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ABSTRACT 

Soliton for optical sensors is essentially a new way for overcoming a sensing sensitivity constraint. High 

sensitivity in terms of device accuracy is in demand nowadays, and it plays an important part in achieving 

improved performance. Due to this constraint, we observe that the largest sensing limitation originates from the 

input optical pulse that travels inside the waveguide, which governs pulse reduction before sensor testing.  As a 

result, the development of optical soliton is required to circumvent this limitation. In the present work, we 

proposed design recommendations for soliton-based optical sensors by numerically investigating soliton 

production in a silicon channel waveguide. The effects of nonlinearity, dispersion, and waveguide geometry on 

soliton stability were examined. The findings indicate that adjusting the waveguide thickness to 300 nm guarantees 

single-mode operation at 1.55 µm, resulting in an anomalous dispersion regime with group velocity dispersion of 

–26.83 ps²·mm⁻¹ and a group index of 6.96. Stable solitary pulse propagation was made possible by the calculated 

soliton order of 0.84, which indicates operation near the basic soliton regime. At waveguide length of 8.7 mm, 

where dispersive and nonlinear effects are well balanced, maximum transmission took place, but soliton 

production required a minimum length of ~4.5 mm. At this length, the soliton retained its intensity and pulse 

waveform, indicating strong propagation conditions. These findings provide a mathematical framework for 

connecting soliton order, dispersion length, and nonlinear length to sensor performance. The findings show that 

maintaining pristine soliton output within a silicon waveguide is a straightforward strategy to improve the 

sensitivity as well as performance of next-generation optical sensors. 

Keywords: Optical soliton; Optical sensor; Nonlinear optical pulses, Silicon waveguide. 

Nomenclature (Greek symbols towards the end) 

L Optimum waveguide length (m) 

t Time (s) 

Po Optical Power (W) 

To Pulse Width (s) 

γ Nonlinear Coefficient (W-1m-1) 

𝑛𝑆𝑖 Silicon Refractive Index (RIU) 

𝐴𝑒𝑓𝑓 Effective Core Area (m2) 

Δz Length of Segment (m) 

ω Frequency in The Fourier Domain (Hz) 

β2 Group Velocity Dispersion Coefficient (ps2 mm-1) 

𝑛2 Nonlinear Index (m2W-1) 

LD Dispersion Length (m) 

LN Nonlinear Length (m) 

λ Wavelength (m) 

D Total dispersion (ps nm-1 km-1) 

𝐷̂ Dispersion operator (m-1) 

𝑁̂ Nonlinear operator (m-1) 

E Amplitude pulse  

z Location point (m) 

exp Exponential function 

i Imaginary unit (𝑖 = √−1) 

sech Hyperbolic secant function 

η Segment number  

n Type of operator 

𝜕 𝜕𝑡2⁄  Differential operator for time domain 
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𝜕 𝜕𝑧⁄  Differential operator for space domain 

α Optical loss (dBcm-1) 

P Output power (W) 

𝑃𝑜̅ Average input power (W) 

 

Abbreviations 

 

GVD Group Velocity Dispersion  

SSFM Split-Step Fourier Method  

NLSE Nonlinear Schrödinger Equation  

SPM Self-Phase Modulation  

 
 
1.0 INTRODUCTION 

Solitons, a fascinating occurrence in optics, have transformed the way information is transferred and processed 

[1]. Prior to the discovery of solitons, information in optical communication was limited by variables including 

dispersion and nonlinearity. Solitons, or self-reinforcing wave packets, have emerged as a powerful remedy to 

these restrictions [2]. The transformation and motion of solitons are described by nonlinear equations of 

mathematical physics [3-10]. These equations allow solitons to maintain their shape and amplitude as they 

propagate through a medium, enabling long-distance transmission of data without distortion. Since then, the study 

of solitons has expanded to various fields, including optics, where they have found wide-ranging applications in 

fiber-optic communications systems [11], optical data processing [12,13], and nonlinear optics [14-16].  

