
Volume 5 Issue 2 (September 2025)
DOI 10.24191/jaeds.v5i2.144
eISSN 2805-5756

Received on
Accepted on
Published on

22.08.2025
26.09.2025
03.10.2025

90

A Modular Java-Based Framework for Deploying ONNX Time-Series
Forecasting Models: A Rainfall Prediction Case Study

Farid Morsidi1,*
1Computing Department, Faculty of Computing & Meta-Technology, Universiti Pendidikan Sultan Idris, 35900 Tanjong Malim, Perak,

Malaysia.
*corresponding author: farid.mors90@gmail.com

ABSTRACT

Bringing deep learning models for time-series forecasting into production has its challenges in the real world, and

one of these challenges is transitioning from a Python-based development environment to platform-agnostic

software. This paper proposed a modular extensible and easy-to-use Java-based framework for implementing deep

learning time-series forecasting models, using simulated rainfall forecasting as a specific case study. One of the

benefits of the case study of rainfall forecasting was the number of datasets available to work with and its relevance

to environmental monitoring. The framework is able to seamlessly implement Long Short-Term Memory (LSTM)

models that were trained in PyTorch and exported in the ONNX (Open Neural Network Exchange) format running

inference with DJL (Deep Java Library). Users benefit from the ability to convert Java-native data to DJL

compatible tensors via a custom Translator module in real time or batch for prediction. The framework also

provides an easy-to-use graphical user interface (GUI) built in JavaFX to allow users to import CSV datasets to

predict, visualize results, and export outputs without any advanced programming experience. In the rainfall

forecasting case imposed for the case study analysis, the predictive accuracy was limited by the dataset; however,

the main purpose of the work was to develop a reusable, accessible, and extensible deployment platform for

ONNX-based deep-learning time-series models. The framework provides the foundation to allow for practical use

of machine-learning workflows in a variety of applications, including environmental management, logistics, and

industrial automation. The modularity of the framework and cross-platform development help to fill the gap with

existing deployment technologies which offer a scalable pathway of operationalizing machine learning in practice

with modern models such as deep learning. The proposed framework provides accessible solution between

advanced model development and deployment covering wide use cases of machine learning.

Keywords: Rainfall prediction; Long Short-Term Memory (LSTM); Deep learning; Time-series forecasting;

Deep Java Library (DJL)

Abbreviations

LSTM Long Short-Term Memory

ONNX Open Neural Network Exchange

csv Comma-separated value

LSTM Long Short-Term Memory

DJL Deep Java Library

1.0 INTRODUCTION

Rainfall prediction remains an enduring challenge in the field of meteorological science because of the

dynamism, nonlinearity, and multivariate characteristics associated with atmospheric systems [1], [2]. Weather is

changeable and it depends on the interaction of a multitude of variables, including temperature, humidity, wind,

and atmospheric pressure, which are complexly related and not easily modelled using rigorous statistical or

numerical methods [1]. Traditional methods have proven useful for producing baseline estimates, but these do

very poorly in capturing long-term temporal relationships, especially short- to long-range nonlinear dependencies

and interactively innovative features, particularly for the shorter to medium forecasting horizons. The need to

capture these relationships is critical given the importance of rainfall prediction across an array of high-impact

domains which include precision agriculture, flood mitigation, water resource planning, infrastructure resilience,

and disaster risk preparedness and mitigation [3], [4], [5]. Reliable precipitation forecasting is critical for

mitigation and disaster response management [6]. The accurate and timely prediction of heavy rainfall events is

JAEDS Volume 5 Issue 2 (September 2025)

91

critical for flood risk management and disaster preparedness. Heavy rainfall prediction begins with the ability to

observe, examine and assess the rainfall data at any given point. Only then can effective measures be taken to

offset any magnitude of climate variations. This provides knowledge to assist in surface and subterranean

hydrological resources planning [7].

Of late, deep learning has emerged as a promising alternative for chronicle data modeling. Long Short-Term

Memory (LSTM) networks are a form of recurrent neural network and have an ability to learn temporal dynamics

from multiple input streams, or multivariate inputs [8]. Their network architecture involves gating mechanisms

and internal memory states, which allow the model to learn that the temporal order of past instances can affect the

future when applying the LSTM architecture using historical data (for example, as when predicting rainfall).

LSTM and other deep models remain attractive where more research is needed, but the gap between the on-going

research and actual application of deep learning systems in practice is large [1], [9], particularly for users who are

not machine learning or Python developers. Most state-of-the-art forecasting models use Python solidifying or

frameworks like PyTorch [10] or TensorFlow, and while these are flexible frameworks, they create problems

when it comes to dropping these models into cross-platform, maintainable software stacks. Non-expert users, the

users who typically put forecasting models into a service like meteorologists, environmental researchers or public-

sector analysts, usually do not have the tools or knowledge to directly deploy and interface these models for real-

time applications. Moreover, production-grade applications need an effective means of not only collecting and

using accurate models, but a sensible and robust pipeline of integrating incoming data, pre-processing incoming

data, executing the models to produce a result, visualizing the result, and integrating this has resulted into a larger

system.

This study addresses those limitations through a new focus on developing, implementing, and distributing a

modular, user-friendly, extensible forecasting application entirely written in Java. Also, the application is a bridge

between high-performance machine learning models and the ability to actually use them in practice, as it unites a

PyTorch-trained LSTM model exported in Open Neural Network Exchange format (.onnx) with the Deep Java

Library (DJL) for deploying ONNX model in a Java context, providing platform-independent, Python-dependent

inference at a relatively efficient speed; all without the typical, traditional Python dependencies and calls.

