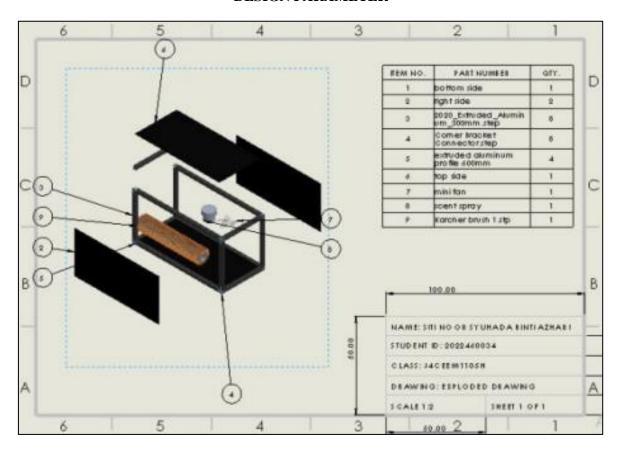
The need for air coolers has increased in recent years, as global temperatures have become unpredictable. The necessity for an air cooler is critical for people who live or work in cities, to have a pleasant location to work or live in hot weather. Unlike standard air conditioners which have the compressor unit to keep the air cool, bulkiness of the inside and outdoor unit and complicated to install, these coolers use evaporative cooling technology, which draws in heated air, passes it through a moistened filter, and then releases a stream of cold, humidified air into the surrounding area. This method not only reduces the ambient temperature but also adds moisture to the air, reducing dryness and increasing comfort, particularly in arid conditions. Thus, the main objective of this project is to develop a compact and lightweight 3 in 1 cooling device that is capable to humidified, purify and cooled the air in the area without the complex installation like the standard air conditioner. Furthermore, this mini air cooler can easily be portable and suitable for use in various environments, with its own power source and rechargeable battery, allowing the user to bring the product anywhere. In conclusion, portable mini air coolers are a versatile and efficient alternative for personal cooling, cleaning the air and humidity. Their small size, internal energy, and improved functions make them useful companions for anyone looking for comfort and relief from the heat in a variety of indoor and outdoor locations.

Keywords: Portability, Mini air cooler

Slick & Shine Semi-Automated Shoe Care

Siti Noor Syuhada Binti Azhari 1 and Mohd Ghazali Mohd Hamami 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ghazali.hamami@uitm.edu.my

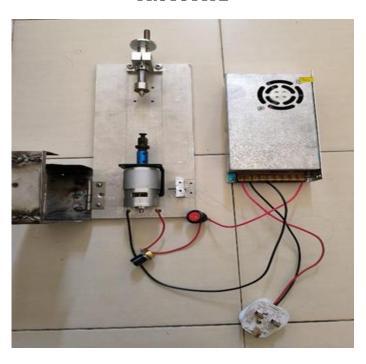
PROJECT DESCRIPTION

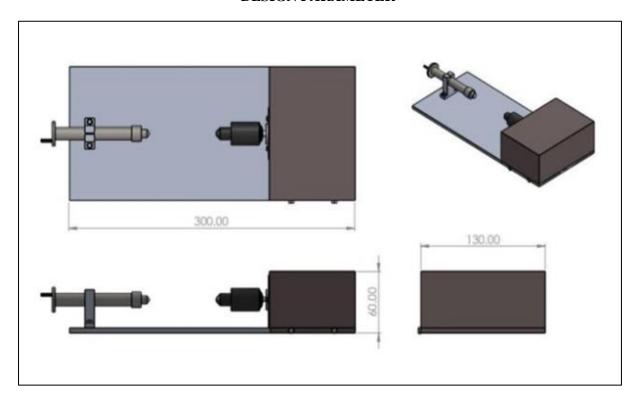
Teenagers frequently remain at the forefront of this modern with new fashions and trends. Shoes are accessories that capture the spirit of the culture and the individual. Although teenagers prefer to show off their stylish footwear, maintaining the shoe's shine is challenging. It is because brushing away with polish to remove stains makes people lack manual polishing. The objective is to keep the polishing process simple and guarantee the shoes come out spotless, avoiding moisture and even scent fresh. Moreover, the network of sensors and modern types of equipment are positioned to detect every polishing phase. A light pre-treatment helps dry the shoe after deep polishing. A slight scent offers a finishing touch, so every shoe is a shining and refreshing perfume.

Keywords: Semi-automated, Shoe care machine

Design and Fabricate Mini Lathe Machine

Nik Daniel Haziq Bin Nik Azman Abadi ¹ and Ab Aziz Bin Mohd Yusof ^{2*}


^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): abaziz86@uitm.edu.my

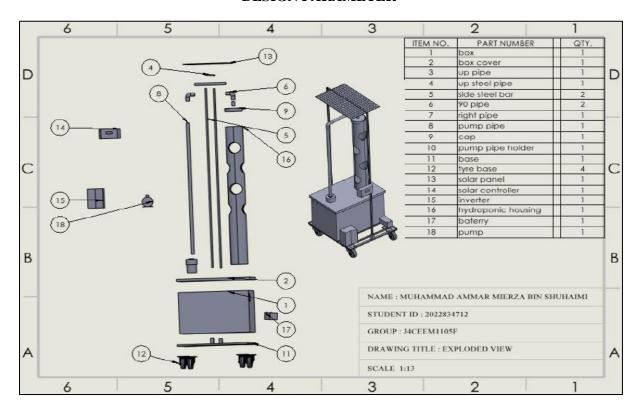
PROJECT DESCRIPTION

Lathe machines are commonly used in workshops for various machining operations such as cutting and turning, with different types including CNC, engine, and bench lathes. These machines consist of three main components: the headstock, tailstock, and bed. A key challenge in this project is designing the bed of a mini lathe machine, as it must be sufficiently heavy to stabilize the structure and prevent excessive shifting. The machine will be designed specifically for machining wood, which is softer and easier to shape than metal but produces significant waste in the form of shavings and dust. The project has two main objectives: first, to design a prototype of a mini lathe machine using SolidWorks, and second, to fabricate the machine based on the developed design. Engineering analysis will identify high-stress areas and determine the factor of safety, while detailed design drawings will provide a clear visualization of the machine's components and assembly.

