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ABSTRACT 

Bringing deep learning models for time-series forecasting into production has its challenges in the real world, and 

one of these challenges is transitioning from a Python-based development environment to platform-agnostic 

software. This paper proposed a modular extensible and easy-to-use Java-based framework for implementing deep 

learning time-series forecasting models, using simulated rainfall forecasting as a specific case study. One of the 

benefits of the case study of rainfall forecasting was the number of datasets available to work with and its relevance 

to environmental monitoring. The framework is able to seamlessly implement Long Short-Term Memory (LSTM) 

models that were trained in PyTorch and exported in the ONNX (Open Neural Network Exchange) format running 

inference with DJL (Deep Java Library). Users benefit from the ability to convert Java-native data to DJL 

compatible tensors via a custom Translator module in real time or batch for prediction. The framework also 

provides an easy-to-use graphical user interface (GUI) built in JavaFX to allow users to import CSV datasets to 

predict, visualize results, and export outputs without any advanced programming experience. In the rainfall 

forecasting case imposed for the case study analysis, the predictive accuracy was limited by the dataset; however, 

the main purpose of the work was to develop a reusable, accessible, and extensible deployment platform for 

ONNX-based deep-learning time-series models. The framework provides the foundation to allow for practical use 

of machine-learning workflows in a variety of applications, including environmental management, logistics, and 

industrial automation. The modularity of the framework and cross-platform development help to fill the gap with 

existing deployment technologies which offer a scalable pathway of operationalizing machine learning in practice 

with modern models such as deep learning. The proposed framework provides accessible solution between 

advanced model development and deployment covering wide use cases of machine learning.   

Keywords: Rainfall prediction; Long Short-Term Memory (LSTM); Deep learning; Time-series forecasting; 

Deep Java Library (DJL) 

Abbreviations 

 

LSTM Long Short-Term Memory 

ONNX Open Neural Network Exchange 

csv Comma-separated value 

LSTM Long Short-Term Memory 

DJL Deep Java Library 

 
 
1.0 INTRODUCTION  

Rainfall prediction remains an enduring challenge in the field of meteorological science because of the 

dynamism, nonlinearity, and multivariate characteristics associated with atmospheric systems [1], [2]. Weather is 

changeable and it depends on the interaction of a multitude of variables, including temperature, humidity, wind, 

and atmospheric pressure, which are complexly related and not easily modelled using rigorous statistical or 

numerical methods [1]. Traditional methods have proven useful for producing baseline estimates, but these do 

very poorly in capturing long-term temporal relationships, especially short- to long-range nonlinear dependencies 

and interactively innovative features, particularly for the shorter to medium forecasting horizons. The need to 

capture these relationships is critical given the importance of rainfall prediction across an array of high-impact 

domains which include precision agriculture, flood mitigation, water resource planning, infrastructure resilience, 

and disaster risk preparedness and mitigation [3], [4], [5]. Reliable precipitation forecasting is critical for 

mitigation and disaster response management [6]. The accurate and timely prediction of heavy rainfall events is 
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critical for flood risk management and disaster preparedness. Heavy rainfall prediction begins with the ability to 

observe, examine and assess the rainfall data at any given point. Only then can effective measures be taken to 

offset any magnitude of climate variations. This provides knowledge to assist in surface and subterranean 

hydrological resources planning [7]. 

Of late, deep learning has emerged as a promising alternative for chronicle data modeling. Long Short-Term 

Memory (LSTM) networks are a form of recurrent neural network and have an ability to learn temporal dynamics 

from multiple input streams, or multivariate inputs [8]. Their network architecture involves gating mechanisms 

and internal memory states, which allow the model to learn that the temporal order of past instances can affect the 

future when applying the LSTM architecture using historical data (for example, as when predicting rainfall).  

LSTM and other deep models remain attractive where more research is needed, but the gap between the on-going 

research and actual application of deep learning systems in practice is large [1], [9], particularly for users who are 

not machine learning or Python developers. Most state-of-the-art forecasting models use Python solidifying or 

frameworks like PyTorch [10] or TensorFlow, and while these are flexible frameworks, they create problems 

when it comes to dropping these models into cross-platform, maintainable software stacks. Non-expert users, the 

users who typically put forecasting models into a service like meteorologists, environmental researchers or public-

sector analysts, usually do not have the tools or knowledge to directly deploy and interface these models for real-

time applications. Moreover, production-grade applications need an effective means of not only collecting and 

using accurate models, but a sensible and robust pipeline of integrating incoming data, pre-processing incoming 

data, executing the models to produce a result, visualizing the result, and integrating this has resulted into a larger 

system. 

