INVESTIGATING THE EFFECT OF DIFFERENT PARAMETERS ON THE EFFICIENCY OF GALLIUM ARSENIDE SOLAR CELLS PERFORMANCE USING PC1D SIMULATION

AINA INSYIRAH BINTI JAAFAR

Final Year Project Report Submitted in Partial Fulfilment of the Requirements for the Degree of Bachelor of Science (Hons.) Physics in the Faculty of Applied Sciences Universiti Teknologi MARA This Final Year Project Report entitled "Investigating The Effect of Different Parameters on The Efficiency of Gallium Arsenide Solar Cells Performance Using PC1D Simulation" was submitted by Aina Insyirah binti Jaafar in partial fulfilment of the requirements for the Degree of Bachelor of Science (Hons.) Physics, in the Faculty of Applied Science, and was approved by

Pn Siti Hajar Mohmad Salleh Supervisor B. Sc. (Hons.) Physics Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis

Dr. Siti Zulaikha Mohd Yusof Project Coordinator B. Sc. (Hons.) Physics Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis

Dr. Rosyaini Afindi Zaman Programme Coordinator B. Sc. (Hons.) Physics Faculty of Applied Science Universiti Teknologi MARA 02600 Arau Perlis

Date: 25 JULY 2025

ABSTRACT

INVESTIGATING THE EFFECT OF DIFFERENT PARAMETERS ON THE EFFICIENCY OF GALLIUM ARSENIDE SOLAR CELLS PERFORMANCE USING PC1D SIMULATION

This study investigates the factors affecting the efficiency of Gallium Arsenide (GaAs) solar cells using PC1D simulation software, in response to the global demand for sustainable energy technologies and the limitations of high-efficiency yet high-cost GaAs solar cells. While GaAs cells offer superior performance in harsh conditions compared to traditional silicon-based cells, their high production cost and complexity hinder widespread adoption. The research focuses on optimizing three main parameters like doping carrier concentration, anti-reflective coating (ARC) materials [Titanium Dioxide (TiO₂), Zinc Oxide (ZnO) and Silicon Nitride (Si₃N₄)] and bulk recombination mechanisms. Using PC1D, findings show that optimal doping concentrations significantly improve the built-in electric field and reduce recombination losses, with peak efficiency achieved at N-type doping of 1×10¹⁶ cm⁻³ and P-type doping of 1×10¹⁷ cm⁻³. Among the ARC materials tested, ZnO produced the highest efficiency of 79.95% due to its suitable refractive index and optimized thickness. Additionally, minimizing bulk recombination through increased base carrier lifetime resulted in an efficiency gain, with the highest observed value of 79.90% at a lifetime of 10,000 µs. In conclusion, this research highlights that strategic optimization of doping, ARC selection and recombination control can substantially enhance GaAs solar cell efficiency, offering valuable insights for making this technology more practical and cost-effective for advanced photovoltaic applications.

TABLE OF CONTENTS

ACKNOWLEDGEMENT ABSTRACT ABSTRAK TABLE OF CONTENTS LIST OF TABLES LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS		Page iii iv v vi viii ix x
CII	A DEED 1 INTEROPLICATION	
1.1	APTER 1 INTRODUCTION Pagental Pagetaraund	1
1.1	Research Background Problem Statement	3
1.3	Research Question	4
1.4	Objectives	5
1.5	Significant of Study	6
1.6	Expected Output	7
CHA	APTER 2 LITERATURE REVIEW	
2.1	Introduction	8
2.2	Solar Cell	8
	2.2.1 Type of Solar Cell	8
	2.2.2 Structure of Solar Cell	12
	2.2.3 Solar Cell Operation Principles	15
2.3	Air Mass 1.5G	17
2.4	Electrical Performance of GaAs Solar Cells	18
2.5	Physical and Optical Properties of GaAs Solar Cell	20
2.6	Analyzing of Parameter Optimization	22
	2.6.1 Doping Carrier Concentration	22
	2.6.2 Anti-reflective coating (ARC)	23
2.7	2.6.3 Bulk Recombination	24
2.7	PC1D Simulation	25
	APTER 3 RESEARCH METHODOLOGY	
3.1	Introduction	27
3.2	PC1D Software	28
	Basic Parameter in GaAs Solar Cell	31
3.4	Flow of Process	34

CHA	APTER 4 RESULTS AND DISCUSSION		
4.1	Introduction	37	
4.2	Effect of N-Type Doping Concentration on the Efficiency of GaAs Solar	37	
	Cells		
4.3	Effect of P-Type Doping Concentration on the Efficiency of GaAs Solar	39	
	Cells		
4.4	Effect of Different Materials of Anti-reflective Coating (ARC) on The	41	
	Efficiency of GaAs Solar Cells		
	4.4.1 Titanium Dioxide (TiO ₂) ARC	42	
	4.4.2 Zinc Oxide (ZnO) ARC	44	
	4.4.3 Silicon Nitride (Si ₃ N ₄) ARC	46	
4.5	Effect of Bulk Recombination on The Efficiency of GaAs Solar Cells	48	
CHA	APTER 5 CONCLUSION AND RECOMMENDATION		
5.1	Introduction	50	
5.2	Conclusion	50	
5.3	Recommendations	52	
REF	ERENCES	53	
APP	APPENDICES		
CUR	CURRICULUM VITAE		