Keywords: Design and fabrication, Mini lathe

Prototype Solar Hydroponic System

Muhammad Ammar Mierza Bin Shuhaimi 1 and Haszeme Bin Abu Kasim 2*


^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim. *Corresponding author (e-mail): haszeme9720@uitm.edu.my

PROJECT DESCRIPTION

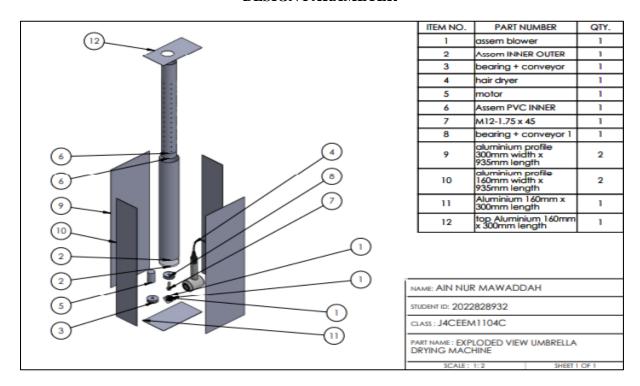
This study focuses on the development of a prototype solar hydroponic system to enhance sustainable agriculture through renewable energy integration. The system aims to address the increasing demand for eco-friendly food production while reducing reliance on conventional farming methods. The objectives of this project include designing and fabricating a solar-powered hydroponic unit, optimizing its energy efficiency, and evaluating its performance under various environmental conditions. The research methodology involves computational modeling using SolidWorks, material selection for structural integrity, and experimental validation of energy capture and water-use efficiency. The prototype integrates photovoltaic panels, an energy storage unit, and a hydroponic nutrient delivery system to ensure optimal plant growth. Performance testing assesses factors such as solar energy conversion, water consumption, and crop yield. Results indicate that the solar hydroponic system significantly reduces water usage while maintaining high crop productivity. The system demonstrates operational stability under fluctuating sunlight conditions, with optimized nutrient delivery improving plant health. Future enhancements include advanced automation, IoT-based monitoring, and improved energy storage to increase scalability. This research supports global food security and sustainable development goals by demonstrating an efficient, eco-friendly farming solution.

Keywords: Solar Hydroponics, Sustainable Agriculture

Umbrella Dryer Machine

Ain Nur Mawaddah Binti Mohd Reduan ¹ and Haszeme Bin Abu Kasim ^{2*}

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): haszeme9720@uitm.edu.my

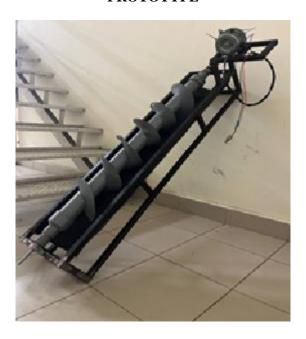
PROJECT DESCRIPTION

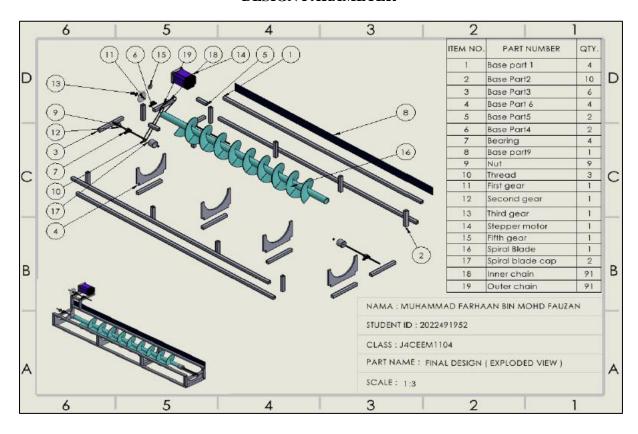
The Umbrella Dryer Machine is designed to address the inconvenience and safety hazards associated with wet umbrellas in indoor spaces. Wet umbrellas contribute to slippery floors, increased maintenance, and potential theft risks when left unattended. This project aims to develop an efficient, compact, and user-friendly solution for drying umbrellas quickly, enhancing cleanliness and safety in public and private facilities. The project involves the design, fabrication, and evaluation of a prototype that integrates centrifugal drying and controlled heating mechanisms. The methodology includes computational design using SolidWorks, material selection for durability, and experimental validation to assess drying efficiency and safety compliance. The system operates by spinning the umbrella at high speeds to remove excess water, combined with a controlled heating element to accelerate the drying process while ensuring user safety. Performance testing demonstrates that the prototype significantly reduces drying time compared to conventional methods while preventing water spillage. The system effectively minimizes maintenance costs for building facilities and enhances user convenience. Future improvements include incorporating automatic sensors for user detection, optimizing energy efficiency, and refining airflow mechanisms to accommodate various umbrella sizes.

Keywords: Umbrella Drye, Indoor Safety

Free Energy Water Generator

Muhammad Farhaan Bin Mohd Fauzan ¹ and Haszeme Bin Abu Kasim ^{2*}


1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): haszeme9720@uitm.edu.my

PROJECT DESCRIPTION

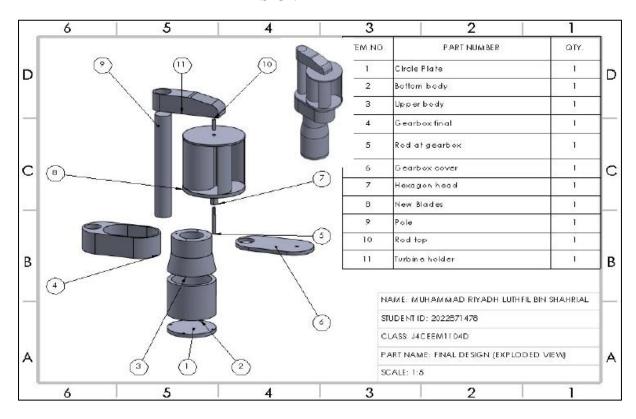
The Free Energy Water Generator is designed to provide a sustainable and renewable electricity source by utilizing water flow as its primary energy input. This project aims to develop a compact and efficient generator capable of producing electricity without reliance on conventional fuels, making it ideal for remote areas and off-grid applications. The research methodology involves the design and fabrication of a small-scale water turbine system integrated with a stepper motor and capacitor-based energy storage. The turbine converts kinetic energy from flowing water into mechanical motion, which is then transformed into electrical energy using a stepper motor. Computational simulations in SolidWorks guide the optimization of turbine blade efficiency, while experimental testing evaluates power output, stability, and durability. Results indicate that the generator effectively harnesses water flow to generate electricity, maintaining stable output with minimal maintenance. This study contributes to the advancement of green energy solutions by demonstrating an accessible and sustainable power generation method. Future work will focus on improving efficiency through enhanced turbine materials, integrating smart energy management systems, and expanding applicability across diverse water environments.