Because of their capability to maintain waveform structure, solitons have also received attention in recent 

years for optical sensing applications, where they offer potential to identify subtle changes in the environment 

[17-20]. Observing the behaviour of optical solitons as they move through various sensing platforms, in particular 

how dispersion and nonlinear effects change the soliton profile, has been the main focus of the majority of prior 

studies. However, there is still a significant problem: because soliton amplitude and shape changes during 

transmission degrade the signal-to-noise ratio, widen detection responses, and impair measurement accuracy, they 

directly lower sensor sensitivity. Therefore, to achieve solid and high-resolution sensing, it is essential to make 

sure that a pristine soliton pulse forms before it begins interaction with the sensing medium. The development of 

a numerical method to maximize soliton production in a silicon channel waveguide for sensing applications is 

what makes this work novel. Here, we systematically identify the ideal waveguide length required to produce a 

pure solitary pulse before it enters the detecting zone, in contrast to earlier research that looked at soliton 

propagation in fibers or documented qualitative soliton behaviour in sensors. In order to enhance device sensitivity 

and reduce distortion during sensing, we make sure the soliton is fully formed at the input stage. This strategy 

provides a clear relationship between soliton dynamics and sensor performance, opening the door to the design of 

soliton-based sensors with increased stability and accuracy. 

In this work, we aim to develop and create a soliton pulse inside a silicon channel waveguide (n = 3.48 [21-

22]) using numerical analysis. To find the proper propagation distance for soliton generation, the study starts by 

finding the dispersion and nonlinear lengths. The formation of a steady solitary pulse is then guaranteed by 

optimizing other physical parameters including effective mode area, GVD, and soliton order. This method yields 

a useful framework for developing optical sensors based on soliton that improved both sensitivity and 

performance. 

 

2.0 OPTICAL SOLITON DEVELOPMENT 
      Before executing the experiment, a mathematical model is used to predict if optical soliton can be created or 

not. Matlab executes the model's results. Figure 1 displays the creation of optical soliton pulses within a waveguide 

before they reach the sensing medium. Figure 1 also depicts a purple waveguide, which is engaged in optical 

soliton formation. An input optical pulse shape for this investigation begins with a bell shape, which is written as 

[20]; 

( ) secho

o

t
E t P

T

 
=  

 

. (1) 

 

Here, the pulse amplitude and width are represented as √𝑃𝑜 and 𝑇𝑜. Optical pulse when propagating along 

waveguide is governed by two effects known as a nonlinear and dispersion effect, respectively. 
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Figure 1. Illustration of the optical soliton pulse generation within sensing device. 

 

A Split-Step Fourier Method (SSFM) is used to describe how these effects interact with the optical pulse. Agrawal 

developed the approach to demonstrate the interplay between these two effects in optical fiber [23, 24]. This 

method was also implemented by Yin et al. to study a soliton formation within waveguide [25]. The advantage of 

employing this technique is that it takes less time to create results and is the simplest split step scheme in which 

the calculation only involves first-order differential equations [26]. The technique is based on splitting the 

nonlinear Schrödinger equation (NLSE) into two parts, one of which describes group velocity dispersion (GVD), 

also known as the dispersion effect, and the other of which describes self-phase modulation (SPM), also known 

as the nonlinear effect, when a single pulse propagates through a waveguide. The technique starts by using NLSE 

as 
2

22 0.
2

E E
i E E

z t




  
+ + = 

  
 (2) 

 

This equation depicts an interplay between dispersion and nonlinearity towards optical pulse within waveguide. 

The physical parameters within NLSE are the amplitude pulse, E, group velocity dispersion coefficient (GVD), 

β2, and nonlinear coefficient, γ, respectively. The coefficient of GVD and nonlinear have a relation with a 

dispersion and nonlinear length that are expressed by [21]; 

  
2

2D oL T =
 

(3) 

( )
1

N oL P
−

=
 

(4) 

 

The NLSE from Equation (2) is deviated into two parts; dispersion 𝐷̂ and nonlinear 𝑁̂ parts as, 

 

( )ˆ ˆ .
E

D N E
z


= +


 (5) 

 

Here the operator of dispersion, 𝐷̂, and nonlinear, 𝑁̂, are expressed as,  

 
2

2

2
ˆ

2
D i

t

 
= −

 , 
(6) 

ˆ
oN i P=

. (7) 

The amplitude of the pulse, |𝐸|2, is equal to the input optical power, Po, demonstrating that the nonlinearity inside 

the medium is influenced by the optical field's input power. The Fourier transform technique is used to replace 

the differential operator 𝜕 𝜕𝑡2⁄  into 𝑖2𝜔2 and ω is the frequency in the Fourier domain. Therefore, the equation is 

rewritten as 
2

2ˆ
2

i
D

 
=

. 
(8) 

 

The dispersion operator account for GVD and nonlinear operator account for the effect of waveguide SPM on 

pulse propagation. There are two steps of propagation; the first step is pure dispersion and after that pure 

nonlinearity. The pure dispersion and nonlinear are expressed in differential equation, 
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ˆE
D E

z


= 

 , 
(9) 