Additionally, the application is designed with both expert and novice end-users in mind by providing a graphical

user interface (GUI) built upon JavaFX that allows for easily uploading data in CSV format, real time and batch

model inference and visualization (including confidence intervals), and exporting results for offline exploration.

This work does not place emphasis on improving predictive accuracy for the current state and is focused on

building a reusable and extensible software framework for the use of machine-learning models inside operational,

cross-platform forecasting systems. Rainfall prediction is used as an example, but it is important to note that the

system and design are flexible and can be used within any domain, or for any time-series forecasting problem,

which could include energy consumption, traffic flow, or financial queries. In regard to the secondary goals of

this paper, the contribution, in the form of the layered toolkit, the context, scalability, and operational examples

for rainfall forecasting, include: (i) a modular Java package toolkit for the inference of ONNX-based deep learning

models based on DJL runtime, (ii) a custom Translator pipeline for Java native data structures and DJL objects

(tensors) as intermediate data storage for projected pre-batched inference and real-time inference, (iii) an

integrated JavaFX-based GUI that allows non-programmers to work with complex time-series models without

writing code, and (iv) a demonstration of the toolkit architecture, extension, and usage with rainfall forecasting as

an example use case. The address of this gap in tooling and deployment serves to promote advanced time-series

modeling methods and make operationally relevant in a wider scientific, industrial, and decision support capacity.

2.0 RELATED WORKS
Conventional time-series forecasting models such as ARIMA, SVR, and MLR often do not perform well when

predicting atmospheric data, which frequently contain multiple input variables that vary in time and space, because

they are poor at capturing complex inter-variable relationships and long-term dependencies [5], [11], [12], [13].

While LSTM networks and Gated Recurrent Units (GRUs) represent a generational leap forward for accurate

prediction problems, only over the past five years have advanced sequence modeling architectures become widely

available, so that prediction problems now have “Fast Reasoning” architectures capable of automated feature

development from the input data based on temporal dependencies [5], [8]. With LSTMs somewhat uniquely

positioned, models are shown to consistently outperform conventional strategies for short- and medium-term

rainfall forecasting by being able to model inter-variable interactions and long-term temporal variability. Figure

1 represents the general summation of deep learning applications in collaboration with LSTM features,

particularly in this case the application with weather forecasting.

JAEDS Volume 5 Issue 2 (September 2025)

92

\

Figure 1. Network diagram illustrating the correlation between deep learning applications and their usability in

LSTM models for intelligent decision-making features, focusing on their integration in weather predictive

capabilities

Anticipating rain can be difficult but it can utilize data-mining methods to demonstrate how previous weather

data can identify the patterns. Hybrid models used historical rainfall observations and nearby raw data streams,

from remote monitoring devices to abstract the features. In terms of rainfall prediction investment, machine

learning methods can be used regardless of climate or time scale which includes any time interval or CAD for

LSTM architectures [8]. Using a Convolutional Neural Network (CNN), a model was created to predict such

things as monthly rainfall totals for a location [3]. To assess the performance of the system, the mean square error,

mean absolute error, and root mean square error were used. Another research study introduced an LSTM-based

model for predicting rainfall in Jimma, Ethiopia, aimed at enhancing sustainable agricultural methods [14]. The

proposed model's performance was assessed using RMSE, MAPE, NSE, and R2 metrics. The LSTM model

successfully predicted daily rainfall with greater accuracy compared to ML models such as MLP, KNN, SVM,

and DT. This LSTM model may serve as a dependable and beneficial resource for forecasting daily rainfall totals

in Jimma, aiding agricultural practices and management.

A research study of hourly rainfall forecasting in western part of Ghana was conducted [1] utilizing data

sourced from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study also developed

Deep Learning models based on the LSTM algorithm. The researchers performed a correlation analysis to find

the various relationships and important parameters/features affecting rainfall. The correlation analysis indicated

JAEDS Volume 5 Issue 2 (September 2025)

93

that temperature, pressure, and humidity are the most significant contributors to rainfall in the region. The

proposed LSTM architecture performed the best with a lower MSE and RMSE than the other configuration

models. In the future, the plan is to explore more alternatives of model architecture by increasing the number of

training epochs past 200. A study proposed a CNN-LSTM framework for a multidimensional precipitation index

forecasting model [11]. The model utilized monthly means from Pune, Maharashtra, which are sourced from

world meteorological archival data between the 1970's and 2002. This model efficiently estimated precipitation

in line with expectations using local features while utilizing long-term features well. The model achieved a RMSE

of 6.752 or 204% better than several traditional time series methods, but the higher computational costs with large

datasets limited the model's possibilities. This highlights some areas for future research and improves the

possibility for applications in precipitation forecasting.