Keywords: Renewable Energy, Water Turbine Generator

Wind Electric Generator

Muhammad Riyadh Luthfil Bin Shahrial ¹ and Haszeme Bin Abu Kasim ^{2*}

1.2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): haszeme9720@uitm.edu.my

PROJECT DESCRIPTION

The Wind Electric Generator project aims to develop a compact and efficient renewable energy solution by harnessing wind power for electricity generation. Given the growing demand for sustainable energy sources, this study focuses on optimizing wind turbine design for enhanced performance, cost-effectiveness, and adaptability to various environmental conditions. The primary objective is to design, fabricate, and test a wind electric generator that can operate efficiently even at low wind speeds, making it suitable for small-scale applications. The methodology involves computational modeling using SolidWorks to simulate turbine aerodynamics, followed by material selection and prototype fabrication. A pulley system is integrated to optimize energy transfer from the rotating blades to a DC generator, which then charges a battery for power storage. Experimental testing evaluates power output, structural stability, and operational efficiency under different wind conditions. Preliminary results demonstrate that the optimized design enhances energy capture efficiency while maintaining low production costs. The prototype successfully generates electricity with minimal mechanical resistance, making it a viable alternative for off-grid applications. However, challenges such as wind variability and mechanical wear require further refinements.

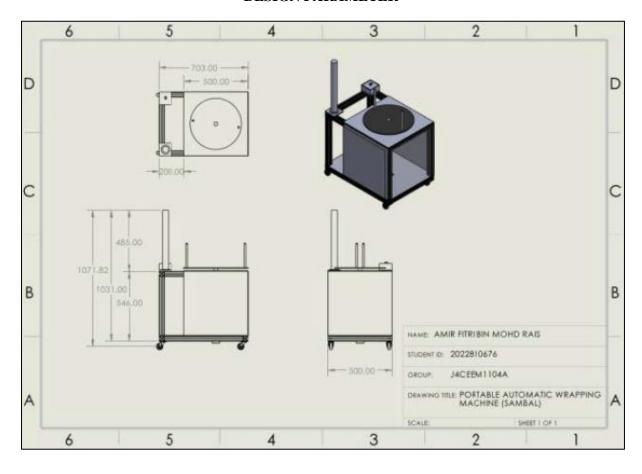
Keywords: Wind Turbine, Renewable Energy

Amir Automatic Wrapping Machine

Amir Fitri Bin Mohd Rais ¹, Mohd Noor Halmy Ab Latif ^{2*} and Norshadila Ahmad Badela ³

^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): halmy@uitm.edu.my


PROJECT DESCRIPTION

Existing wrapping machines provide issues for small-scale producers and distributors because of their high cost, enormous size, and lack of portability. The goal of this project is to design and build a low-cost, portable automatic wrapping machine to address these challenges. The machine was created by gathering data from existing products, assessing essential design components, and utilizing CAD software for design optimization. The manufacturing process included cutting, welding, and assembling of lightweight yet robust components to ensure affordability and ease of movement. The resulting prototype has a compact form with a smaller footprint, improved portability with wheels, and a cheaper production cost of RM 555, making it affordable for small firms. Testing confirmed the machine's ability to efficiently wrap items, with a cycle time of 15-25 seconds. The equipment can support goods weighing up to 30 kg and operates ergonomically. This study met its aims by proposing a viable alternative to standard wrapping machines that is affordable, portable, and efficient. Future enhancements, such as the addition of a film height detector and a gearbox, could improve functionality and adaptability to a broader set of applications

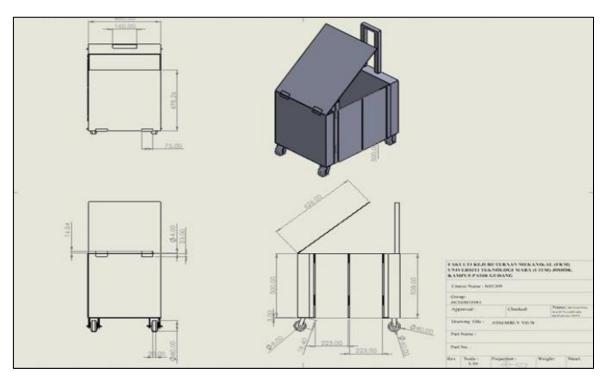
Keywords: Automatic, Wrapping

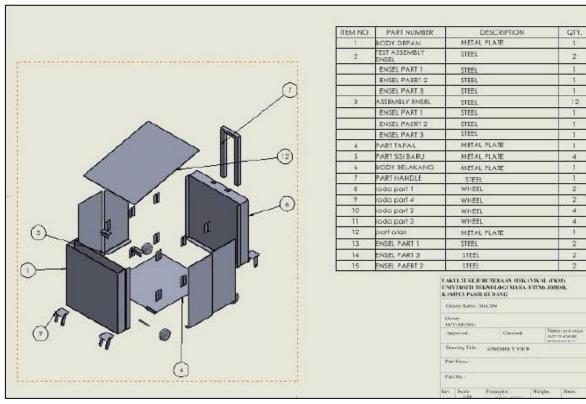
³ Jabatan Teknologi Maklumat & Komunikasi, Politeknik Ungku Omar, Jalan Raja Musa Mahadi 31400, Ipoh, Perak Darul Ridzuan.