ˆE
N E

z


= 

 . 
(10) 

 

The Equation (9) and (10) are solved as 

 

( )ˆ
ˆexp

D
E E D z=  

, 
(11) 

( )ˆ
ˆexp

N
E E N z=  

. 
(12) 

 

Here the solution of 𝐸𝑛 = 𝐸 ∙ 𝑒𝑥𝑝(𝑛 ∙ 𝑧) where n is represented as the dispersion and nonlinear operator basically 

described as a pulse propagation inside waveguide which includes the effect of dispersion and nonlinear. The 

split-step Fourier method is the technique used to obtain an approximate solution by considering the dispersion 

and nonlinearity are pretended to act independently. The work is extended by modeling the pulse propagation 

along waveguide in a small distance that called as the segment of length, z  as shown in Figure 2. The z  is 

selected in order to obtain a balance between efficiency and accuracy. The relationship between dispersion and 

nonlinearity is precisely addressed at each propagation step by setting z  to be at least one to two orders of 

magnitude less than the shortest characteristic length for numerical stability [27]. This method minimizes 

processing overhead while ensuring steady simulation performance [28]. 

 

 
Figure 2. Illustration of the Split-step Fourier method in waveguide. The nonlinear effect (green) is included at 

side by side with dispersion effect as shown by a yellow colour. 

 

Optical pulse propagation within waveguide represents as red arrow started by injecting the pulse at input port. 

The first effect influencing the pulse is the nonlinear effect. After that, the pulse continues to propagate into 

dispersion region. This process is repeated until pulse reaches at the end of the waveguide. Mathematically, the 

pulse propagation along medium can be described as 

 

( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ, exp exp ... exp 0,E L t D z N z D z E t =      
   

(13) 

 

with the length of segment, z , for channel waveguide is given by 

 

L
z


 =   (14) 

 

Here, the L and η are the length of channel waveguide and number of the segment. Based on Equation 13, the 

interplay between dispersion and nonlinear effect of pulse propagation along medium is shown. To help 

understand more on the optical soliton formation via channel waveguide, Figure 3 presents a detailed flow chart 

that shows how the soliton pulse is formed based on the interaction between dispersion and a nonlinear. The 

flowchart outlines the numerical process employed to use the split-step Fourier method (SSFM) to model soliton 

production. The basic soliton shape is represented by a secant hyperbolic profile, which defines the initial input 
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pulse used in the simulation. Next, in the following steps along the propagation distance, nonlinear and dispersive 

effects are applied alternately to calculate the pulse propagation. To account for the intensity-dependent refractive 

index contribution, the nonlinear operator is applied across a half-step, given as 𝑒𝑥𝑝(0.5 ∙ 𝑁 ∙ ∆𝑧). The dispersion 

operator, 𝑒𝑥𝑝(𝐷 ∙ ∆𝑧), which controls how group velocity dispersion (GVD) affects the pulse, comes next. To 

finish the propagation step, a second nonlinear half-step, 𝑒𝑥𝑝(0.5 ∙ 𝑁 ∙ ∆𝑧), is applied. This sequence is iteratively 

repeated over the appropriate number of propagation steps to ensure an accurate representation of the interplay 

between nonlinearity and dispersion. The repeated approach eventually leads to a stable solution in which 

dispersive spreading is precisely balanced by nonlinear self-phase modulation, resulting in the development of a 

soliton. This simulation's results match the conditions required for soliton formation and give a framework for 

studying pulse dynamics in nonlinear optical waveguides. 

 

 

 
 

Figure 3. The split-step Fourier technique (SSFM) flowchart for modeling soliton generation. The nonlinear and 

dispersion effect are displayed by green and yellow colour respectively. 
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3.0 RESULTS AND DISCUSSION 
In the previous topic, a mathematical description was created to get an expected outcome of the soliton pulse 

in waveguide. After that a numerical calculation took place for presenting a result of the pulse propagation along 

medium. To obtain an accurate result for sensing, input optical pulse should be in solitary wave or another word 

to describe a stability of optical pulse known as optical soliton. Optical soliton is a special phenomenon in light 

propagation along medium because its specialty to preserve its shape when propagate along medium. 

