LOW COST OPTICAL FIBRE MEASURING INSTRUMENT

Thesis is presented in partial fulfilment for the award of the
Advanced Diploma in Electrical Engineering of
INSTITUT TEKNOLOGI MARA

RASHID BIN JUNUS
Department of Electrical Engineering
INSTITUT TEKNOLOGI MARA
40450 Shah Alam, Malaysia
DECEMBER 1995

ABSTRACT

The main objective of this project is to develop a low-cost solid-state instrument to use with optical fibre physical or chemical sensor (e.g. temperature, colour, pressure, pH etc.). This portable instrument employs opto-electronic devices such as light emitting diode (LED) as a light source and semiconductor photodiode (PD) as a photodetector. A Fibre optic cable is used as a media or transmission line to link between light sources, sensor and photodetector. The project instrument has an internal reference to correct the changes in the signal intensity due to fibre bending or fibre connection and environmental effects. The resolutions of this project is 0.1 mm. For this project, an optical fibre displacement sensor was fabricated since the basic concept of displacement sensor can be applied for many type of sensors. This same sensor can also be used to measure colours.

ACKNOWLEDGEMENT

In the name of Allah swt, The Most Gracious and most merciful who has given me the

strength and ability to complete this project and report. All perfect praises belong to Allah

swt, Lord of the universe. May IIis blessings upon the Prophet Muhammad saw. and

members of his family and companions.

I would like to express my deepest gratitude to my project advisor Dr. Anuar bin Ahmad for

his guidance, ideas and patience in advising and assisting my project. My gratitude also goes

to instructor Kamaruzzaman Mohd Nor and all Lecturers for their guidance and willingness

in sharing knowledge towards the completion of this project.

Also thanks to my classmates for their suggestions and contribution to this project. Last but

not least to Mazrina Mohd Ibramsah, without whose encouragement and understanding, this

project would not have been complete.

Rashid bin Junus

INSTITUT TEKNOLOGI MARA

Shah Alam

Sclangor

ii

	CON	CONTENTS		
	Absti	Abstract		i
	Ackn	owledger	nent	ii
	Conto	Contents		
	СНА	PTER 1		
١.	Intro	Introduction		
	1.1	Advan	tages of Fibre Optic Cable	3
	1.2	Fibre Optic Limitation		
	1.3	Scope	of Work	4
			÷	
	СНА	PTER 2		
2.	Theory of the Measurement System			6
	2.1	Electronic System		7
		2.1.1	Timer Circuitry	7
			2.1.1.1 Timing Component Considerations	10
		2.1.2	Driver Circuitry	12
		2.1.3	Detector Circuitry	13
		2.1.4	Sample and Hold and Signal Conditionong Circuit	17
	2.2	Optica	Optical System	
		2.2.1	Fibre Optic Cable	18

1. INTRODUCTION

Telecommunications have been revolutionised by fibre optic technology. New revolution is emerging as designers combine the product outgrowths of fibre optic telecommunications with optoelectronic devices to create fibre optic sensors and their measuring systems.

The measuring system can be developed by using solid-state light sources such as light emitting diodes (LEDs), laser diodes (LDs) and semiconductor photodetector. This allows the measuring system to be small, portable, low cost and low power consumption. The use of modulated sources allows the sensors to be used without any shielding from ambient light. A reference system is incorporated to compensate for any optical loses due to fibre coupling or bending. [1]

Fibre optic sensors offer an all-passive dielectric approach that is often crucial to successful applications, including electrical isolation of patients in medicine, elimination of inductive paths in high-voltage environments and compatibility with placement in materials. The light weight and small size of these devices are critical in such areas as aerospace and provide substantial advantages.[2] Electro-optical technologies have recently played an important role in the instrumentation for diagnostics in many fields of application, ranging from aerospace, industry and process control to security, military and biomedicine.[3]