UNIVERSITI TEKNOLOGI MARA

MICROBIAL TRANSFORMATION OF CEDRYL ACETATE

SHUHADAH BINTI JOHARI

Dissertation submitted in partial fulfilment of the requirements for the Bachelor of Pharmacy (Hons.)

Faculty of Pharmacy

ACKNOWLEDGEMENT

I would like to thank Allah S.W.T for giving me the strength and opportunity to conduct this research without having many difficulties. There are many people involved who give their guidance and their full support to me in order to make this research became successful.

First and foremost, I would like to express the deepest appreciation to my supervisor, Assoc. Prof Dr. Sadia Sultan for her advices, ideas, knowledge, effort and time during conducted this final year research. I also want to thank Miss Sharifah NurFazilah Binti Wan Yusop, RA Hafiz Nauman, Miss Fatimah Bebe Binti Mohamed Hussain, Miss Amira Syakirin Binti Mohd Narzuki and Miss Amirah Izzati Binti Othman for their time and efforts in helping me to finish up this research.

Lastly, I would like to acknowledge with gratitude, the guidance and support of my parents, Johari Bin Jendol and as well as my family. They all keep me going and this thesis would not be completed without their support. Besides, I thank everyone who gives me inspiration and motivation in helping me completing this research.

Table of Contents APPROVAL SHEETii ACKNOWLEDGEMENTiii LIST OF TABLESvi LIST OF FIGURES......vii LIST OF ABBREVIATIONSviii ABSTRACT......ix CHAPTER ONE: INTRODUCTION....... 1.2 Objectives.......3 To ferment cedryl acetate compound by using selected fungi (Absidia coerulea, Beauveria bassiana, R3-2sp17)......3 1.2.2 To analyse high performance liquid chromatography (HPLC) 1.3 Significance of study......4 1.4 Hypothesis5 1.5 CHAPTER TWO: LITERATURE REVIEW6 2.1 2.2 2.3 2.4 2.5 Materials 19 3.1 3.1.1 3.1.2 3.1.3

ABSTRACT

Biotransformation is the process which produces new derivative compounds with altered chemical structure by using biological system consisting microorganisms. Biotransformed products have biological interests which give benefits especially in pharmaceutical, chemical and agrochemical industries. In this study, cedryl acetate which is a sesquiterpene was used to undergo biotransform process by using *Absidia coerulea, Beauveria bassiana* and R3-2sp17. Method used were preparation of media, inoculation of fungi, and inoculation of substrate, incubation for 5 days and ten days, as well as extraction of fermented cedryl acetate extracts. Lastly, the extracts were analysed by using HPLC in order to identify any biotransformation products. Based on the results, cedryl actate yield biotransformation products by using all of the selected fungi. However, there was a possibility that the peaks appeared in the HPLC chromatogram were the secondary metabolite of the fungi.

CHAPTER ONE: INTRODUCTION

1.1 Background of the study

The issue of drug discovery and development are increasingly over years throughout worldwide. There are many papers reported regarding new development of a drug. Besides, people nowadays easily to get diseases and dependent on the drug in order for them to increase quality of life and improve their health condition. Thus, many scientists tend to find a tool to develop a new effective and improve efficacy of the drug.

There are many methods to synthesis a new drug for specific desired biological activity. One of them is biotransformation which is also known as microbial transformation. It can be define as the process that produces new derivative compound with altered chemical structure by using biological system consisting microorganism like endophytes or fungi (Kebamo, Tesema, & Geleta, 2015). The modifications of the structure of fermented compound lead to many benefits especially in pharmaceutical, chemical and agrochemical industries. This is because biotransformation more likely to produce compound with various biological interests. Besides, microorganisms have ability to alter chemical structure compared to other living organisms.