Optical soliton propagation within a waveguide requires numerous characteristics, which are described in 

Figures 4 and 5. The optical parameters utilized in simulation are shown in Table 1. Here, the input power value 

was set by 1 W because the objective is to produce a high quantity of nonlinear coefficient, wherein their method 

to compute the precise value is given as 𝛾 = 2𝜋𝑛2 𝜆 ∙ 𝐴𝑒𝑓𝑓⁄  [30]. The pulse width of 10 ps was chosen because it 

can reduce the dispersion effect within the waveguide [31]. The nonlinear effect depends on the nonlinear index 

in waveguide core. This effect can be increased by changing the silicon to other material with higher nonlinearity 

or use an intense light source. Another way to achieve high nonlinearity in waveguide is using smaller core area 

as depicted in Figure 4. It shows that smaller core area generates higher nonlinearity. Important notes from Foster 

et al. stated that if the core area is too small and approximate to zero, the nonlinearity suddenly drops to zero 

nonlinearity because mostly too small core area makes light propagate at cladding [32]. 

 

 

Table 1: Values of the parameters used for simulation of channel waveguide 

 

Parameter Symbol Value Reference 

Nonlinear index 2n
 

6x10-18 m2W-1 [22] 

Wavelength    1.55 μm [22] 

Effective mode area effA
 

0.13 μm2 [29] 

Nonlinear coefficient 
 187.09 W-1m-1  

Pulse width oT
 

10 ps  

Input peak power oP
 

1 W  

Core index Sin
 

3.48 [21,22] 

 

 

 
Figure 4.  (a) Nonlinearity as a function of core area of a silicon waveguide.  

(b) The core area of the waveguide used. 
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Unlike the dispersion effect, the effect is dependent on waveguide thickness. Waveguide thickness must be 

tailored to get the lowest possible dispersion effect. A single mode condition is required to achieve lower 

dispersion within a waveguide. In order to produce a single mode of m = 1 at a telecommunication wavelength of 

1.55 µm, the channel waveguide thickness should be between 295 and 300 nm. This research took a 300 nm 

channel waveguide thickness to achieve a single mode condition of 1 at a wavelength of 1.55 µm [see to Figure 

5(a)]. Single mode development in a waveguide affects the magnitude of the group refractive index, resulting in 

a group index of 6.96 when the mode is 1. This group index value resulted in a total dispersion of 21.06 ps nm-1 

km-1, as illustrated in Figure 5(b). The value of total dispersion created an abnormal dispersion regime, resulting 

in a negative group velocity dispersion coefficient of -26.83 ps2 mm-1. This regime describes the conditions 

required for soliton creation within a waveguide and is related to the soliton order N. The soliton order can be 

divided into two parts: fundamental and high-order soliton. The basic soliton (N = 1) is defined as the ideal 

condition for the pulse to retain its shape and amplitude  [24]. For high-order soliton (N >> 1), the pulse form and 

amplitude constantly vary periodically when propagating along the waveguide [23, 24]. Figure 5(c) shows that 

the soliton order was 0.84 (this value appears when we round the actual number of soliton order of 0.8358), which 

is still within the range of optical soliton conditions (0.5-1.5) for producing an optical single pulse [23, 24]. The 

significant magnitude of the soliton order of 0.84 signifies that a balance between dispersion and nonlinear impact 

has been achieved. 

Finding the optimal length for producing a clean soliton pulse is what we want to accomplish after determining 

the precise value of soliton order. This waveguide's sufficient length must be greater than the nonlinearity and 

dispersion lengths. We changed the soliton order expression from 𝑁 = √𝐿𝐷 𝐿𝑁⁄  [35] to 𝑁 ∙ 𝐿𝑁 = 𝐿𝐷 𝑁⁄ , where 

𝐿𝑁 and 𝐿𝐷 stand for the nonlinear and dispersion lengths, respectively, in order to get the correct length. We 

successfully generated an minimal ideal length expression based on the derivation of the soliton order, which can 

be applied under two conditions: either refer to the nonlinear length, 𝐿 = 𝑁 ∙ 𝐿𝑁, or the dispersion length, 𝐿 =
𝐿𝐷 𝑁⁄ . Using N = 0.8358, 𝐿𝑁 = 5.34 mm, and 𝐿𝐷 = 3.73 mm, we determined the waveguide length, where both 

lengths yielded the same result of 4.5 mm. Our calculation indicated that this waveguide length is a minimum 

need for producing a soliton pulse, even if it is still within the dispersion region (𝐿 > 𝐿𝐷).  

To follow the soliton requirement (𝐿 > 𝐿𝐷 = 𝐿𝑁), we obtained an average output power along the waveguide 

using average input power 𝑃𝑜̅ = 𝐿−1 ∫ 𝑃𝑜(𝐿)𝑑𝐿
𝐿

0
 [33] where the input power in this research refers to 𝑃𝑜(𝐿) =

𝑃 𝑒𝑥𝑝(−𝛼𝐿)⁄ . The average input power result is then put into the soliton order formula as 𝑃𝑜̅ = 𝑁2 𝛾𝐿𝐷⁄  [33]. 