This study addresses those limitations through a new focus on developing, implementing, and distributing a 

modular, user-friendly, extensible forecasting application entirely written in Java. Also, the application is a bridge 

between high-performance machine learning models and the ability to actually use them in practice, as it unites a 

PyTorch-trained LSTM model exported in Open Neural Network Exchange format (.onnx) with the Deep Java 

Library (DJL) for deploying ONNX model in a Java context, providing platform-independent, Python-dependent 

inference at a relatively efficient speed; all without the typical, traditional Python dependencies and calls. 

Additionally, the application is designed with both expert and novice end-users in mind by providing a graphical 

user interface (GUI) built upon JavaFX that allows for easily uploading data in CSV format, real time and batch 

model inference and visualization (including confidence intervals), and exporting results for offline exploration. 

This work does not place emphasis on improving predictive accuracy for the current state and is focused on 

building a reusable and extensible software framework for the use of machine-learning models inside operational, 

cross-platform forecasting systems. Rainfall prediction is used as an example, but it is important to note that the 

system and design are flexible and can be used within any domain, or for any time-series forecasting problem, 

which could include energy consumption, traffic flow, or financial queries. In regard to the secondary goals of 

this paper, the contribution, in the form of the layered toolkit, the context, scalability, and operational examples 

for rainfall forecasting, include: (i) a modular Java package toolkit for the inference of ONNX-based deep learning 

models based on DJL runtime, (ii) a custom Translator pipeline for Java native data structures and DJL objects 

(tensors) as intermediate data storage for projected pre-batched inference and real-time inference, (iii) an 

integrated JavaFX-based GUI that allows non-programmers to work with complex time-series models without 

writing code, and (iv) a demonstration of the toolkit architecture, extension, and usage with rainfall forecasting as 

an example use case. The address of this gap in tooling and deployment serves to promote advanced time-series 

modeling methods and make operationally relevant in a wider scientific, industrial, and decision support capacity. 

 

2.0 RELATED WORKS 
Conventional time-series forecasting models such as ARIMA, SVR, and MLR often do not perform well when 

predicting atmospheric data, which frequently contain multiple input variables that vary in time and space, because 

they are poor at capturing complex inter-variable relationships and long-term dependencies [5], [11], [12], [13].  

While LSTM networks and Gated Recurrent Units (GRUs) represent a generational leap forward for accurate 

prediction problems, only over the past five years have advanced sequence modeling architectures become widely 

available, so that prediction problems now have “Fast Reasoning” architectures capable of automated feature 

development from the input data based on temporal dependencies [5], [8]. With LSTMs somewhat uniquely 

positioned, models are shown to consistently outperform conventional strategies for short- and medium-term 

rainfall forecasting by being able to model inter-variable interactions and long-term temporal variability. Figure 

1 represents the general summation of deep learning applications in collaboration with LSTM features, 

particularly in this case the application with weather forecasting. 
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Figure 1. Network diagram illustrating the correlation between deep learning applications and their usability in 

LSTM models for intelligent decision-making features, focusing on their integration in weather predictive 

capabilities 

 
Anticipating rain can be difficult but it can utilize data-mining methods to demonstrate how previous weather 

data can identify the patterns. Hybrid models used historical rainfall observations and nearby raw data streams, 

from remote monitoring devices to abstract the features. In terms of rainfall prediction investment, machine 

learning methods can be used regardless of climate or time scale which includes any time interval or CAD for 

LSTM architectures [8]. Using a Convolutional Neural Network (CNN), a model was created to predict such 

things as monthly rainfall totals for a location [3]. To assess the performance of the system, the mean square error, 

mean absolute error, and root mean square error were used. Another research study introduced an LSTM-based 

model for predicting rainfall in Jimma, Ethiopia, aimed at enhancing sustainable agricultural methods [14]. The 

proposed model's performance was assessed using RMSE, MAPE, NSE, and R2 metrics. The LSTM model 

successfully predicted daily rainfall with greater accuracy compared to ML models such as MLP, KNN, SVM, 

and DT. This LSTM model may serve as a dependable and beneficial resource for forecasting daily rainfall totals 

in Jimma, aiding agricultural practices and management. 

