

INVESTIGATION OF ELECTRICAL CHARACTERISTICS OF PARTIALLY DEPLETED SOI DEVICE

MOHD HISYAM BIN ISMAIL (2006685808)

A thesis submitted in partial fulfillment of the requirements for the award of Bachelor Engineering (Hons) Electrical

Faculty of Electrical Engineering
Universiti Teknologi MARA (UiTM)
MALAYSIA

MAY 2010

ACKNOWLEDGEMENT

Allahamdulillah, on the name of ALLAH, the almighty and the most merciful, I have been given the strength to complete this final project as to fulfil the requirement of the Bachelor of Engineering (Hons) Electrical in Universiti Teknologi MARA (UiTM), Malaysia.

Foremost, i would like to express my sincere gratitude and appreciation to my understanding supervisor, Ms Yusnira binti Husaini for the continuous support, advices, guidance and encouragement upon completion of this project and thesis.

Next, i would like to extend my special thanks and express my sincerest appreciation to Electronic TCAD laboratory technicians, Madam Hasnah for help and assisted me in installing SILVACO TCAD software completely.

Thank also to my friend who work together in conducting this project and gave their aids. Without them, it will difficult for me to make this project become true. Besides that, special thanks to my family for their encouragement and supports in terms of moral and financial.

Finally, to all people who involved directly or indirectly upon completing this project. I am really grateful for it. All of your contribution and efforts are well appreciated and well remembered. May Allah bless on you. Thank you.

ABSTRACT

Well constructed models for n-type n-MOSFET using bulk technology and partially depleted (PD) silicon on insulator (SOI) technology had been developed. This paper was investigated and simulated the electrical characteristics of partially-depleted SOI (silicon-on-insulator) n-MOSFET device and also done on bulk-Si n-MOSFET device in order to compare its electrical characteristics. The models were simulated using Silvaco-Athena software to find electrical properties such as threshold voltage, sub-threshold and leakage current. Comparison of electrical properties for both technology and channel length were done accordingly from each result. This paper was focus on investigation of the electrical characteristics of the devices at 0.5 micron and 0.35 micron channel length. Silvaco Athena structure and simulation results using Atlas were presented, that shows PD SOI technology is better than Bulk technology in the small scaling of channel length.

TABLE OF CONTENTS

	CONTENTS PAGE TITLE		PAGE i
	ACKNOWLEDGEMENT		iv
	ABSTRACT		V
	TABLE OF CONTENTS		vi
	LIST OF TABLES		xi
	LIST OF FIGURES		xii
	LIST OF ABBREVIATIONS		XV
CHAPTER I	INTRODUCTION		
	1.1	OVERVIEW	1
	1.2	BACKGROUND OF PROJECT	1
	1.3	PROBLEM STATEMENT	3
	1.4	OBJECTIVES OF THE PROJECT	3
	1.5	SIGNIFICANT OF THE PROJECT	4
	1.6	SCOPE OF THE PROJECT	4
	1.7	METHODOLOGY	5
	1.8	THE CHAPTER ANALYSIS	6

CHAPTER I

INTRODUCTION

1.1 **OVERVIEW**

This chapter will elaborate on the background of project and describe on the problem statement that related to the project. This chapter also consists of objectives, significance of project and last part of this chapter will briefly explain the organization of the report.

1.2 BACKGROUND OF PROJECT

International Business Machine (IBM) says that scaling refers to the drive to continue making the transistor smaller and the technology that connects transistors together. As the transistor becomes smaller, it becomes faster and can conduct more electricity. It also consumes less power when it switches on or off or when electricity passes through it. It is mentioning that the critical dimension of a Metal Oxide Semiconductor (MOS), first introduced in the IBM computer 15 year ago, has done down from 10 microns to 0.2 microns and 90 nanometre in researching chips today. In that time, a chip's electrical characterization has also change like the leakage current and threshold voltage [1].