𝑃 = [(𝛼𝐿 𝛾𝐿𝐷⁄ ) ∙ 𝑒(−𝛼𝐿)]𝑁2 is the result for output power in this case, where α = 5 dBcm-1 [32], γ, LD, and N 

stand for optical loss, nonlinear coefficient, dispersion length, and soliton order, respectively. Based on the 

determined output power, Figure 6 displays the transmission variation (dB) as a function of waveguide length. At 

first, the transmission grew with length, reaching its peak at about L = 8.7 mm, where N = 0.84 was the appropriate 

soliton order. The group velocity dispersion (GVD) and nonlinear effects were almost balanced at this length, 

resulting in a maximum transmission of roughly – 4 dB. The transmission stayed relatively low for shorter lengths 

(< 5 mm) because there is not enough nonlinear interaction length for soliton production and stabilization. Higher 

transmission arises from the pulse's larger nonlinear phase modulation as its length increases, which counters the 

dispersive broadening. The ideal situation, where dispersion and nonlinearity are balanced, is indicated by the 

transmission peak. After the ideal length (> 8.7 mm), the transmission gradually started loss of efficiency. This 

reduction is related to the dominance of dispersive effects, which lead to pulse broadening and lower confinement 

within the waveguide. That means the overall transmission efficiency decreases as the soliton-like propagation 

weakens. The system appears to operate very close to the fundamental soliton regime (N ≈ 1), as indicated by the 

reported soliton order N = 0.84. Even though it is not a perfect soliton, the transmission boost at this point shows 

that the device may be able to effectively utilize the interplay between dispersive and nonlinear effects to improve 

performance at specific lengths. Our results are in good agreement with previous studies according to the 

parameters of the ideal length required to produce optical soliton, and further investigation is being carried out by 

comparing our results with actual findings [34]. 
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Figure 5. Simulation result of (a) allowed mode in waveguide core, (b) total dispersion and group velocity 

dispersion coefficient, and (c) soliton order against wavelength in near-infrared region. 

 

 
Figure 6. Simulation result of transimission against waveguide length.  
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Figure 7. Soliton pulse generation along channel waveguide. (a) Result for output intensity as a function of 

normalized time and (b) result for transmission as a function of normalized time. 

 
Figure 8.  Optical soliton propagation along channel waveguide. 

 

Figure 7 displays the intensity and pulse profile of soliton generation in a 1 Watt channel with a peak intensity 

of 7.7 TWm-2 and a core modal area of 0.13 µm2. The requirement for soliton production demonstrates that the 

intensity (peak intensity) and shape remain constant as they propagate along the channel waveguide. Figure 8 

depicts another observation proving optical soliton propagation within a channel waveguide, which supports the 

findings in Figure 7. It depicts how a pulse keeps its shape as it travels through a waveguide. This soliton 

production result inside a silicon waveguide is consistent with other research that has shown a similar soliton 

wave pattern when it enters a waveguide [36]. 
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4.0 CONCLUSION 
In order to maximize its application in optical sensing, this work numerically investigated the necessary 

conditions for soliton formation in a silicon channel waveguide. We showed that soliton stability is highly 

dependent on waveguide geometry and propagation length by looking at the interaction between dispersion and 

nonlinear effects. While the single-mode condition at 1.55 µm was obtained by adjusting the waveguide thickness 

to 300 nm, resulting in an anomalous dispersion regime (β₂ = –26.83 ps²·mm⁻¹) and a group index of 6.96, it was 

demonstrated that nonlinearity increased with reduced core area or higher input intensity. Dispersion and 

nonlinear effects are almost balanced in the fundamental soliton domain, which is confirmed by the soliton order 

of N = 0.84. This led us to determine the minimum propagation length needed for soliton generation, and we 

discovered that the highest transmission happens at ~8.7 mm, while the threshold for solitary pulse formation is 

~4.5 mm. The soliton maintains its intensity and pulse profile at this ideal length, indicating steady propagation 

inside the waveguide. These findings offer a quantitative foundation for the design of soliton-based optical 

sensors, where maintaining soliton integrity is crucial for accuracy and sensitivity. The method creates clear 

design guidelines that relate nonlinear length, dispersion length, and soliton order to practical device performance. 

Future research will experimentally validate these findings and expand the method to include other high-

nonlinearity materials that will boost sensor performance. 
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