A research study of hourly rainfall forecasting in western part of Ghana was conducted [1] utilizing data 

sourced from the European Centre for Medium-Range Weather Forecasts (ECMWF). The study also developed 

Deep Learning models based on the LSTM algorithm. The researchers performed a correlation analysis to find 

the various relationships and important parameters/features affecting rainfall. The correlation analysis indicated 
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that temperature, pressure, and humidity are the most significant contributors to rainfall in the region. The 

proposed LSTM architecture performed the best with a lower MSE and RMSE than the other configuration 

models. In the future, the plan is to explore more alternatives of model architecture by increasing the number of 

training epochs past 200. A study proposed a CNN-LSTM framework for a multidimensional precipitation index 

forecasting model [11]. The model utilized monthly means from Pune, Maharashtra, which are sourced from 

world meteorological archival data between the 1970's and 2002. This model efficiently estimated precipitation 

in line with expectations using local features while utilizing long-term features well. The model achieved a RMSE 

of 6.752 or 204% better than several traditional time series methods, but the higher computational costs with large 

datasets limited the model's possibilities. This highlights some areas for future research and improves the 

possibility for applications in precipitation forecasting.   

Forecasting rainfall can be difficult because of the complex, dynamic, and changing nature of it and the effects 

of climate change. A study compared three modelling approaches for rainfall forecasting: statistical models; 

machine learning algorithms; and hybrids of models [15]. The neural networks model for deep learning is to 

develop a model to predict regional precipitation using satellite, radar, and ground data. The deep learning model 

uses the data mining (DM) and machine learning (ML) techniques [8]. Hybrid models that incorporate 

combination remote sensing data and machine learning techniques need more research because of the small 

number of applications which are able to model problem instances accurately. Only a small handful of researchers 

have been able to predict rainfall accurately [8]. A comparison study has evaluated the Artificial Neural Network 

(ANN), Simple Recurrent Neural Network (RNN), and Long Short-Term Memory (LSTM) techniques [9]. LSTM 

reported the best performance in accuracy using Mean Absolute Percentage Error (MAPE) and Root Mean Square 

Error (RMSE).  The research team concentrated on cold region river systems by using LSTM modelling to assist 

with the future challenges associated with modelling flood forecasting in changing climate conditions. For the 

modelling system, hourly USGS gage water level data were used to inform the LSTM model, which resulted in 

encouraging findings and potential improvements in flood forecasting short-term prediction capabilities and 

warning systems. However, to move forward, considerable effort must be made in developing longer-term 

prediction of flood forecasting methods and techniques and determining the accuracy. 

The variability and skewedness of rainfall distribution means that modeling rainfall brings its own level of 

difficulty, since numerical weather prediction (NWP), which requires discretely gridded simulations, adds 

complication [16]. Furthermore, the resolution of the grid also influences the bias in rainfall estimations. For 

example, a deep neural network (DNN) implementation had loss function optimization that tends to represent 

heavy rainfall events effectively [16]. The U-Net based DNN led to improvements in heavy rainfall event 

prediction that ranged from two times to over six times in water level forecast skill through loss function tuning 

to learn the tail distributions better. In terms of in-depth analysis of rainfall distribution prediction through LSTM, 

a research synthesis was conducted where the analysis of 94 articles that used LSTM since 2001 was performed 

to review short-term forecasting of flood events [17]. The research synthesis suggested that hybrid model use is 

superior to standalone models and that the combination of model and input is crucial for good operational 

forecasting accuracy. 

Climate models assess climate change's effect on flood risk and extreme precipitation, but they tend to have a 

lower spatial resolution, leading to less precision [18]. One study employed a Deep Learning (DL) approach in 

which a reanalysis product was used as input to achieve greater accuracy for precipitation predictions. This 

particular research demonstrated a special TRU-NET model, employing an encoder-decoder structure, which 

equally uses 2D cross-attention [18]. The TRU-NET results were shown to have less RMSE and MAE than typical 

DL models and state-of-the-art dynamical models, while confidence metrics were produced for all seasons and 

locations. Another study indicated a new and original Conv3D-GRU model for short-term rainfall intensity 

predictions based on radar, called a Conv3D-GRU, which was able to successfully analyse features from radar 

echo map image features while enhancing accuracy in their forecasting [5]. A proposal for a low-cost IoT system 

capable of automatic rainfall recording and monitoring also produced model precision with rainfall predictions, 

and a new graph neural network methodology was also introduced that had a much higher degree of precision in 

prediction of regional heavy rainfall by modeling spatial dependencies [7]. Testing recent models on a 72-month 

dataset, validation indicated that the synthetically produced approach could estimate heavy rainfall with regional 

applicability in areas of limited resources or where weather observations are sparse. 
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3.0 RESEARCH FRAMEWORK 
The use of LSTM models in the operational production environment is typically limited. While a lot of LSTM 

models are being implemented in Python, there is usually the need for specialized systems that cannot leverage 

the entirety of the programming language library. Advances in the formats for exchanging modeling formats, 

specifically the Open Neural Network Exchange (ONNX) format and flexible runtimes like the Deep Java Library 

(DJL), have provided new deployment of a pre-trained machine learning or deep learning model almost anywhere 

it can be connected [19]. The work in this paper takes that gap in the research and the behaviour of implementing 

deep learning models by implementing a cross-platform implementation of a LSTM-based rainfall forecasting 

system that leverages the predictive capabilities of deep learning, but is fully deployable across several systems 

and ecosystems, made possible with Java and ONNX. 

