

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

BIODEGRADABILITY STUDY OF ECO-FRIENDLY BIOPLASTIC FROM MUSA ACUMINATA PEEL FOR SUSTAINABLE FRUIT WASTE MANAGEMENT

Name : NURUL IZZAH BINTI JAMIL

Student ID : 2022697954

Program : AS245 Course code : FSG671

Mobile Phone : 0199429426

E-mail : izzahj84@gmail.com

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : PUAN WAHIDA BINTI ABDUL RAHMAN

Date : 31/8/2025

Turnitin Similarity % : 3%

Signature :

BIODEGRADIBILITY STUDY OF ECO-FRIENDLY BIOPLASTIC FROM MUSA ACUMINATA FOR SUSTAINABLE FRUIT WASTE MANAGEMENT

NURUL IZZAH BINTI JAMIL

BACHELOR OF SCIENCE (Hons.) APPLIED CHEMISTRY FACULTY OF APPLIED SCIENCES UNIVERSITI TEKNOLOGI MARA

JULY 2025

ABSTRACT

BIODEGRADABILITY STUDY OF ECO-FRIENDLY BIOPLASTIC FROM MUSA ACUMINATA FOR SUSTAINABLE FRUIT WASTE MANAGEMENT

Amid growing global concern over plastic waste and environmental sustainability, the search for biodegradable alternatives to conventional plastics has intensified. Agricultural waste, particularly fruit peels, offers a promising source of raw materials for eco-friendly bioplastic production. The increasing worldwide production of Musa acuminata creates major difficulty in controlling fruit peel waste, with 30% being discarded as waste. Landfill overflow and greenhouse gas emissions are among the environmental issues this waste contributes to. Bioplastics from Musa acuminata fruit peel waste can be a promising solution, offering a renewable alternative to petroleum-based plastics. However, the biodegradability of these bioplastics remains underexplored and requires further study. Plastic pollution poses severe environmental and health risks due to the persistence of synthetic polymers, which can last for centuries. This study explores the development of biodegradable bioplastic films derived from Musa Acuminata (banana) peels, aiming to provide an eco-friendly alternative to conventional plastics. The research investigated the effects of varying ripening stages (unripe, ripe and overripe) and soil types (loamy and sandy soil) on the biodegradability, mechanical and physical properties of the bioplastic. Films were prepared by casting Musa Acuminata peel paste combined with polyvinyl alcohol (PVA) (50% w/w), oxalic acid, and glycerol, followed by drying. The mechanical, physical, and biodegradability properties were characterized, revealing that increasing starch content enhanced tensile strength but also increased water solubility. The highest biodegradability was observed after seven days for a formulation containing 10 ml glycerol, 20 g polyvinyl alcohol (PVA) and 2 g oxalic acid. The films demonstrated thickness of 0.52-0.57 mm. These results indicate that banana peel-based bioplastics exhibit promising mechanical and degradability characteristics suitable for bioplastic applications, potentially reducing reliance on synthetic plastics and paper. The study highlights the potential of utilizing fruit waste to create sustainable bioplastic materials, contributing to environmental conservation and waste reduction.

TABLE OF CONTENTS

	Page		
ACKNOWLEDGEMENT	ii		
TABLE OF CONTENTS	iii		
LIST OF TABLES	iv		
LIST OF FIGURES LIST OF SYMBOLS LIST OF ABBREVIATIONS ABSTRACT	v vii viii ix		
		ABSTRAK	X
		CHAPTER 1 INTRODUCTION	
		1.1 Research Background	1
1.2 Problem statement	2		
1.3 Research question	2 2 3		
1.4 Objectives of study			
1.5 Significance of study	3		
1.6 Expected Output/Outcomes/Implication	4		
CHAPTER 2 LITERATURE REVIEW			
2.1 Introduction to Bioplastics and Sustainability	6		
2.1.1 Definition of Bioplastics	6		
2.1.2 Types of bioplastics	6		
2.1.3 Applications of Bioplastics	7		
2.1.4 Impact of Plastic Waste	8		
2.1.5 Role of Bioplastics in Sustainability	8		
2.2 Properties of <i>Musa acuminata</i> peels	9		
2.2.1 Pectin content	9		
2.2.2 Starch and other components	10		
2.2.3 Texture and moisture content	10		
2.2.4 Other physical attributes	11		
2.3 Bioplastic production from <i>Musa acuminata</i> peels	12		
2.3.1 Pectin extraction techniques	12		
2.3.2 Starch extraction techniques	12		
2.3.3 Glycerol and starch additives	13		
2.3.4 Other additives	14		
2.4 Factors influencing the biodegradability of bioplastics	14		
2.4.1 Soil types and microorganisms	14		
2.4.1 Ripening stages of Musa acuminata peels	15		
2.4.1 Comparison with conventional plastics	16		
2.5 Mechanical and physical properties of bioplastics	17		
2.5.1 Tensile strength	17		
2 5 2 Solubility	18		

2.5.3 Effect of ripening stages on tensile strength	18
2.5.4 Effect of ripening stages on solubility	19
CHAPTER 3 METHODOLOGY	0.1
3.1 Materials	21
3.1.1 Raw materials	21
3.1.2 Chemicals	21
3.1.3 Apparatus and instrument	21
3.2 Method	21
3.2.1 Pre-treatment of Musa acuminata peels	21
3.2.2 Preparation of bioplastic films	22
3.2.3 Preparation of soil	22
3.3. Soil burial test	23
3.3.1 Different types of soil and ripening stages	23
3.4 Solubility test	24
3.5 Tensile test	24
CHAPTER A RECHIT AND DICCHGGION	
CHAPTER 4 RESULT AND DISCUSSION	26
4.1 Soil burial test	26
4.1.1 Different types of soil and ripening stages	26
4.2 Solubility test	29
4.3 Tensile test	30
CHAPTER 5 CONCLUSION AND RECOMMENDATIONS	
5.1 Conclusion	33
5.2 Recommendations	33
CITED REFERENCES	35
CURICCULUM VITAE	40