

SUBMISSION FOR EVALUATION FINAL YEAR PROJECT 2 - RESEARCH PROJECT

SYNTHESIS AND CATALYTIC PERFORMANCE OF Au-CeO₂ NANOCOMPOSITES FOR THE REDUCTION OF PARA-NITROPHENOL

Name : NUR ADLINA BINTI AZMI

Student ID : 2022478348

Program : AS245 Course code : FSG671

Mobile Phone : 010-4482167

E-mail : Adlinaazmi02@gmail.com

Approval by Main Supervisor:

I certify that the work conducted by the above student is completed and approve this report to be submitted for evaluation.

Supervisor's name : MADAM HANANI BINTI YAZID

Date : 29 / 7 / 2025

Turnitin Similarity % : 4%

Signature :

SYNTHESIS AND CATALYTIC PERFORMANCE OF Au-CeO₂ NANOCOMPOSITES FOR THE REDUCTION OF PARA-NITROPHENOL

NUR ADLINA BINTI AZMI

Final Year Project Proposal Submitted in
Partial Fulfilment of the Requirements for the
Degree of Bachelor of Science (Hons.) Applied Chemistry
In the Faculty of Applied Sciences
Universiti Teknologi MARA

ABSTRACT

Gold (Au) nanoparticles supported on cerium oxide (CeO₂) have shown promising catalytic performance for environmental applications, particularly in the reduction of p-nitrophenol (p-NP). Among various synthesis approaches, depostionprecipitation (DP) and reduction-deposition (RD) are widely used for anchoring Au nanoparticles onto CeO₂. However, achieving well-dispersed, stable Au nanoparticles with high catalytic efficiency remains a significant challenge. Furthermore, there is a lack of comparative studies evaluating the effectiveness of these methods in p-NP reduction, creating uncertainty about their relative performance. This study aims to compare the catalytic performance of Au-CeO₂ nanocomposites synthesized via DP and RD methods, using p-NP reduction as a model reaction. CeO₂ was first synthesized through chemical precipitation, followed by Au nanoparticles immobilization using DP and RD techniques. In the RD method, two different reducing agents were employed: sodium borohydride (strong reducing agent, RD1) and sodium citrate (weak reducing agent, RD2). The effect of catalyst dosage (1-10 mg) and p-NP concentration (0.05-0.20mM) on catalytic activity was systematically investigated. Fourier Transform Infrared spectroscopy confirmed successful Au immobilization through characteristic peak shifts from 520 cm⁻¹ (CeO₂ support) to 500 cm⁻¹ (DP), 508 cm⁻¹ ¹ (RD1) and 501 cm⁻¹ (RD2). This peak corresponds to O-Ce-O bond. The peaks in the range of 3300-2800 cm⁻¹, corresponding to O-H stretching in CeO₂. All Au-CeO₂ catalysts achieved 100% conversion of p-NP to p-aminophenol. The calculated rate constant (k) was 2.17 x 10^{-3} s⁻¹ (DP), 2.15×10^{-3} s⁻¹ (RD1), and 8.59 x 10⁻⁴ s⁻¹ (RD2). Therefore, the DP method is the best method because it shows the highest rate constant, indicating the fastest reaction. Although all methods achieved 100% conversion, DP provides the most efficient catalytic activity. These findings highlight the importance of the synthesis method and reducing agent in optimizing the activity of Au-CeO₂ catalyts.

TABLE OF CONTENTS

ABST	ГКАСТ	i
ABST	ГРАК	ii
ACK	NOWLEDGEMENTS	iii
TABI	LE OF CONTENTS	iv
LIST	OF TABLES	vii
LIST	OF FIGURES	viii
LIST	OF SYMBOLS	X
LIST	OF ABBREVIATIONS	xi
СНА	PTER 1	1
1.1	Research Background	1
1.2	Problem Statement	4
1.3	Research Questions	5
1.4	Objectives	5
1.5	Significance of study	6
СНА	PTER 2	7
2.1	Gold Nanoparticles (Au NPs)	7
2.2	Gold Nanoparticles as Catalyst	8
	2.2.1 Unsupported Au Catalyst	9
	2.2.2 Supported Au Catalyst	11
	2.2.2.1 Preparation via Impregnation	12
	2.2.2.2 Preparation via Deposition-Precipitation (DP)	12
	2.2.2.3 Preparation via Reduction-Deposition (RD)	13
2.3	Type of Support	13
	2.3.1 Carbon-Based Material	13
	2.3.2 Polymers	14
	2.3.3 Metal oxides	15
2.4	Cerium Oxide (CeO ₂)	16
	2.4.1 Properties of CeO ₂	16

	2.4.2 Application of CeO ₂	17
2.5	Preparation Method of CeO ₂	18
	2.5.1 Chemical-Precipitation	18
	2.5.2 Co-precipitation	19
2.6	Reduction of para-Nitrophenol (p-NP)	20
	2.6.1 Pseudo – First-Order Reaction	20
	2.6.2 Catalytic Activity	22
СНА	PTER 3	24
3.1	Materials and Chemicals	24
3.2	Equipment and Instrument	24
3.3	Method and Procedure	25
	3.3.1 Synthesis of CeO ₂ by Chemical Precipitation Method	25
	3.3.2 Synthesis of Au-CeO ₂	26
	3.3.2.1 Deposition-Precipitation (DP)	26
	3.3.2.2 Reduction-Deposition - Sodium Borohydride (RD1)	26
	3.3.2.3 Reduction-Deposition - Sodium Citrate (RD2)	27
	3.3.3 Catalytic Reduction of <i>para</i> -Nitrophenol (<i>p</i> -NP)	28
3.4	Characterization	28
	3.4.1 FTIR Spectroscopy	28
	3.4.2 SEM-EDX	29
	3.4.3 XRD	29
	3.4.4 UV-Vis Spectrophotometry	30
3.5	Experimental Flow Chart	31
СНА	PTER 4	34
4.1	CeO ₂ Nanoparticles	34
4.2	Au-CeO ₂	38
4.3	Catalytic Reduction of p-Nitrophenol	43
	4.3.1 UV-Vis Spectroscopy of <i>p</i> -Nitrophenol & <i>p</i> -Aminophenol	43
	4.3.2 Effect of Catalyst Dosage	45
	4.3.2.1 Au-CeO ₂ Deposition Precipitation (DP)	45
	4.3.2.2 Au-CeO ₂ Reduction Deposition – Sodium Borohydrate (RD1) 49