3.1 System architecture 

The architecture of the cloud-based forecasting toolkit that has been proposed is predicated on modularity, 

usability, and the cross-platform deployment of deep learning models for time-series forecasting. While LSTM 

networks have been shown to work well with sequential data like weather variables, the focus of the proposed 

toolkit lies in the software engineering aspects of fielding models in desktop environments, utilizing a layered 

abstraction that can promote better maintainability and extensibility.  Figures 2 and 3 are both representations of 

the proposed development workflow methodology for input and output process in relation with data inferencing. 

The proposed system comprises of four primary layers: 

 

 

 

 
 

Figure 2. System architecture of the proposed 

development prototype 

 

 

Figure 3. Workflow diagram from training phase to 

prediction and data instance export for further 

analysis 
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i. User interface layer 

The user interface was developed using JavaFX, allowing the user to visually interact with the system without 

needing to parse code. The user can submit comma-separated value (.csv) file which contains time-series data 

along with a meteorological feature (e.g. humidity threat and temperature). Once uploaded, and depending on the 

invocation of the models to make forecasts using the model controls that are embedded, the user will receive 

output and immediate feedback. The user can generate plots of varying dependencies, including line plots or 

scatter plots, with optional confidence intervals for improved interpretability of forecasted values. As an example, 

the user may upload rainfall recorded in Malaysia in July 2025 to predict July for the same year using the LSTM 

model, ultimately producing plots of predicted trends. The potentiated results can be saved to an image file and/or 

an Excel or CSV spreadsheet system for reporting and/or analysis. 

ii. Data handling layer 

The data-processing element is the tool that transforms input values into the structure used by the model. The 

process involves a variety of processing activities:  

a) Validation: It ensures that the uploaded documents contain all the required fields and the appropriate 

formatting of the input. If the features are missing or wrongly formatted, the values would either be 

highlighted for the user to correct or, in the case of with missing data, would be imputed [20]. 

b) Normalization: It normalizes input features either min-max normalization (rescale feature from [0,1]) or 

z-score normalization (which creates a feature mean of zero and variance of one) depending on which 

normalization the users have chosen [21], [22]. Normalization is needed so that the different inputs to 

the neural network have common numerical behaviour.  

c) Creation of Sliding Windows: The application will take raw sequential data and partition into overlapping 

windows of the user-specified size [23]. For example, with a fixed window size of 10 and 4 input features 

(temperature, humidity, wind-speed, and pressure), each sliding window would produce tensors of shape 

[batch_size, 10 (number of historical time-steps), 4 (number of files)]. Each window can be thought of 

as capturing a sequence of ten continuous time-steps that the model will use for forecasting a future value 

(in this case, rainfall at the next time point). 

These changes are managed internally with Java data structures, and the result is forwarded to the model 

integration layer in a format suitable for tensor operations. 

iii. Model Integration layer 

The model integration layer is the engine behind the system which contains the execution of the ONNX-

encoded LSTM model using the Deep Java Library (DJL) inference engine. The model integration layer hides the 

challenges of deep-learning inference and allows pre-trained models to be used in a Java application. The ONNX 

model is developed in a contained environment with PyTorch and then incorporated into the application using the 

model loading API provided within the DJL. The RainfallBatchTranslator is a custom Translator class responsible 

for input and output translations.  

• Input translation: Translates a 3D Java float array (1,10,4) into DJL’s NDArray, the shape of the input 

must match the time and feature dimensions expected by the model. 

• Output translation: Extracts and organizes the models predicted output (typically one float value for 

estimated rainfall in mm) from the output tensor.  