Development of a Prototype for 2 in 1 Folding Smart Chair and Stroller

Muhammad Hafiz Syahmi bin Mohamad Fauzi ¹, Ainaa Maya Munira Ismail ^{2*} and Najibah Ab Latif

1,2,3 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): ainaa7609@uitm.edu.my


PROJECT DESCRIPTION

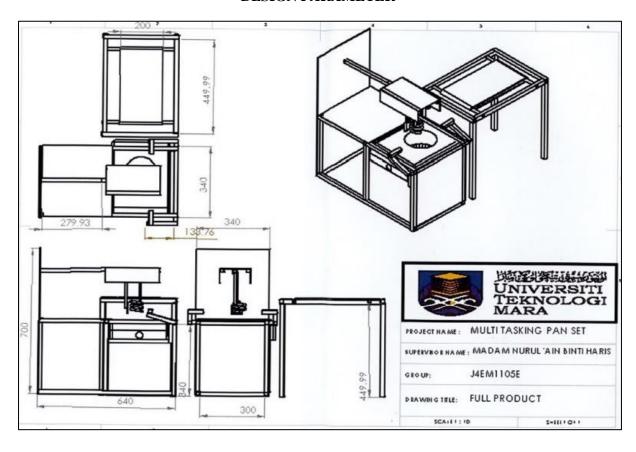
A simple and comfortable lifestyle plays a crucial role in enhancing overall well-being, especially in the preservation of good health. Foot health is a crucial aspect that significantly influences human mobility. Studies indicate that conditions like leg pain, chronic wounds, and various lower limb complications are often misdiagnosed and inadequately managed. The 2-in-1 Folding Smart Chair and Stroller was developed as a solution to enhance foot health and mobility. This multifunctional product facilitates convenient item transport and serves as a reliable seating option, thereby reducing the need to seek distant resting places. The device integrates ergonomic chair comfort with the functionality of a compact trolley, emphasising versatility. The lightweight and durable construction, combined with a sleek aesthetic, renders it suitable for small living spaces, offices, and outdoor environments. The intelligent folding mechanism facilitates a smooth transition between chair and pram functionalities, providing convenience and optimising space utilisation. The 2-in-1 Folding Smart Chair and Stroller offers an efficient solution for improving mobility, comfort, and overall quality of life.

Keywords: Mobility Aid, Foot Health

Prototype of a Multipurpose Pan Machine

Muhammad Nazri Bin Muhammad Salme ¹ and Nurul 'Ain Haris ^{2*}

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): nurul6008@uitm.edu.my

PROJECT DESCRIPTION

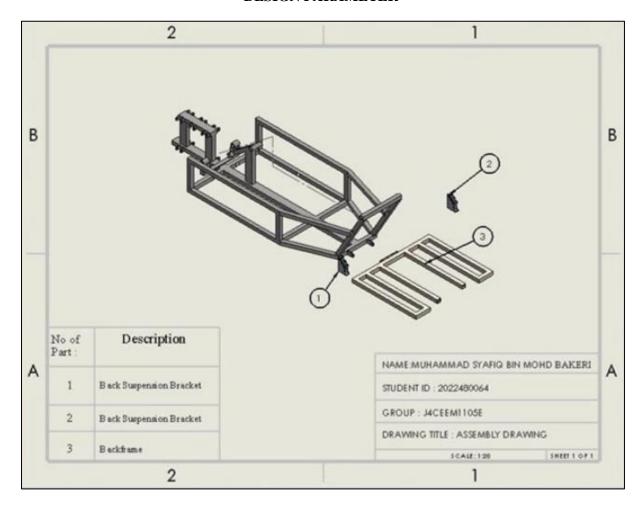
The Prototype of a Multipurpose Pan Machine is an innovative, automated cooking system designed specifically for small stalls and food preparation environments. This compact machine combines a cutting-focused table with an automatic frying pan, streamlining both ingredient preparation and cooking processes. The cutting table allows for precise chopping and slicing, enabling quick and accurate food preparation. Once ingredients are prepped, they are automatically transferred to the frying pan, which is designed to fry any dish without the need for constant supervision. This efficiency makes the machine ideal for fast paced food stalls, small scale kitchens. Constructed with food-grade materials, including high quality stainless steel, the prototype ensures durability and safety while meeting hygiene standards for food preparation. Stainless steel is easy to clean, resistant to corrosion, and ideal for environments where cleanliness is a priority. The design emphasizes simplicity and practicality with the cutting table serving as a dedicated workspace and the automatic frying pan handling the cooking, allowing users to multitask with ease..

Keywords: Automated Pan, Multipurpose machine

Design and Fabricate A Go – Kart Back Suspension System

Muhammad Syafiq Bin Mohd Bakeri ¹ and Ab Aziz Bin Mohd Yusof ^{2*}

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): abaziz86@uitm.edu.my

PROJECT DESCRIPTION

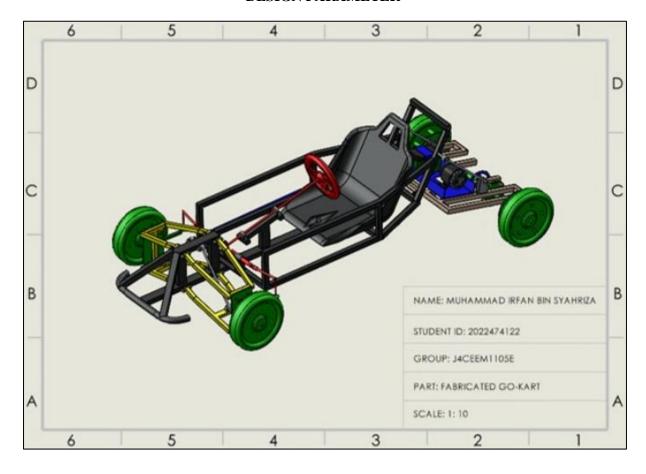
This project aims to develop a go-kart rear suspension system that enhances safety, handling, and ride comfort. The main challenge is selecting the optimal suspension type, such as independent or solid axle suspension, while balancing weight, adjustability, and chassis compatibility. The goal is to improve grip and stability, especially on uneven tracks and at high speeds. The approach involves analyzing existing suspension designs, focusing on key factors like balance and weight distribution, and developing a system that is lightweight, easily adjustable, and seamlessly integrates with the go-kart frame. Prototypes will undergo real-world testing, while computer simulations will predict performance. Advanced technologies, including lightweight materials and electronic controls for real-time adjustments, will be explored to optimize efficiency. Safety remains a priority, ensuring robust components and fail-safe mechanisms are in place.