Forecasting rainfall can be difficult because of the complex, dynamic, and changing nature of it and the effects

of climate change. A study compared three modelling approaches for rainfall forecasting: statistical models;

machine learning algorithms; and hybrids of models [15]. The neural networks model for deep learning is to

develop a model to predict regional precipitation using satellite, radar, and ground data. The deep learning model

uses the data mining (DM) and machine learning (ML) techniques [8]. Hybrid models that incorporate

combination remote sensing data and machine learning techniques need more research because of the small

number of applications which are able to model problem instances accurately. Only a small handful of researchers

have been able to predict rainfall accurately [8]. A comparison study has evaluated the Artificial Neural Network

(ANN), Simple Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) techniques [9]. LSTM

reported the best performance in accuracy using Mean Absolute Percentage Error (MAPE) and Root Mean Square

Error (RMSE). The research team concentrated on cold region river systems by using LSTM modelling to assist

with the future challenges associated with modelling flood forecasting in changing climate conditions. For the

modelling system, hourly USGS gage water level data were used to inform the LSTM model, which resulted in

encouraging findings and potential improvements in flood forecasting short-term prediction capabilities and

warning systems. However, to move forward, considerable effort must be made in developing longer-term

prediction of flood forecasting methods and techniques and determining the accuracy.

The variability and skewedness of rainfall distribution means that modeling rainfall brings its own level of

difficulty, since numerical weather prediction (NWP), which requires discretely gridded simulations, adds

complication [16]. Furthermore, the resolution of the grid also influences the bias in rainfall estimations. For

example, a deep neural network (DNN) implementation had loss function optimization that tends to represent

heavy rainfall events effectively [16]. The U-Net based DNN led to improvements in heavy rainfall event

prediction that ranged from two times to over six times in water level forecast skill through loss function tuning

to learn the tail distributions better. In terms of in-depth analysis of rainfall distribution prediction through LSTM,

a research synthesis was conducted where the analysis of 94 articles that used LSTM since 2001 was performed

to review short-term forecasting of flood events [17]. The research synthesis suggested that hybrid model use is

superior to standalone models and that the combination of model and input is crucial for good operational

forecasting accuracy.

Climate models assess climate change's effect on flood risk and extreme precipitation, but they tend to have a

lower spatial resolution, leading to less precision [18]. One study employed a Deep Learning (DL) approach in

which a reanalysis product was used as input to achieve greater accuracy for precipitation predictions. This

particular research demonstrated a special TRU-NET model, employing an encoder-decoder structure, which

equally uses 2D cross-attention [18]. The TRU-NET results were shown to have less RMSE and MAE than typical

DL models and state-of-the-art dynamical models, while confidence metrics were produced for all seasons and

locations. Another study indicated a new and original Conv3D-GRU model for short-term rainfall intensity

predictions based on radar, called a Conv3D-GRU, which was able to successfully analyse features from radar

echo map image features while enhancing accuracy in their forecasting [5]. A proposal for a low-cost IoT system

capable of automatic rainfall recording and monitoring also produced model precision with rainfall predictions,

and a new graph neural network methodology was also introduced that had a much higher degree of precision in

prediction of regional heavy rainfall by modeling spatial dependencies [7]. Testing recent models on a 72-month

dataset, validation indicated that the synthetically produced approach could estimate heavy rainfall with regional

applicability in areas of limited resources or where weather observations are sparse.

JAEDS Volume 5 Issue 2 (September 2025)

94

3.0 RESEARCH FRAMEWORK
The use of LSTM models in the operational production environment is typically limited. While a lot of LSTM

models are being implemented in Python, there is usually the need for specialized systems that cannot leverage

the entirety of the programming language library. Advances in the formats for exchanging modeling formats,

specifically the Open Neural Network Exchange (ONNX) format and flexible runtimes like the Deep Java Library

(DJL), have provided new deployment of a pre-trained machine learning or deep learning model almost anywhere

it can be connected [19]. The work in this paper takes that gap in the research and the behaviour of implementing

deep learning models by implementing a cross-platform implementation of a LSTM-based rainfall forecasting

system that leverages the predictive capabilities of deep learning, but is fully deployable across several systems

and ecosystems, made possible with Java and ONNX.

3.1 System architecture

The architecture of the cloud-based forecasting toolkit that has been proposed is predicated on modularity,

usability, and the cross-platform deployment of deep learning models for time-series forecasting. While LSTM

networks have been shown to work well with sequential data like weather variables, the focus of the proposed

toolkit lies in the software engineering aspects of fielding models in desktop environments, utilizing a layered

abstraction that can promote better maintainability and extensibility. Figures 2 and 3 are both representations of

the proposed development workflow methodology for input and output process in relation with data inferencing.

The proposed system comprises of four primary layers:

Figure 2. System architecture of the proposed

development prototype

Figure 3. Workflow diagram from training phase to

prediction and data instance export for further

analysis

JAEDS Volume 5 Issue 2 (September 2025)

95

i. User interface layer

The user interface was developed using JavaFX, allowing the user to visually interact with the system without

needing to parse code. The user can submit comma-separated value (.csv) file which contains time-series data

along with a meteorological feature (e.g. humidity threat and temperature). Once uploaded, and depending on the

invocation of the models to make forecasts using the model controls that are embedded, the user will receive

output and immediate feedback. The user can generate plots of varying dependencies, including line plots or

scatter plots, with optional confidence intervals for improved interpretability of forecasted values. As an example,

the user may upload rainfall recorded in Malaysia in July 2025 to predict July for the same year using the LSTM

model, ultimately producing plots of predicted trends. The potentiated results can be saved to an image file and/or

an Excel or CSV spreadsheet system for reporting and/or analysis.

ii. Data handling layer

The data-processing element is the tool that transforms input values into the structure used by the model. The

process involves a variety of processing activities:

a) Validation: It ensures that the uploaded documents contain all the required fields and the appropriate

formatting of the input. If the features are missing or wrongly formatted, the values would either be

highlighted for the user to correct or, in the case of with missing data, would be imputed [20].

b) Normalization: It normalizes input features either min-max normalization (rescale feature from [0,1]) or

z-score normalization (which creates a feature mean of zero and variance of one) depending on which

normalization the users have chosen [21], [22]. Normalization is needed so that the different inputs to

the neural network have common numerical behaviour.

c) Creation of Sliding Windows: The application will take raw sequential data and partition into overlapping

windows of the user-specified size [23]. For example, with a fixed window size of 10 and 4 input features

(temperature, humidity, wind-speed, and pressure), each sliding window would produce tensors of shape

[batch_size, 10 (number of historical time-steps), 4 (number of files)]. Each window can be thought of

as capturing a sequence of ten continuous time-steps that the model will use for forecasting a future value

(in this case, rainfall at the next time point).