The RainfallBatchTranslator allows concurrent translation of multiple sequences that allows batch inference 

predicting rainfall over different sites or moments in time. A batch of 50 samples, each with 10-time steps and 4 

features, are structured as a tensor of shape [50, 10, 4] and this accommodates the processing of samples. This 

layer can be treated the same as any other model which allows for any ONNX-exported time-series regression 

model on the market to replace the LSTM, while also enabling other forecasting tasks such as energy consumption 

or equipment breakdown predictions. 
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iv. Visualization layer 

The last layer deals with output visualization and interpretation. When inference is complete, the results are 

fed into a visualization module. The visualization module displays the predictions in chart form using JavaFX 

components (for example, LineChart, or AreaChart) and includes options for confidence intervals and/or 

historical trends. Users can also toggle various visual components on or off, export figures as PNGs, or as Excel 

files, or explore data interactively. For example, if a user wants to compare predicted rainfall to historical averages, 

they could overlay predicted output with raw data points in CSV, within the application interface. The 

visualization layer adds interpretability to communicate results, especially important when a decision can be made 

but stakeholders are not aware of the mechanics of the model. Figure 4 highlights the recent main contribution of 

LSTM applications in automated intelligent decision-making processes; in this scope emphasizing on the 

utilization of LSTM for the purpose of predicting advanced weather outcomes.   

 

 

 

Figure 4. Visualization on the concept flow of LSTM application for weather forecasting 
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3.2 Data Handling and Preprocessing 
The system has two components, and both require input datasets in CSV format where these datasets have 

rows of observational records representing meteorological events with timestamps. Suggested features tested in 

this study include height, minMeanTemp, maxMeanTemp, meanRelHum, and rainfall. Attention to preprocessing 

is important for valid inference, as neural networks can be affected by the ranges of input values, missing values, 

and boundary conditions. The data handling and preprocessing modules are critical for transforming raw weather 

data into systematically organized model input. Table 1 presents the five main parameters for calculating rain 

precipitation percentages.  

Since there was not any tool made available to convert ONNX modelling features from comma-separated 

value datasets, this study developed a Python script specialized for rainfall prediction using tabular meteorological 

data. This script functions to read in a CSV file, clean its target and numeric columns, manipulate the non-valid 

or missing data, performed one-hot encoding for the categorical variable "state," and standardized features using 

a StandardScaler for reproducibility. Subsequently, the dataset is trained by utilizing an MLPRegressor neural 

network where the model can be saved at any point in the pipeline. The saved model and StandardScaler are 

exportable or translated into ONNX format. The script is also able to plot regression model prediction for any 

record with a provided sample pulled from the pipeline, with a debugging section to plot the transformed features 

and also the prediction, utilizing the data from the instance selected. The data used for this project were obtained 

from the Department of Statistics Malaysia, which included mean temperature, rainfall and mean relative humidity 

data from 2000 to 2021 (https://archive.data.gov.my/data/dataset/mean-temperature-rainfall-and-mean-relative-

humidity-malaysia/resource/15b3c8a2-ef0d-4044-8fc1-f261fa9cd7b0). 

The framework for the research adopts an automated, modular pipeline for rain prediction with the reference 

of Actual (ground truth precipitation measurement from official dataset) and Prediction (values derived from 

LSTM predictive modelling) columns from CSV files. The data gleaning is the next step which includes removing 

all spaces and removing empty columns or columns with the wrong format. Continuous features are standardized 

with a typical z-score method yielding a mean of 0 and variance of 1 removing bias from each individual feature 

to attempt to stabilize the modeling. Exploratory data analysis is conducted to check summary statistics and find 

anomalies to be removed. Verified datasets are split into independent training and test sets to maintain rigour 

when modeling the predictive function for the model development. Clean datasets from training and test sets will 

produce visualizable results by means of how data are displayed using time series plots while preserving the values 

for reproducibility, transparency and explainability.  

 

Table 1: The analysis on feature variables utilized for capturing rain precipitation frequency referenced from 

Malaysia’s 2000-2021 annual rain dataset retrieved from Department of Statistics  

Feature Importance Explanation Role in Prediction 

state Important 

The "state" variable captures 

geographic variations in rainfall 

patterns 

 

Influencing model predictions based 

on regional climate and topography 

differences. 

height Important 

Elevation from sea level that 

affects climate and rainfall  

 

Determines relative temperature, 

pressure, humidity changes 

minMeanTemp 
Very 

Important 

Minimum mean temperature of the 

lowest average temperature 

representing the timespan range  

 

Affects moisture, dew point, and 

rainfall 

maxMeanTemp 
Very 

Important 

Maximum mean temperature of the 

highest average temperature 

representing the timespan range 

 

Influences evaporation and rainfall 

meanRelHum Important 

Mean relative humidity 

representing maximal amount of air 

holding at given temperature 

 

Measures air's moisture content 

affecting precipitation 

rainfall 
Very 

Important 

Target variable that is the baseline 

of precipitation amount recorded 

over time 

Model predicts precipitation amount 

over specific time 
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The preprocessing module reads the labelled CSV files into an array of numbers, normalizes the data with 

sliding window normalization for overlapping sequences and marks any rows that were malformed. The values 

that were normalized are then reshaped into a 3D tensor for the inputs to the ONNX model to assist in more 

accurate predictions. After the normalized values have been transformed, a tensor is created, and the data are pre-

structured for the ONNX model. This adds to rigour used when constructing, evaluating, and predicting from the 

testing and the training sets. 

