

ECS358

CIVIL ENGINEERING DESIGN PROJECT

REINFORCED CONCRETE BUILDING

DESIGN PROJECT

&

PROJECT BASED LEARNING

MOHAMED AQEEL IKMAL BIN MOHAMED JALIL

2019205454

J4EC1105D2

DIPLOMA IN CIVIL ENGINEERING

FEBRUARY 2022

TABLE OF CONTENT

ACKNOWLEDGEMENT	1 - 2
1.0 PROJECT 1 – REINFORCED CONCRETE BUILDING DESIGN	3
PROJECT	
1.1 INTRODUCTION	4
1.1.1 Requirements of Uniform Building by Law (UBBL 1984)	5 - 32
1.1.2 Architecture Drawings of Project	33 - 40
1.1.3 Project Background	41 - 43
1.1.4 Design Parameters	44 - 48
1.1.5 Weight of Materials Used in Buildings	49 - 53
1.2 PROJECT SCHEDULE	54
1.2.1 List of Activities and Time Frame	55 - 58
1.2.2 Project Schedule (Microsoft Project)	59 - 119
1.3 MANUAL DESIGN OF STRUCTURAL ELEMENTS	120
1.3.1 Structural Plan	121 - 124
1.3.2 Design of Slab	125 - 135
1.3.3 Design of Simply Supported Beam	136 - 150
1.3.4 Design of Continuous Beam	151 - 180
1.3.5 Design of Column	181 - 195
1.3.6 Design of Pad Footing	196
1.3.7 Design of Staircase	197 - 208
1.4 SOFTWARE DESIGN OF STRUCTURAL ELEMENTS (PROKON)	209
1.4.1 Design of Rectangular Slab Panel	210 - 226
1.4.2 Design of Simply Supported Rectangular Beam	227 - 245
1.4.3 Design of Continuous Flanged Beam	244 - 265
1.4.4 Design of Column	266
1.4.5 Design of Pad Footing	267

In the name of Allah, the Most Gracious and Most Merciful.

All praises to Allah for the accomplishment of this writing. I thank Allah for all of the blessing, courage, enlighten given to me in writing this report. I gained so many new things along the process of completing this task, academically and personally. I also thank Prophet Muhammad SAW whose way of life has guided me all the way until this point in my life.

First and foremost, I would like to express my greatest gratitude to Sir Muhammad Hazizi Bin Jamal and Miss Izziyantie Binti Mat Noor, my lecturers for the course ECS358 – Civil Engineering Design Project for all of the guidance, patience and empathy given to me along the completion of this report as well as Miss Narita Binti Noh, my lecturer for the course ECS338 – Structural Concrete and Steel Design. It was a great honour to have them as my lecturers.

On the other hand, I am also obliged to be surrounded with amazing friends who are always by my side though ups and downs. They provided the best environment for Open & Online Distance Learning (ODL) for this semester and amazing memories for the last semester of our diploma studies. Although we were away from our families for more than 4 months, they've made it feel like home to me. They also always delighted to lend a helping hand to me especially regarding this project regardless of time. They have kept me motivated to keep moving forward although sometimes I felt like giving up on this project. For that, I thank them for being around through thick and thin.

May these people be bestowed with blessings, success and happiness in their future lives.

The Uniform Building By-Law (UBBL) is published documentation that is utilized and accentuated by the federal government as a mandatory benchmark of safety protection. UBBL is a statutory code that prescribes and regulates the design and construction of construction in Malaysia.

UBBL is the building code of Malaysia, which is based on the 1974 Street, Drainage and Building Act (Act 133) and its subsidiary, the Uniform Building by Laws 1984, revised as Uniform Building By-Laws 2006 (UBBL 1984) (all amendments up to May 2006). (all amendments up to May 2006). That kind of legal instruments provides for the approval of building plans and other planning and construction management procedures, such as the specifications for firefighting services prescribed by the Fire Service Department in Part VII and Part VIII of the UBBL. Certain Malaysian requirements are now made compulsory under unique legislation.

Part II - Submission of plans for approval

1. Submission of plans for approval

(1) All plans for buildings submitted to the local authority for approval under section 8 of the Ordinance shall:

- (a) be deposited at the office of the local authority together with the fees prescribed for the submission of such plans under the First Schedule to these By-laws;
- (b) bear upon them a statement showing for what purpose the building, for which the plans are submitted, is to be erected and used;
- (c) bear the certification of the qualified persons on these plans together with Form A as set out in the Second Schedule to these By-laws for which they are respectively responsible; and
- (d) have attached thereto a stamped copy of the relevant site plan approved by the competent planning authority and certified within twelve calendar months

Before the beginning of the semester, students are required to find sample of architectural drawing to be used as reference for this design project. From the architectural drawing, structural key plans comprising the ground floor layout, first floor layout and roof layout are derived to define the location of structural members in the reinforced building including reinforced concrete slab, beam and column.

After drawing structural key plans, manual designs of each structural members are done to evaluate required dimensions and specifications of structures to sustain load imposed on them. By using the manual design, the results are then compared with output from PROKON software.

Next, the total cost of project is estimated by using Bill of Quantities method. In this method, taking-off are done for each structural members to enumerate number of construction materials needed to construct the reinforced concrete building such as reinforcement bar, concrete mix and sawn timber. The quantities of materials from the taking-off are then summed up and multiplied with the respective price of item provided in the Schedule of Rate by Jabatan Kerja Raya Malaysia to obtain the total cost of materials for this particular project.