These changes are managed internally with Java data structures, and the result is forwarded to the model

integration layer in a format suitable for tensor operations.

iii. Model Integration layer

The model integration layer is the engine behind the system which contains the execution of the ONNX-

encoded LSTM model using the Deep Java Library (DJL) inference engine. The model integration layer hides the

challenges of deep-learning inference and allows pre-trained models to be used in a Java application. The ONNX

model is developed in a contained environment with PyTorch and then incorporated into the application using the

model loading API provided within the DJL. The RainfallBatchTranslator is a custom Translator class responsible

for input and output translations.

• Input translation: Translates a 3D Java float array (1,10,4) into DJL’s NDArray, the shape of the input

must match the time and feature dimensions expected by the model.

• Output translation: Extracts and organizes the models predicted output (typically one float value for

estimated rainfall in mm) from the output tensor.

The RainfallBatchTranslator allows concurrent translation of multiple sequences that allows batch inference

predicting rainfall over different sites or moments in time. A batch of 50 samples, each with 10-time steps and 4

features, are structured as a tensor of shape [50, 10, 4] and this accommodates the processing of samples. This

layer can be treated the same as any other model which allows for any ONNX-exported time-series regression

model on the market to replace the LSTM, while also enabling other forecasting tasks such as energy consumption

or equipment breakdown predictions.

JAEDS Volume 5 Issue 2 (September 2025)

96

iv. Visualization layer

The last layer deals with output visualization and interpretation. When inference is complete, the results are

fed into a visualization module. The visualization module displays the predictions in chart form using JavaFX

components (for example, LineChart, or AreaChart) and includes options for confidence intervals and/or

historical trends. Users can also toggle various visual components on or off, export figures as PNGs, or as Excel

files, or explore data interactively. For example, if a user wants to compare predicted rainfall to historical averages,

they could overlay predicted output with raw data points in CSV, within the application interface. The

visualization layer adds interpretability to communicate results, especially important when a decision can be made

but stakeholders are not aware of the mechanics of the model. Figure 4 highlights the recent main contribution of

LSTM applications in automated intelligent decision-making processes; in this scope emphasizing on the

utilization of LSTM for the purpose of predicting advanced weather outcomes.

Figure 4. Visualization on the concept flow of LSTM application for weather forecasting

JAEDS Volume 5 Issue 2 (September 2025)

97

3.2 Data Handling and Preprocessing
The system has two components, and both require input datasets in CSV format where these datasets have

rows of observational records representing meteorological events with timestamps. Suggested features tested in

this study include height, minMeanTemp, maxMeanTemp, meanRelHum, and rainfall. Attention to preprocessing

is important for valid inference, as neural networks can be affected by the ranges of input values, missing values,

and boundary conditions. The data handling and preprocessing modules are critical for transforming raw weather

data into systematically organized model input. Table 1 presents the five main parameters for calculating rain

precipitation percentages.

Since there was not any tool made available to convert ONNX modelling features from comma-separated

value datasets, this study developed a Python script specialized for rainfall prediction using tabular meteorological

data. This script functions to read in a CSV file, clean its target and numeric columns, manipulate the non-valid

or missing data, performed one-hot encoding for the categorical variable "state," and standardized features using

a StandardScaler for reproducibility. Subsequently, the dataset is trained by utilizing an MLPRegressor neural

network where the model can be saved at any point in the pipeline. The saved model and StandardScaler are

exportable or translated into ONNX format. The script is also able to plot regression model prediction for any

record with a provided sample pulled from the pipeline, with a debugging section to plot the transformed features

and also the prediction, utilizing the data from the instance selected. The data used for this project were obtained

from the Department of Statistics Malaysia, which included mean temperature, rainfall and mean relative humidity

data from 2000 to 2021 (https://archive.data.gov.my/data/dataset/mean-temperature-rainfall-and-mean-relative-

humidity-malaysia/resource/15b3c8a2-ef0d-4044-8fc1-f261fa9cd7b0).

The framework for the research adopts an automated, modular pipeline for rain prediction with the reference

of Actual (ground truth precipitation measurement from official dataset) and Prediction (values derived from

LSTM predictive modelling) columns from CSV files. The data gleaning is the next step which includes removing

all spaces and removing empty columns or columns with the wrong format. Continuous features are standardized

with a typical z-score method yielding a mean of 0 and variance of 1 removing bias from each individual feature

to attempt to stabilize the modeling. Exploratory data analysis is conducted to check summary statistics and find

anomalies to be removed. Verified datasets are split into independent training and test sets to maintain rigour

when modeling the predictive function for the model development. Clean datasets from training and test sets will

produce visualizable results by means of how data are displayed using time series plots while preserving the values

for reproducibility, transparency and explainability.