 

3.3 Model overview 
At the predictive core of this system is a Long Short-Term Memory (LSTM) neural network, selected because 

its architecture is particularly suited for learning long-term dependencies within time-series data. The LSTM 

model specifies a regression architecture to predict rainfall by estimating the total rainfall in the future, based on 

past consecutive samples of meteorological observations. The variable nature of atmospheric conditions could be 

studied as a spatiotemporal phenomenon and therefore through interrelated input variables, temporal behaviours 

could be learned and incorporated into good predictive models which provide reliable information within such 

densely variable environments. Figure 5 lists down the included functionality classes encased with the proposed 

LSTM application system development. The toolkit utilizes a deep learning model based on the LSTM 

architecture. The LSTM architecture can model sequential data apart from functioning to model long-range 

dependencies in time-series forecasting.  LSTMs include memory cells and gating mechanisms, which allow them 

to retain historical memory while ignoring noise in time. LSTMs work arbitrarily well to model the statistical 

relationships of meteorological variables and delayed precipitation impacts. For the research scope, the developed 

system modelling implements a 10-step sliding window to evaluate multivariate weather data, based on 

temperature, humidity, wind speed and atmospheric pressure (independent variables), with precipitation 

represented as the dependent variable. The 3D structure of the model allows dynamic modelling of temporal trend 

change, particularly with respect to precipitation. The model is constructed with one LSTM layer containing 16 

hidden units and dropout probability set to 0.2 to avoid overfitting. The second layer is a single-density layer that 

predicts the input as rainfall in millimetres. The model is designed and trained using PyTorch [10] due to its 

usability, speed, and predictive ability. After training is done, the model is exported for use in an ONNX format, 

allowing the model to be imported across programming environments. Within a Java application, the Deep Java 

Library (DJL) can execute ONNX code using ONNX runtime, using an instance of a Translator class, which 

converts Java-native types into DJL’s NDArray tensors for ONNX to process, resulting in predictions. 

 

 

Figure 5. Diagram for the User Interface (UI) flow of the proposed research method 
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The system offers single-instance and batch predictions with the use of RainfallBatchTranslator, which can 

take different multi-sample data types (i.e., [batch_size, 10, 4]) and provide predicted outputs. This allows datasets 

that have been assembled in real-time (historical time series) to be processed at the same time. The program is 

designed to be extensible with support for several model types (e.g., GRUs, 1D CNN, or Transformers) as it 

requires the ONNX runtime layer. Besides that, the developed program has an agnostic architecture that provides 

the ability to deploy the model to different training layers (or frameworks) such as TensorFlow, Keras, and Scikit-

Learn through an ONNX conversion, which is not tied to any local Python dependencies. The DJL runtime is 

optimized for inference on CPU or GPU, suitable for any desktop or server use case. Its use of modular pieces 

allows the use of pre-trained models and adjusts input or models easily without impacting the training process 

significantly. 

 

3.4 DJL integration and translator implementation with batch inference support 
Figure 6 illustrates the workflow of the developed LSTM system for automated decision-making, in this case 

weather prediction capabilities. The Deep Java Library (DJL) acts as the runtime engine that allows the user to 

import and run LSTM models in ONNX format. When developing with a DJL, the user begins with a Criteria 

object, which defines the model type, the assumptions for input/output, the target engine (OnnxRuntime) and a 

path to the ONNX model. A custom Translator class is required to take raw Java inputs to NDArray tensors and 

reconstitute them back to Java primitives to manipulate the outputs. Specifically, the input Translator translates a 

3D float array with shape [1,10,4] into an NDList which is the input type needed by the method to make inference, 

while the output Translator takes the NDArray tokens and interpret rainfall predictions. In addition, DJL supports 

a modular approach for model development, allowing the user to swap out models and use the same input 

processing code. The DJL can manage memory use and ensure thread safe operations for several instances of the 

same model, with RainfallBatchTranslator used for batch predictions. DJL builds flexibility into the model 

development process with the ability to be cross-compatible, with respect to CPU and GPU, as well as providing 

input validation and diagnostic for reliable deployment. 