Keywords: Design and fabrication, Back Suspension

Design and Fabrication of Go-kart Front Suspension System

Muhammad Irfan Bin Syahriza 1 and Ab Aziz Bin Mohd Yusof 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): abaziz86@uitm.edu.my

PROJECT DESCRIPTION

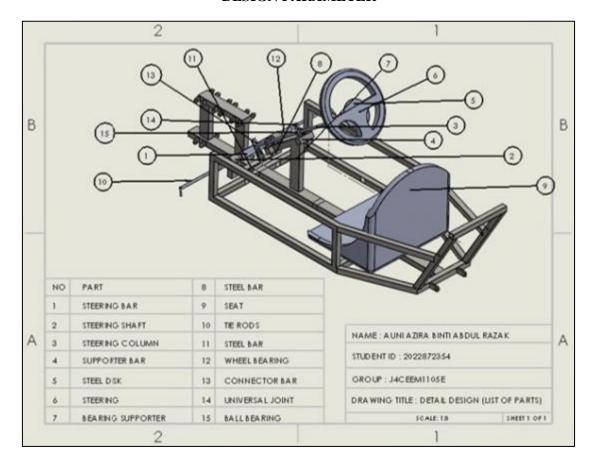
The suspension system is a crucial component of an automotive vehicle, ensuring smooth rides by absorbing shocks while maintaining handling performance and keeping all tires in contact with the road. This project focuses on developing a functional front suspension for a go-kart, selecting the most suitable type to integrate into its frame. Through mock-ups and testing of different suspension types, an optimal choice will be determined. Comprehensive research and evaluation will contribute to enhancing the go-kart's overall performance and ride quality.

Keywords: Design and fabrication, Front Suspension

Go-Kart Mechanical Linkage Steering System

Auni Azira Binti Abdul Razak 1 and Ab Aziz Bin Mohd Yusof 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): abaziz86@uitm.edu.my

PROJECT DESCRIPTION

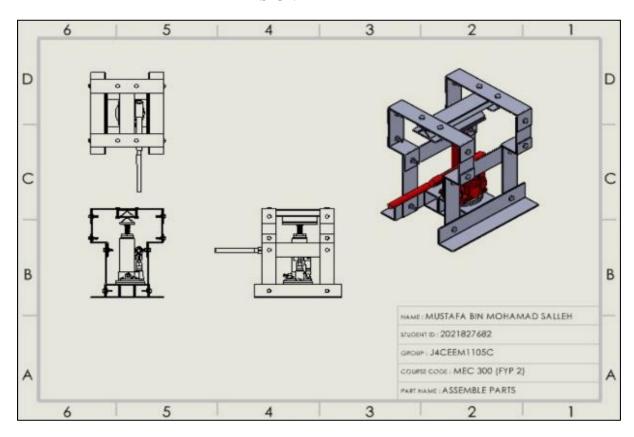
The evolution of go-kart steering systems has progressed from traditional mechanical linkage systems to more advanced designs incorporating technologies such as rack and pinion and hydraulic systems for improved performance and control. A go-kart steering system consists of key components, including the steering column, tie rods, steering knuckles, steering wheel, and linkage systems, all working together to ensure smooth and precise wheel movement based on driver input. This study aims to explore the performance characteristics and applications of go-kart steering systems by analyzing factors such as movement, direction, material selection, and pressure affecting mechanical linkage systems. Additionally, it will identify suitable components and evaluate the effectiveness of different steering mechanisms. The findings from this research will enhance the understanding of go-kart steering systems and contribute to further improvements in their design and functionality.

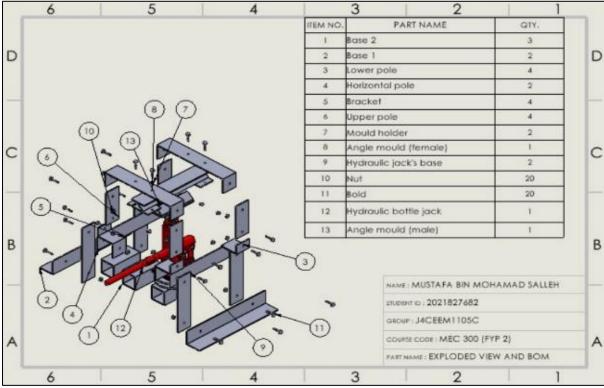
Keywords: Design and fabrication, Mechanical Linkage Steering

Design and Fabricate A Go-kart Motor Fixing Holder and Gearing System

Nur Adlin Farhana Binti Mohamed Samud ¹ and Ab Aziz Bin Mohd Yusof ^{2*}

^{1,2}Mechanical Engineering Studies, College of Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): abaziz86@uitm.edu.my


PROJECT DESCRIPTION

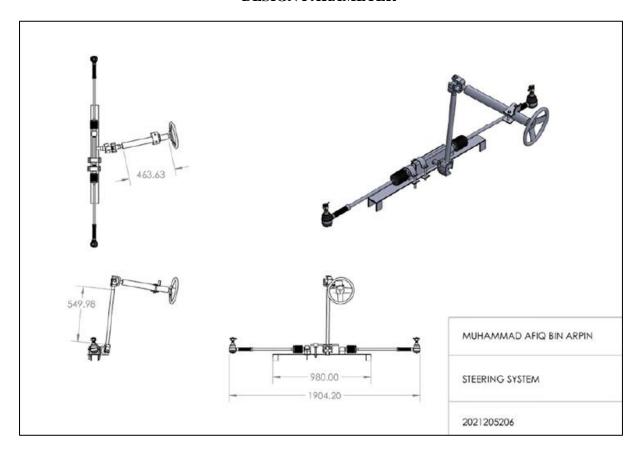
This study focuses on the design and analysis of motor fixing holders and gearing systems for small-scale vehicles, specifically go-karts. The primary objective is to achieve an optimal balance of power output, torque, and speed to enhance both performance and efficiency. The research involves selecting suitable motors, whether gasoline or electric, and integrating gearing systems such as centrifugal clutches and torque converters. Through theoretical analysis and practical experimentation, various gear ratios will be evaluated to assess their effects on acceleration, top speed, and handling. Additionally, the study examines weight distribution in relation to the power-to-weight ratio and its impact on system performance and safety. The findings will provide guidelines for designing efficient and reliable motor fixing holders and gearing systems, contributing to a better understanding of their applications in both recreational and competitive go-karting. Ultimately, this research advances vehicular engineering by offering insights into the interaction between mechanical components and dynamic performance.