Table 1: The analysis on feature variables utilized for capturing rain precipitation frequency referenced from

Malaysia’s 2000-2021 annual rain dataset retrieved from Department of Statistics

Feature Importance Explanation Role in Prediction

state Important

The "state" variable captures

geographic variations in rainfall

patterns

Influencing model predictions based

on regional climate and topography

differences.

height Important

Elevation from sea level that

affects climate and rainfall

Determines relative temperature,

pressure, humidity changes

minMeanTemp
Very

Important

Minimum mean temperature of the

lowest average temperature

representing the timespan range

Affects moisture, dew point, and

rainfall

maxMeanTemp
Very

Important

Maximum mean temperature of the

highest average temperature

representing the timespan range

Influences evaporation and rainfall

meanRelHum Important

Mean relative humidity

representing maximal amount of air

holding at given temperature

Measures air's moisture content

affecting precipitation

rainfall
Very

Important

Target variable that is the baseline

of precipitation amount recorded

over time

Model predicts precipitation amount

over specific time

JAEDS Volume 5 Issue 2 (September 2025)

98

The preprocessing module reads the labelled CSV files into an array of numbers, normalizes the data with

sliding window normalization for overlapping sequences and marks any rows that were malformed. The values

that were normalized are then reshaped into a 3D tensor for the inputs to the ONNX model to assist in more

accurate predictions. After the normalized values have been transformed, a tensor is created, and the data are pre-

structured for the ONNX model. This adds to rigour used when constructing, evaluating, and predicting from the

testing and the training sets.

3.3 Model overview
At the predictive core of this system is a Long Short-Term Memory (LSTM) neural network, selected because

its architecture is particularly suited for learning long-term dependencies within time-series data. The LSTM

model specifies a regression architecture to predict rainfall by estimating the total rainfall in the future, based on

past consecutive samples of meteorological observations. The variable nature of atmospheric conditions could be

studied as a spatiotemporal phenomenon and therefore through interrelated input variables, temporal behaviours

could be learned and incorporated into good predictive models which provide reliable information within such

densely variable environments. Figure 5 lists down the included functionality classes encased with the proposed

LSTM application system development. The toolkit utilizes a deep learning model based on the LSTM

architecture. The LSTM architecture can model sequential data apart from functioning to model long-range

dependencies in time-series forecasting. LSTMs include memory cells and gating mechanisms, which allow them

to retain historical memory while ignoring noise in time. LSTMs work arbitrarily well to model the statistical

relationships of meteorological variables and delayed precipitation impacts. For the research scope, the developed

system modelling implements a 10-step sliding window to evaluate multivariate weather data, based on

temperature, humidity, wind speed and atmospheric pressure (independent variables), with precipitation

represented as the dependent variable. The 3D structure of the model allows dynamic modelling of temporal trend

change, particularly with respect to precipitation. The model is constructed with one LSTM layer containing 16

hidden units and dropout probability set to 0.2 to avoid overfitting. The second layer is a single-density layer that

predicts the input as rainfall in millimetres. The model is designed and trained using PyTorch [10] due to its

usability, speed, and predictive ability. After training is done, the model is exported for use in an ONNX format,

allowing the model to be imported across programming environments. Within a Java application, the Deep Java

Library (DJL) can execute ONNX code using ONNX runtime, using an instance of a Translator class, which

converts Java-native types into DJL’s NDArray tensors for ONNX to process, resulting in predictions.

Figure 5. Diagram for the User Interface (UI) flow of the proposed research method

JAEDS Volume 5 Issue 2 (September 2025)

99

The system offers single-instance and batch predictions with the use of RainfallBatchTranslator, which can

take different multi-sample data types (i.e., [batch_size, 10, 4]) and provide predicted outputs. This allows datasets

that have been assembled in real-time (historical time series) to be processed at the same time. The program is

designed to be extensible with support for several model types (e.g., GRUs, 1D CNN, or Transformers) as it

requires the ONNX runtime layer. Besides that, the developed program has an agnostic architecture that provides

the ability to deploy the model to different training layers (or frameworks) such as TensorFlow, Keras, and Scikit-

Learn through an ONNX conversion, which is not tied to any local Python dependencies. The DJL runtime is

optimized for inference on CPU or GPU, suitable for any desktop or server use case. Its use of modular pieces

allows the use of pre-trained models and adjusts input or models easily without impacting the training process

significantly.

3.4 DJL integration and translator implementation with batch inference support
Figure 6 illustrates the workflow of the developed LSTM system for automated decision-making, in this case

weather prediction capabilities. The Deep Java Library (DJL) acts as the runtime engine that allows the user to

import and run LSTM models in ONNX format. When developing with a DJL, the user begins with a Criteria

object, which defines the model type, the assumptions for input/output, the target engine (OnnxRuntime) and a

path to the ONNX model. A custom Translator class is required to take raw Java inputs to NDArray tensors and

reconstitute them back to Java primitives to manipulate the outputs. Specifically, the input Translator translates a

3D float array with shape [1,10,4] into an NDList which is the input type needed by the method to make inference,

while the output Translator takes the NDArray tokens and interpret rainfall predictions. In addition, DJL supports

a modular approach for model development, allowing the user to swap out models and use the same input

processing code. The DJL can manage memory use and ensure thread safe operations for several instances of the

same model, with RainfallBatchTranslator used for batch predictions. DJL builds flexibility into the model

development process with the ability to be cross-compatible, with respect to CPU and GPU, as well as providing

input validation and diagnostic for reliable deployment.

