

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

Ag doped ZnO/CdS photocatalyst degradation on dyes

Name : Nur Salwani binti Sukri

Student ID : 2022608182

Program : AS245 Course code : FSG671

Mobile Phone :

E-mail : 2022608182@student.uitm.edu.my

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : Prof. Dr. Mohd Azlan Mohd Ishak

Date : 30 July 2025

Turnitin Similarity % : 8 %

Signature :

^{*} Please attach the Turnitin summary report, with your name clearly stated, at the end of your report and submit it together.

Ag DOPED ZnO/CdS PHOTOCATALYST DEGRADATION ON DYES

NUR SALWANI BINTI SUKRI

BACHELOR OF SCIECE (HONS.) APPLIED CHEMISTRY IN THE FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

ABSTRACT

Ag Doped ZnO/CdS Photocatalyst Degradation on Dyes

This study focuses on the development of an Ag-doped ZnO/CdS photocatalyst for the removal of harmful dyes such as Methylene Blue (MB) and Reactive Red 4 (RR4) from wastewater. The photocatalyst was synthesized using a hydrothermal method and characterized through FTIR, XRD, UV-Vis/DRS, and PL analysis. Silver (Ag) doping was introduced to enhance visible light absorption and reduce the recombination rate of electron-hole pairs. The results showed that the band gap of the photocatalyst was reduced to approximately 2.79 eV, improving its light absorption capability. The Ag-ZnO/CdS photocatalyst demonstrated the highest degradation efficiency, achieving up to 80% dye removal within 60 minutes. Recyclability tests also confirmed the material's ability to be reused up to five cycles without significant loss in performance. Overall, this study confirms that Ag-ZnO/CdS is an effective and promising photocatalyst for practical wastewater treatment applications.

TABLE OF CONTENTS

		Page
AC	CKNOWLEDGMENTS	V
	ABLE OF CONTENTS	VI
LIS	ST OF TABLES	VIII
	ST OF FIGURES	IX
	ST OF SYMBOLS	XII
LIS	ST OF ABBREVIATIONS	XIII
AB	BSTRACT	III
AB	BSTRAK	IV
СН	HAPTER 1 INTRODUCTION	
1.1	Background of study	1
1.2	·	3
1.3	Significance of study	3 5 7
1.4	Objective of study	7
СН	HAPTER 2 LITERATURE REVIEW	
2.1	Photocatalyst	8
	2.1.1 Types of Photocatalyst	10
2.2	Zinc Oxide (ZnO)	12
2.3	Cadmium Sulphate (CdS)	15
2.4	Modification of ZnO via Doping	17
	2.4.1 Modification with metal (Metal Doping)	18
	2.4.2 Modification with Non-Metal (Non-Metal Dopi	ng) 22
	2.4.3 Modification via Coupling Semiconductor	24
	2.4.4 Z-Scheme Heterojuntion	24
2.5	Z-Scheme Ag-Doped ZnO/CdS	26
2.6	Method For Ag Doping	27
	2.6.1 Sol Gel Method	29
	2.6.2 Hydrothermal synthesization	31
2.7	Surface Plasma Resonance (SPR)	32
2.8	Recyclebility of Photocatalyst	34
2.9	Dyes	34

2.10	Application of Dyes	36
	2.10.1 Meythlene Blue	38
	2.10.2 Reactive red 4	39
СН	APTER 3 METHODOLOGY	42
3.1	Chemicals/Reagent	43
3.2	Equipment and instrument	44
3.3		44
	3.3.1 Synthesis of ZnO	44
	3.3.2 Synthesis of CdS Nanoparticles	45
	3.3.3 Combine Ag-Doped ZnO and CdS	46
3.4	Characterization techniques	47
	3.4.1 Fourier Transform Infrared Spectroscopy (FTIR)	47
	3.4.2 X-Ray Diffraction (XRD)	48
	3.4.3 UV-Vis Diffuse Reflectance Spectroscopy (UV-vis/DRS)	49
3.5	Photocatalytic degradation study of Methylene Blue	52
3.6	Recyclability of photocatalyst	53
	APTER 4 RESULTS AND DISCUSSION	
4.1	Characterization	54
	4.1.1 Fourier Transform Infrared Spectroscopy (FTIR)	54
	4.1.2 X-Ray Diffraction (XRD)	56
	4.1.3 UV-Vis Diffuse Reflectance Spectroscopy (UV-vis/DRS)	58
	Recyclability	61
4.3	Photocatalytic degradation study of the as-synthesized sample	
	4.3.1 Photocatalytic Degradation of Methylene Blue	63
	4.3.2 Photocatalytic Degradation of Reactive Red 4	66
СH	APTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1	Conclusion	70
5.2	Recommendation	72
J. <u>L</u>		12
CIT	ED REFERENCES	73
	PENDICES	78
	RRICULUM VITAE	81