Keywords: *Design and fabrication, Gearing system*

Design and Fabrication of Steering System for Student Formula Race Car

Muhammad Afiq Bin Arpin ¹ and Hazim Sharudin ^{2*}

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): hazim@uitm.edu.my

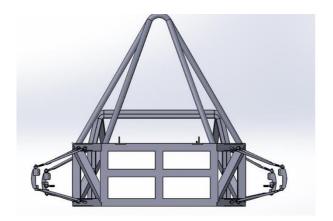
PROJECT DESCRIPTION

The steering system plays an integral role in determining the car's handling, reactivity, and driver control. A common problem with formula racing cars is loose steering, which can be caused by wear and damage to the steering linkage components. This can have an impact on other parts attached to the linkage components, such as the steering wheel, and develop excessive play when rotating the wheels. Therefore, this study's aim is to produce an existing steering system that uses the best mechanism and is supported by a support that can hold it all the time through the use of high-quality materials, precision manufacturing techniques, and rigorous testing and validation processes. Elements like weight, strength, ergonomics and manufacturability must be considered in the design process. Examination of new ideas and technologies through extensive research improves the performance of the steering system. The primary objective of this project is to design and fabricate a complete steering system with its support system, which was accomplished after the project was completed. By means of rigorous design iterations and testing phases, it has met the goals with noteworthy success. In conclusion, this steering system prototype can be used in a single-seated race car to improve vehicle handling and turning.

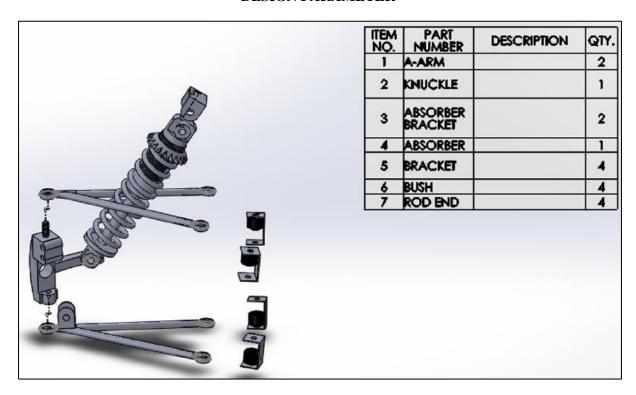
Keywords: Formula race car, Keyword 2

Design and Fabrication of Suspension System for Formula Racing Car

Muhammad Faiz Najwan Bin Tajul Ariffin ¹ and Hazim Sharudin ^{2*}


^{1,2}Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): hazim@uitm.edu.my


PROJECT DESCRIPTION

Suspension is generally used for the vehicle to support the vehicle body and increase ride comfort. The suspension system also prevents road disturbances that affect passenger comfort while increasing riding capabilities and performing a smooth driving experience. Most suspension has a problem with power transfer that affects the driving experience for the driver for certain road surface quality when cornering or when handling the vehicle. Due to the quality of suspension, many vehicles have gone into an accident, for example, lost control when performing the driving experience. This project is conducted to give more driving comfort to the driver when performing a drive on any type of road obstacle like sharp corners, up and downhill roads, slippery roads, and so on. The project is also to retain stability and give smooth driving experience using the ride material or best quality for vehicles and can handle certain loads like body frame, body kit, engine system, driver's load, and other loads that are related. For the method, the suspension system will be set up using the correct ways like the angle of the suspension, and the right place to put the suspension so it will not give any major problems when handling the vehicle.

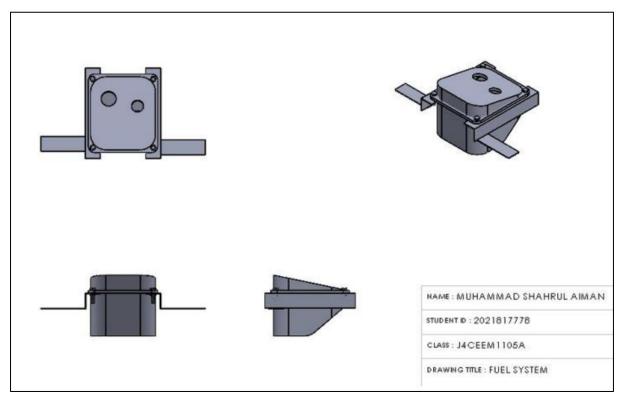
Keywords: Formula race car, Suspension System

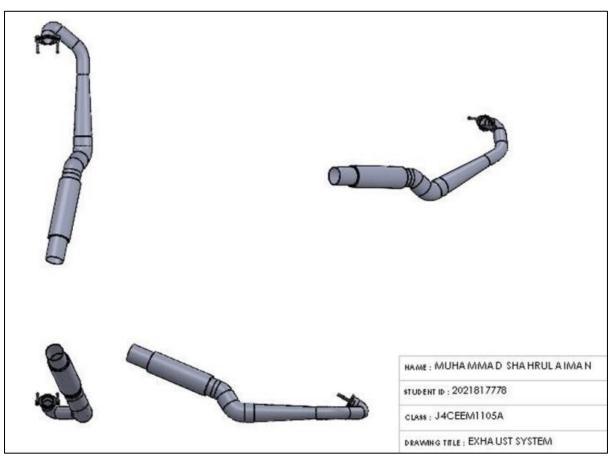
Design and Fabrication of Exhaust and Fuel Systems for a Formula Student Race Car