Figure 6. Prediction workflow of the intended deep learning mechanism for aggregating rainfall precipitation

from feed data

JAEDS Volume 5 Issue 2 (September 2025)

100

3.5 Model Integration and Functional Validation
This study performed limited functional testing to confirm that the deployed model works properly within the

nested system. The functional testing confirmed that the data ingestion, model inference, and output features

worked as intended, in the real world. A LSTM-based prediction model for rainfall prediction was used as the

basis for the model that made use of multivariate weather data (temperature, humidity, pressure, and wind speed).

The model was developed in PyTorch and exported into ONNX format, which was executed in the Offsetting

Risk Java application using DJL, which triggers the ONNX-Runtime backend. The inference was tested in both

single-instance format and batch-mode format, and the Translator and RainfallBatchTranslator code was stable,

and produced an output prediction for each input instance with an average latency of well under 250 milliseconds

per sample while running on a standard CPU, meeting real-time requirements for predictive analytics. The

predictive values of the LSTM model have a weak correlation to realistic rain, as the dataset underfitted the model

parameters. Even so, the framework allows for testing of different models and parameters which could improve

predictive performance in the long run. The frameworks are also compatible with ONNX models, enabling a

multitude of abilities for time series forecasting.

4.0 RESULTS AND DISCUSSIONS
This section evaluates the system-related aspects of a forecasting toolkit, including model integration,

inference capabilities, interface needs, and scalability. Unlike typical studies concentrating on predictive accuracy,

this proposed a study that explores real-world application and the implementation of modular design for LSTM

modelling in Java. For testing, the study analyses Malaysia's daily rainfall data from 2001 to 2021, including

weather features and utilizes a synthetic ONNX model for validation.

4.1 System integration and inference execution

The LSTM-based rainfall forecasting model was exported in PyTorch using the open neural network exchange

(ONNX) format so that it could then be loaded and executed inside the Java runtime using Deep Java Library

(DJL) with the ONNX Runtime backend. The end-to-end pipeline for the rainfall forecasting from ingesting data,

executing the model, and displaying the result is working reliably with no runtime exceptions or type mismatches,

indicating that the model integration layer was working as expected. Inference was validated with both a single

instance as well as a batch-mode input. With the batch testing, the system was able to efficiently complete

processing of 100 samples with 10-time steps for 4 input features, with total inference processing time under 1

second when running on a standard 16-core CPU (i7-13700HX, 24 thread). These results show that the toolkit can

facilitate low-latency inference in real-time or near-real-time use cases. Figure 7 and 8 both illustrates the

prototype LSTM-based application developed in this study with each constituting supporting features, and the

output generated from the tested Malaysia’s rainfall precipitation data instance (actual versus predicted rainfall).

One thing to note in retrospect of this study is that the premise of analysing inferencing dataset is not limited to

weather prediction purposes; however, it is open to other LSTM-based dataset nomenclature as well, mentioned

in Section 3.1.

Figure 7. Interface snippet of the Java program integrated with Python mechanics for predicting rain

precipitation volumes within the span of assigned timeframe

JAEDS Volume 5 Issue 2 (September 2025)

101

Figure 8. Output of the predicted raindrop capacity across the stipulated timespan for Malaysia region (2001-

2021)

4.2 Interface responsiveness and user interaction

The proposed toolkit emphasizes usability and interactive responsiveness; thus, it has the potential for non-

technical users who do not have proficiency in programming or in deep learning. The user interface utilizes

JavaFX, and thus the experience is for a modern desktop application. Users can load tabular weather data in CSV

format through a simple file selection user interface and subsequently, the system implements structural validation

and ensures necessary fields exist and that data can be in permitted formats. Users can simply initiate an inference

for single predictions or in batch inference, which is entirely abstract behind a single click method of operation.

Visual outputs include various types of outputs visualized as line and area charts that are rendered and updated

dynamically using the JavaFX charting components, which provide near to instantaneous feedback on model

predictions. Users are also able to include uncertainty through the option of confidence intervals for better

interpretable and analytical value. The system provides multiple export options in formats like CSV, Excel, and

PNG for easy usability into downstream analytical workflows or to decision-makers. The system was tested for

responsiveness, as there was no perceived detrimental degradation of responsiveness which supports the

presumption that the toolkit is suitable for use in operational environments daily.

4.3 Modularity and extensibility

The developed experimental toolkit is established with modularity as a first-order principle enabling

extensibility and long-term maintainability without major engineering effort. The fundamental modular

abstraction is founded on decoupling model logic from the interface and data preprocessing layers through a

Criteria object and user-defined Translator classes. The versatility of the toolkit is best exemplified by the fact

that the ONNX model can be swapped for a model using a different deep learning architecture (for example, a

Gated Recurrent Unit or a Multilayer Perceptron) with no changes to the other layers of the application. This

demonstrates the fundamental principle that the framework is model agnostic allowing for any ONNX model,

trained in PyTorch, TensorFlow or other compliant frameworks, to be incorporated into the pipeline without

changing any GUI code or preprocessing logic. The toolkit can also run on completely different hardware

configurations and can be used on either CPU or GPU systems and is therefore deployable on both resource-

constrained edge devices and high-performance CPUs. Moreover, the custom RainfallBatchTranslator

implementation allows batched inference operations performed over very large datasets, which again, enhance the

adaptability of the framework. In summary, the modular approach permits the toolkit to potentially evolve with

changing model standards, along with forecasting requirements.