 

 

Figure 6. Prediction workflow of the intended deep learning mechanism for aggregating rainfall precipitation 

from feed data 
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3.5  Model Integration and Functional Validation 
This study performed limited functional testing to confirm that the deployed model works properly within the 

nested system. The functional testing confirmed that the data ingestion, model inference, and output features 

worked as intended, in the real world. A LSTM-based prediction model for rainfall prediction was used as the 

basis for the model that made use of multivariate weather data (temperature, humidity, pressure, and wind speed). 

The model was developed in PyTorch and exported into ONNX format, which was executed in the Offsetting 

Risk Java application using DJL, which triggers the ONNX-Runtime backend. The inference was tested in both 

single-instance format and batch-mode format, and the Translator and RainfallBatchTranslator code was stable, 

and produced an output prediction for each input instance with an average latency of well under 250 milliseconds 

per sample while running on a standard CPU, meeting real-time requirements for predictive analytics. The 

predictive values of the LSTM model have a weak correlation to realistic rain, as the dataset underfitted the model 

parameters. Even so, the framework allows for testing of different models and parameters which could improve 

predictive performance in the long run. The frameworks are also compatible with ONNX models, enabling a 

multitude of abilities for time series forecasting. 

 

4.0 RESULTS AND DISCUSSIONS 
This section evaluates the system-related aspects of a forecasting toolkit, including model integration, 

inference capabilities, interface needs, and scalability. Unlike typical studies concentrating on predictive accuracy, 

this proposed a study that explores real-world application and the implementation of modular design for LSTM 

modelling in Java. For testing, the study analyses Malaysia's daily rainfall data from 2001 to 2021, including 

weather features and utilizes a synthetic ONNX model for validation.  

 

4.1 System integration and inference execution 

The LSTM-based rainfall forecasting model was exported in PyTorch using the open neural network exchange 

(ONNX) format so that it could then be loaded and executed inside the Java runtime using Deep Java Library 

(DJL) with the ONNX Runtime backend.  The end-to-end pipeline for the rainfall forecasting from ingesting data, 

executing the model, and displaying the result is working reliably with no runtime exceptions or type mismatches, 

indicating that the model integration layer was working as expected. Inference was validated with both a single 

instance as well as a batch-mode input. With the batch testing, the system was able to efficiently complete 

processing of 100 samples with 10-time steps for 4 input features, with total inference processing time under 1 

second when running on a standard 16-core CPU (i7-13700HX, 24 thread). These results show that the toolkit can 

facilitate low-latency inference in real-time or near-real-time use cases. Figure 7 and 8 both illustrates the 

prototype LSTM-based application developed in this study with each constituting supporting features, and the 

output generated from the tested Malaysia’s rainfall precipitation data instance (actual versus predicted rainfall).  

One thing to note in retrospect of this study is that the premise of analysing inferencing dataset is not limited to 

weather prediction purposes; however, it is open to other LSTM-based dataset nomenclature as well, mentioned 

in Section 3.1.  

 

 

Figure 7.  Interface snippet of the Java program integrated with Python mechanics for predicting rain 

precipitation volumes within the span of assigned timeframe 
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Figure 8.  Output of the predicted raindrop capacity across the stipulated timespan for Malaysia region (2001-

2021) 

4.2 Interface responsiveness and user interaction  

The proposed toolkit emphasizes usability and interactive responsiveness; thus, it has the potential for non-

technical users who do not have proficiency in programming or in deep learning. The user interface utilizes 

JavaFX, and thus the experience is for a modern desktop application. Users can load tabular weather data in CSV 

format through a simple file selection user interface and subsequently, the system implements structural validation 

and ensures necessary fields exist and that data can be in permitted formats. Users can simply initiate an inference 

for single predictions or in batch inference, which is entirely abstract behind a single click method of operation.  

Visual outputs include various types of outputs visualized as line and area charts that are rendered and updated 

dynamically using the JavaFX charting components, which provide near to instantaneous feedback on model 

predictions. Users are also able to include uncertainty through the option of confidence intervals for better 

interpretable and analytical value. The system provides multiple export options in formats like CSV, Excel, and 

PNG for easy usability into downstream analytical workflows or to decision-makers. The system was tested for 

responsiveness, as there was no perceived detrimental degradation of responsiveness which supports the 

presumption that the toolkit is suitable for use in operational environments daily. 