Muhammad Shahrul Aiman Bin Md Shahrir ¹ and Hazim Sharudin ^{2*}

1.2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): hazim@uitm.edu.my


PROJECT DESCRIPTION

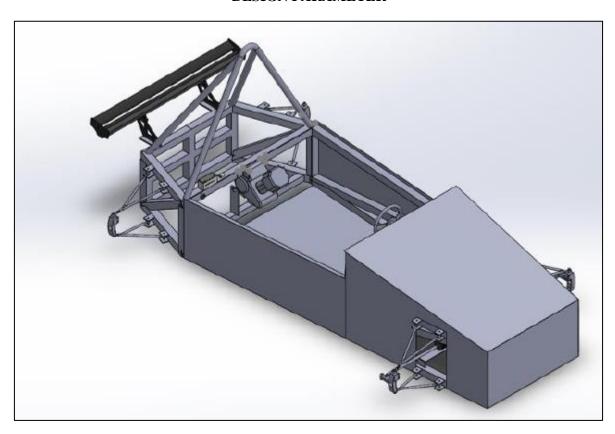

The Formula Student race car's exhaust system play a crucial role in engine performance and overall speed. For fuel system, it ensure's driver's safety, comfort, and fuel delivery. The current system is not efficient, leading to high backpressure in the exhaust and danger for driver. To address these issue, the project aims to design and fabricate an optimized exhaust and fuel systems using Computer-Aided Design (CAD) software and metal fabrication techniques. The optimized system is expected to reduce backpressure, and improve engine performance, resulting in a faster race car. Also, ensures driver's safety, efficient fuel delivery and efficient throttle control for the race car. The project involves analyzing the current system, designing the optimized system, and fabricating it to match specifications. In conclusion, the prototype was successfully designed at Solidworks according to the desired criteria, which to maximize the power output. Also, containing the fuel that needed by the engine to operate. Next, this project also successfully installe the fuel tank and exhaust to the formula student race car that going to be use on the competition. The efficient exhaust and fuel systems are essential for the performance of a Formula Student race car and can enhance engine performance and speed.

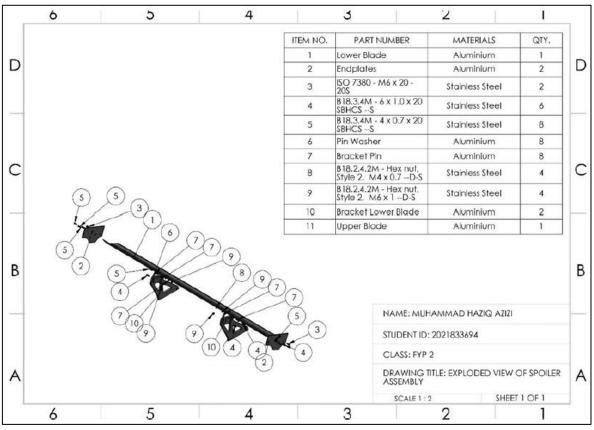
Keywords: Formula race car, Exhaust System and Fuel System

Design and Fabrication of Spoilers on A Formula Student Race Car

Muhammad Haziq Azizi Bin Noor Ikhsan ¹ and Hazim Sharudin ^{2*}

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.


*Corresponding author (e-mail): hazim@uitm.edu.my


PROJECT DESCRIPTION

This study focuses on the aerodynamic analysis and design optimization of a spoiler and mounting bracket for a Formula Student race car. The challenge at hand is to develop an effective spoiler and mounting brackets for a Formula Student race car, with a limited budget and advanced knowledge and access to sophisticated machinery. This project aims to create a spoiler that, while budget friendly, incorporates a simplified yet efficient design. The task involves leveraging limited resources, combining advanced aerodynamic knowledge with innovative engineering techniques to craft a spoiler that enhances the car's performance while being cost-effective. Computational Fluid Dynamics (CFD) simulations testing is employed as methodologies to analyze the airflow, visualize flow patterns, calculate drag and lift forces, and validate the proposed design modifications. From the obtained results, it can be conclude that the aim of this project has been achieved, which is to create an efficient spoiler system for a formula student racing car that also adheres to the safety regulations and requirements. The spoiler system setup was managed to get done, but not perfect enough due to limited time and budget. This product also was successfully fabricated within the specification time given. This spoiler system will be improved in the future to achieve the better quality and performance if given the time for development.

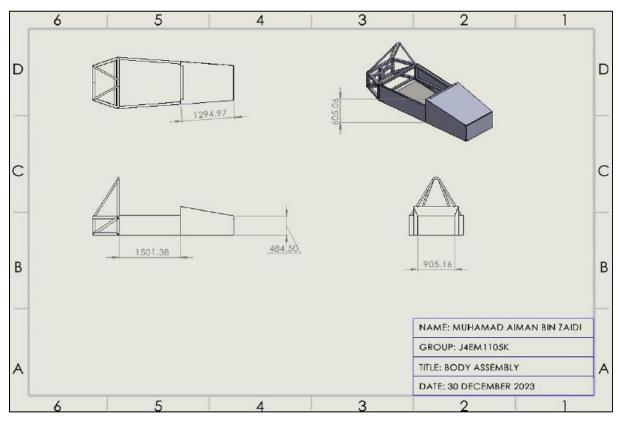
Keywords: Formula race car, Spoilers and Mounting Bracket

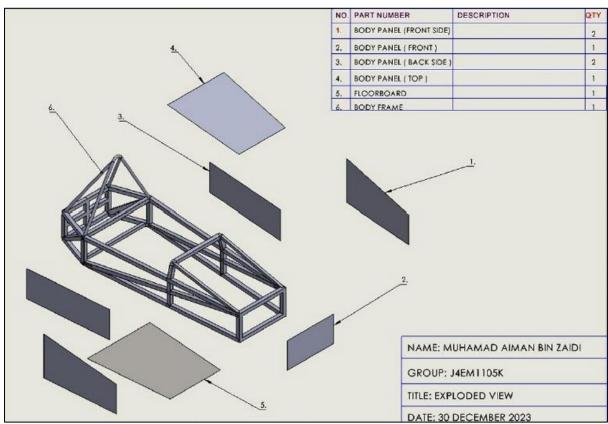
Design and Fabrication of Body Kit Material for Student Formula Racing Car

Muhamad Aiman bin Zaidi 1 and Hazim Sharudin 2*

1,2 Faculty of Mechanical Engineering, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus, 81750 Masai, Bandar Seri Alam, Johor Darul Ta'zim.