JAEDS Volume 5 Issue 2 (September 2025)

102

4.4 Observed limitations and future directions

The model produced relatively acceptable results but was also underfitting due to a limited diversity in the

training dataset. Apart from this, the system was useful in structuring the operational prediction process. This was

demonstrated during a simulated rain forecasting exercise using Malaysia's historical weather data, which linked

machine learning models with domain-specific decision-making tools, so non-technical users could execute

complex forecasting processes through this desktop application. The goal for the future is to improve predictive

accuracy and reliability through the integration of probabilistic results, multi-step predictions and live data streams

from active sensors. The second desirable objective is to deploy in cloud or edge situations which will help achieve

broader scalability. Lastly, the modular architecture allows for direct comparisons and benchmarking in research

or industry by enabling the change out of otherwise unrelated models with minimal effort.

Even so, there were significant challenges during the preprocessing tasks. NaN, or not-a-number values in the

features and target variable displayed otherwise deterministic behaviour, requiring a cleaning pipeline to remove

incomplete records. While this is important from an integrity perspective, it maintained bias and distorted the

shape of the dataset, if the absence of records was related to important predictive features. Standardization

methods, such as z-score scaling, were employed to mitigate the influence of skewed distributions on feature

values. Addressing missing values during the preprocessing phase is essential to minimize redundancy and reduce

the introduction of noise into the dataset. Furthermore, standard scalers require no NaNs and can only be fitted on

the training data alone to avoid leak. Properly handling missing values and the step for normalizing the features

are typically fundamental to providing a stable and accurate rainfall prediction model. Another alternative for

improvement of data inferencing is to universalize the capability of reproducing feed data regardless of domain

typing such as energy load forecasting and traffic flow that contains variance in data availability diaspora.

However, it could be made compatible for further processing with LSTM learning models so that the proposed

system usage could be further diversified according to scalability of the intended purpose. In the research

argument, the variability of functionality across related execution environment regardless of computing resources

and variability in particular related with the light but broad machine learning of the proposed application use are

highlighted. Additionally, another opportunity for further integration is cloud deployment where the generic

functionalities of the application could be augmented with cloud computing to further support the capability of

the developed modular system architecture.

5.0 CONCLUSION
The presented framework has provided a well-articulated, modular, and extensible tool for runtime deployment

of deep learning models in platform-independent desktop applications. Although the experimental validation of

predictable accuracy in the case study for rainfall forecasting is underdeveloped, it is still sufficient as an initial

demonstration of the framework's capabilities. The rationale for rain prediction as a case study is good based on

the publicly available datasets and environmental justification. For it to be more convincing as a demonstration

of the framework's generalizability, it would have been useful to demonstrate it on a second domain such as energy

load forecasting or traffic flow prediction. The graphical user interface (GUI) is intended to be easy-to-use and

accessible to non-programmers, but there is no formal usability testing completed for this study with non-technical

users. It is anticipated to be further helpful to include usability testing, providing better evidence for the

accessibility and user experience with the expansion possibility of the LSTM application to be imposed on other

automation domain as well. Because the framework is designed for scalable deployment, including at the edge

and in the cloud, future work would consider the same landscape in security, efficient streaming of data, and

optimization of resources as well. Overall, this work lays a simple foundation to operationalize deep learning time

series models and points to potential areas of future validation and advancements in various real-world

applications.

ACKNOWLEDGEMENT
The author gratefully acknowledges Universiti Pendidikan Sultan Idris, which provided support for this

research and subsequent publications. Furthermore, thanks are extended to the peers who reviewed the article and

provided positive feedback. This research received no financial support from any funding agency (including

public, private, or not-for-profit agencies). The source code for the proposed forecasting toolkit (which was written

in Java) will be publicly available on the author's GitHub repository (https://github.com/blackcontractor90)

following formal article publication to promote reproducibility and future work.

JAEDS Volume 5 Issue 2 (September 2025)

103

AUTHORS CONTRIBUTION
Farid Morsidi (Conceptualisation; Methodology; Validation; Formal analysis; Data curation; Formal analysis;

Investigation; Resources; Software; Visualisation; Writing - original draft; Writing - review & editing)

DECLARATION OF COMPETING OF INTEREST
The authors declare that they have no known competing financial interests or personal relationships that could

have appeared to influence the work reported in this paper. The formulation of the program codes and composition

of the research study is done in the discretion of the first author.

REFERENCES
[1] S. Chen et al., “Rainfall Forecasting in Sub-Sahara Africa-Ghana using LSTM Deep Learning Approach,”

Int. J. Eng. Res. Technol., vol. 10, no. 3, pp. 464–470, 2021, [Online]. Available: www.ijert.org

[2] P. Kanchan, “Rainfall Analysis and Forecasting Using Deep Learning Technique,” J. Informatics Electr.

Electron. Eng., vol. 2, no. 2, pp. 1–11, 2021, doi: 10.54060/jieee/002.02.015.

[3] A. S. M and S. M. J. Amali, “RAINFALL DETECTION USING DEEP LEARNING TECHNIQUE,” J.

Sci. Technol. Res., vol. 1, no. 5, pp. 37–42, 2024, [Online]. Available:

https://philpapers.org/rec/ARURDU

[4] F. Morsidi, “Multi-Depot Dispatch Deployment Analysis on Classifying Preparedness Phase for Flood-

Prone Coastal Demography in Sarawak,” J. ICT Educ., vol. 9, no. 2, pp. 175–190, Dec. 2022, doi:

10.37134/jictie.vol9.2.13.2022.

