

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT/ CRITICAL REVIEW/ CASE STUDY

FeCl₃-Impregnated Carbon Nanotubes (CNTs) as an Adsorbent for Methylene Blue Removal

Name : Nurul Amira Farhana binti Mohd Roslan

Student ID : 2023104295

Program : AS245 Course code : FSG671

Mobile Phone : 013-2749048

E-mail : amirafarhanaroslan02@gmail.com

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : Dr. Sharizal bin Hasan

Date : 30/07/2025

Turnitin Similarity % : 7%

Signature

FeCl₃-IMPREGNATED CARBON NANOTUBES AS AN ADSORBENT FOR METHYLYENE BLUE REMOVAL

NURUL AMIRA FARHANA BINTI MOHD ROSLAN

BACHELOR OF SCIENCE (HONS.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

AUGUST 2025

TABLE OF CONTENTS

ACKNOWLEDGEMENT		iii
TABLE OF CONT		iv
LIST OF TABLES LIST OF FIGURES		vii viii
LIST OF FIGURES		iix
LIST OF ABBREV		X
ABSTRACT		xi
ABSTRAK		xii
CHAPTER 1 INT	RODUCTION	1
1.1 Resea	arch Background	1
1.2 Probl	em statement	4
1.3 Resea	arch Questions	5
1.4 Object	ctives	5
1.5 Signi	ficance of study	6
1.6 Expe	cted Outcomes	7
CHAPTER 2 LIT	ERATURE REVIEW	8
2.1 Waste	ewater pollution	8
2.2 Meth	ods for dye removal	9
2.2.1	Common methods	9
2.2.2	Adsorption	10
2.2.3	Types of adsorbents	11
2.3 Carbo	on nanotubes (CNTs) in Adsorption	12
2.3.1	Properties of CNTs	12
2.3.2	Adsorption mechanism in CNTs	12
2.3.3	Limitations of CNTs	13
2.4 Modi	fication techniques for CNTs	14
2.4.1	Physical and chemical modification	14
2.4.2	Impregnating agents	16
2.5 FeCl ₃	in adsorption applications	177
2.6 Data	Analysis	19
2.6.1	Adsorption capacity	19
2.6.1.1	Pseudo-First-Order Model	20
2.6.1.2 Pseudo-Second-Order Model		200
2.6.2	Isotherm Modelling	21
2.6.2.1	Langmuir Isotherm	21

2.	6.2.2 Freundlich Isotherm	21
2.7	Research gaps	23
CHAPTER 3 3.1	RESEARCH METHODOLOGY Materials and chemicals	25 25
3.2	Equipment and instruments	266
3.2.1	FTIR Analysis	26
3.	2.1.1 Characterization	26
3.	2.1.2 Sample Preparation and Instrumentation	277
3.2.2	2 UV-Vis Spectrophotometry	27
3.3	Method and procedures	28
3.3.1	Preparation of FeCl ₃ -impregnated CNTs	28
3.3.2	2 Preparation of MB stock solution	299
3.3.3	Adsorption at different parameters	29
3.	3.3.1 Contact time	29
3.	3.3.2 Initial dye concentration	30
3.	3.3.3 pH	30
3.4	Flowchart	31
CHAPTER 4 4.1	RESULTS AND DISCUSSION Characterization of FeCl ₃ -impregnated CNTs	32 32
4.1.1	FTIR analysis	32
4.1.2	2 UV-Vis confirmation via potassium thiocyanate (KSCN) test	34
4.2	Adsorption parameters	35
4.2.1	Effect on contact time	35
4.2.2	2 Effect on pH	37
4.2.3	B Effect on initial dye concentration	39
4.3	Adsorption kinetics	42
4.3.1	Pseudo-first order model	42
4.3.2	Pseudo-second order model	44
4.4	Adsorption isotherm models	46
4.4.1	Langmuir isotherm	46
4.4.2	2 Freundlich isotherm	48
	CONCLUSION AND RECOMMENDATIONS	5 1
5.1	Conclusion	5]
5.2	Recommendations	522

ABSTRACT

FeCl₃-IMPREGNATED CARBON NANOTUBES AS AN ADSORBENT FOR METHYLYENE BLUE REMOVAL

Dye pollution in wastewater presents a significant environmental challenge due to the persistent and toxic nature of synthetic dyes. Conventional adsorbents like raw carbon nanotubes (CNTs) often exhibit limited adsorption capacity, necessitating surface modifications to enhance their performance. This study aims to improve the adsorption capacity of CNTs by impregnating them with iron (III) chloride (FeCl₃) for the removal of methylene blue (MB) from aqueous solutions under various conditions. The adsorption performance was assessed based on contact time, pH, and initial dye concentration. The highest adsorption capacity, 77.93 mg/g, was achieved after 120 minutes of contact time by using the impregnated CNTs, compared to 70.93 mg/g by raw CNTs. The pH study revealed that MB adsorption was most effective under alkaline conditions, with a maximum capacity of 289.7 mg/g at pH 10 and a minimum capacity of 157.47 mg/g at pH 3. Adsorption capacity increased with increasing initial dye concentration, reaching 98.32 mg/g at 30 mg/L. However, the removal efficiency declined due to adsorbent saturation, from 68.8% at 5 mg/L to 32.8% at 30 mg/L. The adsorption kinetics followed a pseudo-second order model, which suggests a chemisorption mechanism. Isotherm analysis indicated that the Freundlich model best described the adsorption behavior, implying a heterogeneous surface. These findings demonstrated that FeCl₃impregnated CNTs possess promising adsorption capabilities for dye removal in aqueous systems.