*Corresponding author (e-mail): hazim@uitm.edu.my


PROJECT DESCRIPTION


This project is presenting body kits components that are designed to complement each other and work together as a complete design. The material used for each component should be considered to make sure it is suitable. The material used in a body kit will depend on the specific design and application. The lack of choosing the material that can cause the car has a low durability. It also causes a high-cost maintenance if the material chosen are not suitable for the body kits. The purpose of this product is to construct a solid reasonable and affordable material and to find the most suitable material for the body kits. Some of the most common materials used in body kits include fiberglass, polyurethane, carbon fiber and aluminum. The expectation for this body kit is the success of selecting the material especially in terms of mechanical resistance, easy manufacturing, and durability. In conclusion, a solid, reasonable, and suitable material is produced at the end of the product.

Keywords: Formula race car, Body kit material

Reference

- Abd Rahman, F. (2025). Development of an Automatic Wrapping Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Abd Rashid, A. H. (2025). Prototype of a PLA Filament Extruder. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Abd Razak, M. A. Z. (2025). Design and Fabrication of Portable Mini Air Cooler. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Abdul Razak, A. A. (2025). Go-Kart Mechanical Linkage Steering System. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Ahmad Zaidy, A. A. Z. (2025). Design and Fabrication of Shuttlecock Launcher Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Ahmad Zaidy, A. F. (2025). Design and Fabrication of Mini Firefighting Device. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Arpin, M. A. (2025). Design and Fabrication of Steering System for Student Formula Race Car. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Azhar, M. I. Z. (2025). Portable Water Filter Device. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Azhari, S. N. (2025). Slick & Shine Semi-Automated Shoe Care. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Azli, M. H. (2025). Manual Compaction Machine for Casting. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Azzaidi, F. A. (2025). Design and Fabrication of a Patient Transfer Aid for Seamless Bed to Wheelchair Mobility. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Fikri Mohd Aimi Zamani, M. A. (2025). Convertible Cart-Ladder. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.

- Halim, M. N. (2025). Development of an Innovation Beach Cleaner Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Hazizan, H. I. (2025). Prototype of a Candy Sorting Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Kamarul Zaman, M. S. (2025). Design and Fabrication of a Weather Sensing Cloth Drying Rack. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mahadi, M. E. (2025). RFID Smart Attendance System. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Masrol. A. M. (2025). Design and Fabrication of Automatic Cat Litter Box. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Md Shahrir, M. S. A. (2025). Design and Fabrication of Exhaust and Fuel Systems for a Formula Student Race Car. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohamad Fauzi, M. H. S. (2025). Development of a Prototype for 2 in 1 Folding Smart Chair and Stroller. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohamad Salleh, M. (2025). Portable Hydraulic Bending Machine with Various Types of Shape. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohamed Samud, N. A. F. (2025). Design and Fabricate A Go-kart Motor Fixing Holder and Gearing System. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohammad Shaharom, M. A. (2025). Design and Development of Coconut De-Husking Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Amijar, M. I. (2025). Ezballretriever: The Fast & Simple Tennis Ball Collector. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Bakeri, M. S. (2025). Design and Fabricate A Go Kart Back Suspension System. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.

- Mohd Fauzan, M. F. (2025). Free Energy Water Generator. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Nizam, A. D. (2025). Design and Fabrication of Manual Gearbox Transmission Systems for STEM Educational Kits. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Nizam, A. H. (2025). Design and Fabrication of an Automated LED Bulb Replacement Device. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Nizam, A. H. (2025). Design and Fabrication of an Automated LED Bulb Replacement Device. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Rais, A. F. (2025). Amir Automatic Wrapping Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Razali, M. R. H. (2025). Mini Robotic Arm for Educational Purpose. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Reduan, A. N. M. (2025). Umbrella Dryer Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Mohd Zubri, A. E. (2025). Design and Fabrication of Platform Trolley. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Muhamad Nazir, M. N. (2025). Coin Sorter Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Muhammad Salme, M. N. (2015). Prototype of a Multipurpose Pan Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Murad, M. A. (2025). Dry Chili Seed Remover. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Nasarudin, J. E. (2025). Flexydry Rack. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Nazmi, M. Z. A. (2025). Design the Concept of Semi-Automatic Screen-printing Machines. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.

- Niz Azman Abadi, N. D. H. (2025). Design and Fabricate Mini Lathe Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Noor Ikhsan, M. H. A. (2025). Design and Fabrication of Spoilers On A Formula Student Race Car. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Othman, M. A. (2025). Development of an Automated Sand Sieve Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Ramizan Nassir, N. A. (2025). Prototype of a Donut Topping Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Rosdi, R. A. (2025). Prototype of a 3D Printing Scrap Recycling Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Roslan, A. H. (2025). Design and Fabrication of 2-In-1 Convertible Chair-Ladder. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Roslan, N. Q. (2025). Design and Fabrication of a Multipurpose Baby Cot. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Sabaruddin, A. S. (2025). Lifted Platform Industrial Trolly. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Shahrial, M. R. L. (2025). Wind Electric Generator. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Shaiful, N. A. (2025). Coconut Grating Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Shamsulzairi, M. H. (2025). Design Concept of Paper Shredder Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Sharudin, M. A. N. (2025). Design Concept of Semi-Automatic Barbeque Grill. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Shuhaimi, M. A. M. (2025). Prototype Solar Hydroponic System. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.

- Syahriza, M. I. (2025). Design and Fabrication of Go-kart Front Suspension System.

 Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Syed Shaharuddin, S. A. H. (2025). Design, Analysis and Assembly of a 4-Axis Left Robotic Arms for STEM Educational Aids. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Tajul Ariffin, M. F. N. (2025). Design and Fabrication of Suspension System for Formula Racing Car. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Zaidi, M. A. (2025). Design and Fabrication of Body Kit Material for Student Formula Racing Car. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Zalhizra, M. Y. (2025). Luggage Scooter. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.
- Zulkharnain, A. M. (2025). Design and Fabrication of 2-in-1 Sand Sieving Machine. Diploma of Mechanical Engineering Dissertation, Universiti Teknologi MARA Johor Branch, Pasir Gudang Campus.

e ISBN 978-967-0033-62-4