[5] D. Sun, J. Wu, H. Huang, R. Wang, F. Liang, and H. Xinhua, “Prediction of Short-time rainfall based on

deep learning,” Math. Probl. Eng., vol. 2021, 2021, doi: 10.1155/2021/6664413.

[6] F. Morsidi and I. Y. Panessai, “Overview of the Integral Impact of MDVRP Routing Variables on Routing

Heuristics,” Appl. Inf. Technol. Comput. Sci., vol. 4(1), no. 1, pp. 1723–1738, 2023, doi:

10.30880/aitcs.2023.04.01.105.

[7] E. Salcedo, “Graph Learning-based Regional Heavy Rainfall Prediction Using Low-Cost Rain Gauges,”

2024, doi: 10.1109/LA-CCI62337.2024.10814868.

[8] S. D. Latif et al., “Assessing rainfall prediction models: Exploring the advantages of machine learning

and remote sensing approaches,” Alexandria Eng. J., vol. 82, no. May, pp. 16–25, 2023, doi:

10.1016/j.aej.2023.09.060.

[9] B. M. Preethi, R. Gowtham, S. Aishvarya, S. Karthick, and D. G. Sabareesh, “Rainfall Prediction using

Machine Learning and Deep Learning Algorithms,” Int. J. Recent Technol. Eng., vol. 10, no. 4, pp. 251–

254, 2021, doi: 10.35940/ijrte.d6611.1110421.

[10] A. Paszke et al., “PyTorch: An Imperative Style, High-Performance Deep Learning Library,” in Advances

in Neural Information Processing Systems, 2019.

[11] Y. Wang, P. Jia, Z. Shu, K. Liu, and A. Rashid, “Multidimensional precipitation index prediction based

on C NN -LSTM hybrid framework,” 2025, doi: https://doi.org/10.48550/arXiv.2504.20442.

[12] A. Poghosyan et al., “An enterprise time series forecasting system for cloud applications using transfer

learning,” Sensors, vol. 21, no. 5, pp. 1–28, 2021, doi: 10.3390/s21051590.

[13] P. Lahti, H. Põldoja, J. Lehtonen, S. Ventelä, I. Tuomola, and M. Väyrynen, “An Enterprise Time Series

Forecasting System for Cloud Applications Using Transfer Learning,” Sensors, vol. 21, no. 5, p. 1590,

2021, doi: 10.3390/s21051590.

[14] D. Endalie, G. Haile, and W. Taye, “Deep learning model for daily rainfall prediction: case study of

Jimma, Ethiopia,” Water Supply, vol. 22, no. 3, pp. 3448–3461, 2022, doi: 10.2166/WS.2021.391.

[15] A.-C. Akazan, V. R. Mbingui, G. L. R. N’guessan, and I. Karambal, “Localized Weather Prediction Using

Kolmogorov-Arnold Network-Based Models and Deep RNNs,” pp. 1–17, 2025, [Online]. Available:

http://arxiv.org/abs/2505.22686

[16] P. Hess and N. Boers, “Deep Learning for Improving Numerical Weather Prediction of Heavy Rainfall,”

J. Adv. Model. Earth Syst., vol. 14, no. 3, pp. 1–11, 2022, doi: 10.1029/2021MS002765.

[17] M. Asif, M. M. Kuglitsch, I. Pelivan, and R. Albano, “Review and Intercomparison of Machine Learning

Applications for Short-term Flood Forecasting,” Water Resour. Manag., pp. 1971–1991, 2025, doi:

10.1007/s11269-025-04093-x.

[18] R. A. Adewoyin, P. Dueben, P. Watson, Y. He, and R. Dutta, “TRU-NET: a deep learning approach to

high resolution prediction of rainfall,” Mach. Learn., vol. 110, no. 8, pp. 2035–2062, 2021, doi:

10.1007/s10994-021-06022-6.

[19] J. Zhang and K. Feng, “Forecast the future in a timeseries data with Deep Java Library (DJL),” 2025.

[Online]. Available: https://docs.djl.ai/master/extensions/timeseries/docs/forecast_with_M5_data.html

[20] R. Taylor, “Machine Learning Techniques for Fish Breeding Decision Making,” 2023 Wellingt. Fac. Eng.

Symp., pp. 1–12, 2023, [Online]. Available: https://ojs.victoria.ac.nz/wfes/article/view/8422

[21] A. Rácz, D. Bajusz, and K. Héberger, “Effect of dataset size and train/test split ratios in qsar/qspr

JAEDS Volume 5 Issue 2 (September 2025)

104

multiclass classification,” Molecules, vol. 26, no. 4, pp. 1–16, 2021, doi: 10.3390/molecules26041111.

[22] F. M. Javed Mehedi Shamrat et al., “LungNet22: A Fine-Tuned Model for Multiclass Classification and

Prediction of Lung Disease Using X-ray Images,” J. Pers. Med., vol. 12, no. 5, 2022, doi:

10.3390/jpm12050680.

[23] A. Bhardwaj, “Time Series Forecasting with Recurrent Neural Networks : An In-depth Analysis Time

Series Forecasting with Recurrent Neural Networks : An In-depth Analysis and Comparative Study,”

EDU J. Int. Aff. Res. (EJIAR), ISS, vol. 2, no. 4, 2024, [Online]. Available:

https://edupublications.com/index.php/ejiar/article/view/36

