

**Title : A STUDY OF ARCHITECTURE AND COMPARISON OF
INTERNET PROTOCOL (IP) OVER DENSE WAVELENGTH
DIVISION MULTIPLEXING (DWDM) AND OTHER
TECHNOLOGIES**

By

**MARCELLA JAMES GUNTOBON
(2001681623)**

**A project paper submitted to
FACULTY OF INFORMATION TECHNOLOGY AND QUANTITATIVE
SCIENCES
MARA UNIVERSITY OF TECHNOLOGY**

**In partial fulfillment of requirement for the
BACHELOR OF SCIENCE (Hons) IN DATA COMMUNICATION AND
NETWORKING**

Major Area : Network Technologies

Approved by the Examining Committee :

.....
Encik Mohd Nor Hajar Hasrol bin Jono Project Supervisor

.....
Encik Jamaluddin bin Md. Yusof Examiner

**MARA UNIVERSITY OF TECHNOLOGY
SHAH ALAM, SELANGOR**

MEI 2003

ACKNOWLEDGMENT

First of all, I would like to praise God Almighty I am blessed and able to finish this Final Year Project within a limited of time. Furthermore, I would also like to express my gratitude to my supervisor Mr. Mohd Nor Hajar Hasrol bin Jono for his undivided attention, guidance and supervision I am able to produce this final year project. A very special thanks to Professor Dr Saadiah Yahya for her lectures, criticisms and guidance when I am lost and unfocused with my project. Not to forget, thank you for Mr. Jamaluddin bin Md Yusof and all SIG 1 panel for being my examiners.

For those who involved directly or indirectly during all those grueling hours finishing this project, I am very indebted to all of you. My fellow final year classmates, especially to Norizah Hamzah and Nur Azila Aziz, thank for all your support and criticism.

Also to my beloved families in Labuan for their all their love, trust and support in me morally and financially. And last but not least, to my best friend Alan Allison Ong and Myrina Shim Vun Yee, for always being there when I needed them. Thank you all.

ABSTRACT

An industry survey indicated that in 1995, the amount of embedded fiber already in use in the average network was between 70 percent and 80 percent. Today, many carriers are nearing one hundred-percent (100%) capacity utilization across significant portions of their networks. Another problem for carriers is the challenge of deploying and integrating diverse technologies in one physical infrastructure. Customer demands and competitive pressures mandate that carrier offer diverse services economically and deploys them over the embedded network. DWDM provides service providers an answer to that demand. This study deals with the concept of transmitting raw Internet Protocol (IP) packets over an optical layer, which employs Dense Wavelength Division Multiplexing (DWDM) for increasing its bandwidth demand. This study also gives an introduction to the DWDM architecture. This study also evaluates the pros and cons of implementing SONET in IP over DWDM networks. The comparison of IP over DWDM and SONET were also discussed here base on bandwidth capability, reliability, and cost and so on. Finally, the protocol architecture that based on the Multiprotocol Lambda Switching (MPLS) was also discussed.

TABLE OF CONTENT

ACKNOWLEDGMENT.....	I
ABSTRACT	II
TABLE OF CONTENT	III
LIST OF TABLE.....	VI
LIST OF FIGURES	VII
LIST OF ABBREVIATIONS.....	VIII
CHAPTER I:INTRODUCTION	1
1.1 INTRODUCTION.....	1
1.2 PROBLEM STATEMENT	2
1.3 PROBLEM OBJECTIVES	3
1.4 PROBLEM SCOPE.....	3
1.5 PROBLEM SIGNIFICANCE	4
CHAPTER II:LITERATURE REVIEW.....	5
2.1 INTRODUCTION.....	5
2.2 DEFINITION OF PERTINENT TECHNICAL TERMINOLOGIES	6
2.3 DIFFERENT METHODOLOGY TO SOLVE SIMILAR PROBLEM.....	9
2.4 BRIEF DESCRIPTION OF ALL KNOWN SIMILAR AND RELEVANT ON-GOING PROJECTS.....	11
2.5 CONCLUSION	12
CHAPTER III:METHODOLOGY	13

CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION

The evolution of the network has reached new frontiers both in terms of the traffic it carries as well as in the advancement of technologies that are used to build the network. One of the most potent technological advancements in this category has been the development of DWDM. DWDM technology has greatly increased the bandwidth of the optical fiber but high volumes of bursty data traffic have exposed the shortcomings of the existing technologies, which use the DWDM principle.

Better and intelligent management of the existing DWDM networks coupled with removing the redundancies caused by some networking equipment in use today will ensure higher data rates and capability of handling bursty volume of traffic. One such technology being actively pursued is the IP over DWDM, which uses the transmission of IP packets directly through the DWDM layer instead on relying on the intermediate SONET/SDH or ATM layers to do the transmission.