UNIVERSITI TEKNOLOGI MARA

DESIGN AND SYNTHESIS OF WR-1065 Zn²⁺-CYCLEN COMPLEX

NUR SYAFIQAH BINTI ZAINUDDIN

BACHELOR OF PHARMACY (Hons.)

ACKNOWLEDGEMENT

In the name of Allah, the most gracious and merciful, I am really glad with the strength and patience given by Him to complete my thesis for final year project as a student in Bachelor of Pharmacy (Hons.) at Universiti Teknologi MARA (UiTM).

I would like to express my sincere gratitude to my supervisor, Dr Mohd Zulkefeli Mat Jusoh for his kindness and endless support throughout my study. Special thanks to postgraduate student, Nur Amina Bt Zainal, who willing to help and share knowledge in conducting this study. Thank you to all lecturers and staffs of Faculty of Pharmacy who involved either directly or indirectly in finishing my final year project.

I also thank to my family members especially Mr. Zainuddin Ahmad and for their endless support and advices. Special gratitude to my lab mates, Sofiah binti Junaidi and Ku Faiz Ku Halim for their help and sharing information throughout this study. Last but not least, I would like to thank my colleagues, Nur Fatin Athirah, Hafizah Anawi, Anis Afiqah and others whom always giving me advice, support and help in completing this project.

Thank you.

Table of Contents

TITLE PAGE

A	P		\mathbf{n}		7	A	т
Δ	\mathbf{P}	\mathbf{r}	к		/	Δ	

ACKNO	DWL	EDGEMENT	ii			
LIST O	LIST OF TABLES					
LIST O	F FIC	GURESv	ii			
LIST O	F SC	HEMESv	iii			
LIST O	F AB	BREVIATION	ix			
ABSTR	ACT	·	X			
СНАРТ	ER 1		1			
INTRO	DUC	TION	1			
1.1	Bac	Background of study				
1.2	Pro	roblem Statement3				
1.3	Res	esearch Objectives				
1.4	Sign	ignificance of study				
1.5	Res	Research Hypothesis4				
1.6	Sco	Scope and Limitations				
СНАРТ	ER 2)	6			
LITERA	ATUI	RE REVIEW	6			
2.1	WR	2-1065	6			
2.1	.1	General structure of WR-1065	6			
2.1	.2	WR-1065, active metabolite of Amifostine	7			
2.2	p53		8			
2.2	.1	General view of p53 pathway	8			
2.2	.2	Effect of metal binding to p53	9			
2.3	DN	A binding property of Zn ²⁺ -cyclen	0			
2.4	Lig	ation of WR-1065 and cyclen by S _N 2 mechanism	1			
СНАРТ	TER 3	3	3			
MATEI	RIAL	S AND METHODOLOGY	3			
3.1	General Information					
3.2	List of Compounds					

ABSTRACT

WR-1065 is active metabolite of amifostine that activate p53 protein to bind with consensus DNA. However, individual with replacement of cysteine with serine has reduces in p53 binding activity to target DNA. Additional of Zn²⁺ ions have significant role in regulation of p53 protein binding to specific target DNA while a novel prototype of Zn²⁺-cyclen derivatives had widely being used in DNA recognition. The aim of this study were to design and synthesis WR-1065 Zn²⁺-cyclen complex as a new chemical entity and further complexation of Zn²⁺ ions with WR-1065 cyclen complex. The consequences objective was to study the DNA binding properties of WR-1065 Zn²⁺-cyclen complex by using natural calf-thymus DNA. methodologies involved seven-step synthesis of WR-1065 appended with Zn²⁺-cyclen complex with bromoethane as a ligand that linked through S_N2 mechanism. First, 1, 4, 7, 10-tetraazacyclododecane or free cyclen was protected with (Boc)₂O with ratio of free cyclen/(Boc)₂O at 1:2.8. The major product form is 3-Boc cyclen. Second step was reaction with bromoethane to form 3-Boc cylen appended bromoethane. This compound was then undergo bromination step by N-bromosuccinimide (NBS) through free radical mechanism. The product of bromination was then linked with WR-1065 through bromine atom substitution. The intermediates of all compounds were characterized by thin layer chromatography (TLC) and further confirmation by NMR spectroscopy (¹H). The half part of synthesis of WR-1065 appended Zn²⁺-cyclen complex through S_N2 mechanism shows positive result. However, the result for bromination step with NBS led to low percentage yield. Thus, the final product could not be synthesized due to scarce of material; hence DNA binding property of final product cannot be identified.

CHAPTER 1

INTRODUCTION

1.1 Background of study

Amifostine is a protective compound in cancer treatment that capable to reduce or eliminate the side effects of radiotherapy and chemotherapy (Diana & Smardova, 2007). The main active metabolite of amifostine is free thiol, WR-1065, that responsible for cytoprotective effects. Amifostine cannot mediate cytoprotection without being metabolizes into its metabolite which is WR-1065 because WR-1065 easily penetrates the cell while amifostine is not capable to penetrate the cell easily (Hensley et al., 2009). A stress signal from amifostine metabolite, WR-1065 is transmitted through p53 protein by post-translational modification (Harris & Levine, 2005). Activation of p53 protein leads to either cell cycle arrest or cellular apoptosis in cancer cell (Jin & Levine, 2001). Free sulfhydryl group in WR-1065 directly interacts with p53 and modifies p53 cysteine residues. Activation of p53 by WR-1065 increased the binding of functional p53 protein to consensus target DNA sequences and increased its transcription activity of specific genes (Pluquet, North, Richard, & Hainaut, 2003).