DEVELOPMENT OF WIRELESS SENSOR NODE FOR MONITORING INDOOR AIR QUALITY

Thesis presented in partial fulfilment for the award of the

Bachelor in Electrical Engineering (Hons)

MARA UNIVERSITY of TECHNOLOGY

NORSYAZILA BINTI MAHAMAD NOH Faculty of Electrical Engineering MARA UNIVERSITY of TECHNOLOGY 40450 Shah Alam, Malaysia May 2009

ACKNOWLEDGEMENT

In the name of Allah s.w.t the Most Gracious and The Most Merciful, highest appreciation and thankfulness to ALLAH S.W.T for giving me an opportunity to complete this project successfully.

First of all, I would like to show my gratitude especially to Encik Mohaiyedin Bin Idris, Main Supervisor of Project Final, Faculty of Electrical Engineering UiTM Pulau Pinang and Encik Fairul Nazmie, Co-Supervisor of Project Final, Faculty of Electrical Engineering UiTM Malaysia for guiding me along completing this project successfully. I would like to thank for their suggestion, constructive advice, generous guidance, encouragement, support and supervision along the project. They are always there to assist me when I encountered any problems. From their guidance, I found myself not only gain knowledge from my project but also learn communication skill between members. Without them, my project will not be totally completed.

Moreover, I also would like to wish thank and full appreciation to my friend Nurul Syuhada Binti Abdul Ghani, partner my project final year that give cooperation until finish this project. I would like to thanks to all of lecturer and my friends who had give me moral and physical support just to see that this proposal report can be success complete.

ABSTRACT

This paper presents the application of Wireless Sensor Node in the Development of Wireless Sensor Node for Indoor Monitoring. Two major parameters qualify the indoor air quality except polluted gas, are air temperature and relative humidity. The LM35DZ temperature sensor and A0545 basic humidity sensor are used to measure air temperature and relative humidity in percentage. Functions of sensor node are transferring data from sensor to data handler. In this project, three sensor nodes are developed and each node consists of Microcontroller (PIC16F877), Transceiver and Sensor. This microcontroller programmed to read the temperature and relative humidity of workspace every hour for one day. For research and development purposes the system implemented at Research Assistance Laboratory (Sensor Node 1), Mechatronics and Consumer Laboratory (Sensor Node 2) and Advance Signal Processor Laboratory (Sensor Node 3), Faculty Electrical Engineering, MARA University of Technology Malaysia.

TABLE OF CONTENTS

CHAPTER	LIST OF TITLE	PAGE
	DECLARATION	i
	ACKNOWLEDGEMENT	ii
	ABSTRACT	iii
	TABLE OF CONTENTS	iv
	LIST OF FIGURES	vi
	LIST OF TABLES	vii
	LIST OF ABBREVIATIONS	viii
1.0	INTRODUCTION	1
	1.1 Introduction	1
	1.2 Objective of Works	3
	1.3 Scope of works	4
	1.4 Organization of thesis	5
2.0	LITERATURE REVIEW	6
	2.1 Introduction	6
	2.2 Wireless Sensor Node Architecture	6
	2.3 Wireless Sensor Node Architecture: Communication	7
	2.4 Wireless Sensor Node Architecture: Processor	9
	2.4.1 PIC Microcontroller	12
	2.5 Wireless Sensor Node Architecture: Sensor	14
	2.51 Temperature Sensor: LM35DZ	15
	2.52 Humidity Sensor: A0545 Basic	16
3.0	METHODOLOGY	19
	3.1 Introduction	19
	3.2 Hardware	19
	3.3 Software	22
4.0	RESULTS AND DISCUSSION	26
	4.1 Introduction	26
	4.2 Results and Discussions	26
5.0	CONCLUSION AND FUTURE DEVELOPMENT	32

CHAPTER 1 INTRODUCTION

1.1 Introduction

Wireless sensor nodes have generated much research interest in recent years advances in electronics technology have made them feasible. A sensor node, also known as a 'mote' (chiefly in North America), is a node in a wireless sensor network that is capable of performing some processing, gathering sensory information and communicating with other connected nodes in the network. In general, such a network consists of many nodes scattered over an area to provide distributed sensing and data processing.

Previously, sensor networks consisted of small number of sensor nodes that were wired to a central processing station. However, nowadays, the focus is more on wireless, distributed, sensing nodes. When the exact location of a particular phenomenon is unknown, distributed sensing allows for closer placement to the phenomenon than a single sensor would permit. Also, in many cases, multiple sensor nodes are required to overcome environmental obstacles like obstructions, line of sight constraints etc. In most cases, the environment to be monitored does not have an existing infrastructure for either energy or communication. It becomes imperative for sensor nodes to survive on small, finite sources of energy and communicate through a wireless communication channel. Another requirement for sensor networks would be distributed processing capability. This is necessary since communication is a major consumer of energy. A centralized system would mean that some of the sensors would need to communicate over long a distance that leads to even more energy depletion. Hence, it would be a good idea to process locally as much information as possible in order to minimize the total number of bits transmitted.

The architecture sensor node consists with four basic components sensing unit, a processing unit, a transceiver unit, and a power unit [1]. The function of sensing unit