 

4.3 Modularity and extensibility 

The developed experimental toolkit is established with modularity as a first-order principle enabling 

extensibility and long-term maintainability without major engineering effort. The fundamental modular 

abstraction is founded on decoupling model logic from the interface and data preprocessing layers through a 

Criteria object and user-defined Translator classes. The versatility of the toolkit is best exemplified by the fact 

that the ONNX model can be swapped for a model using a different deep learning architecture (for example, a 

Gated Recurrent Unit or a Multilayer Perceptron) with no changes to the other layers of the application. This 

demonstrates the fundamental principle that the framework is model agnostic allowing for any ONNX model, 

trained in PyTorch, TensorFlow or other compliant frameworks, to be incorporated into the pipeline without 

changing any GUI code or preprocessing logic. The toolkit can also run on completely different hardware 

configurations and can be used on either CPU or GPU systems and is therefore deployable on both resource-

constrained edge devices and high-performance CPUs. Moreover, the custom RainfallBatchTranslator 

implementation allows batched inference operations performed over very large datasets, which again, enhance the 

adaptability of the framework.  In summary, the modular approach permits the toolkit to potentially evolve with 

changing model standards, along with forecasting requirements. 
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4.4 Observed limitations and future directions 

The model produced relatively acceptable results but was also underfitting due to a limited diversity in the 

training dataset. Apart from this, the system was useful in structuring the operational prediction process. This was 

demonstrated during a simulated rain forecasting exercise using Malaysia's historical weather data, which linked 

machine learning models with domain-specific decision-making tools, so non-technical users could execute 

complex forecasting processes through this desktop application. The goal for the future is to improve predictive 

accuracy and reliability through the integration of probabilistic results, multi-step predictions and live data streams 

from active sensors. The second desirable objective is to deploy in cloud or edge situations which will help achieve 

broader scalability. Lastly, the modular architecture allows for direct comparisons and benchmarking in research 

or industry by enabling the change out of otherwise unrelated models with minimal effort. 

Even so, there were significant challenges during the preprocessing tasks. NaN, or not-a-number values in the 

features and target variable displayed otherwise deterministic behaviour, requiring a cleaning pipeline to remove 

incomplete records. While this is important from an integrity perspective, it maintained bias and distorted the 

shape of the dataset, if the absence of records was related to important predictive features. Standardization 

methods, such as z-score scaling, were employed to mitigate the influence of skewed distributions on feature 

values. Addressing missing values during the preprocessing phase is essential to minimize redundancy and reduce 

the introduction of noise into the dataset. Furthermore, standard scalers require no NaNs and can only be fitted on 

the training data alone to avoid leak. Properly handling missing values and the step for normalizing the features 

are typically fundamental to providing a stable and accurate rainfall prediction model. Another alternative for 

improvement of data inferencing is to universalize the capability of reproducing feed data regardless of domain 

typing such as energy load forecasting and traffic flow that contains variance in data availability diaspora. 

However, it could be made compatible for further processing with LSTM learning models so that the proposed 

system usage could be further diversified according to scalability of the intended purpose. In the research 

argument, the variability of functionality across related execution environment regardless of computing resources 

and variability in particular related with the light but broad machine learning of the proposed application use are 

highlighted. Additionally, another opportunity for further integration is cloud deployment where the generic 

functionalities of the application could be augmented with cloud computing to further support the capability of 

the developed modular system architecture.   

 

5.0 CONCLUSION 
The presented framework has provided a well-articulated, modular, and extensible tool for runtime deployment 

of deep learning models in platform-independent desktop applications. Although the experimental validation of 

predictable accuracy in the case study for rainfall forecasting is underdeveloped, it is still sufficient as an initial 

demonstration of the framework's capabilities. The rationale for rain prediction as a case study is good based on 

the publicly available datasets and environmental justification. For it to be more convincing as a demonstration 

of the framework's generalizability, it would have been useful to demonstrate it on a second domain such as energy 

load forecasting or traffic flow prediction. The graphical user interface (GUI) is intended to be easy-to-use and 

accessible to non-programmers, but there is no formal usability testing completed for this study with non-technical 

users. It is anticipated to be further helpful to include usability testing, providing better evidence for the 

accessibility and user experience with the expansion possibility of the LSTM application to be imposed on other 

automation domain as well. Because the framework is designed for scalable deployment, including at the edge 

and in the cloud, future work would consider the same landscape in security, efficient streaming of data, and 

optimization of resources as well. Overall, this work lays a simple foundation to operationalize deep learning time 

series models and points to potential areas of future validation and advancements in various real-world 

applications. 
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