

UNIVERSITI TEKNOLOGI MARA

**MOLECULAR ANALYSIS OF
EFFECTS OF *Andrographis paniculata*
(HEMPEDU BUMI) ON OXIDATIVE
STRESS ENZYMES AND LIPASE IN
*Staphylococcus aureus***

**ZAYAN NABILAH RASYIDAH BT ABD
RAZAK**

Thesis submitted in fulfillment
of the requirements for the degree of
Master of Science

Faculty of Health Sciences

July 2017

ABSTRACT

A.paniculata leaves are known to have antimicrobial activities and is widely used in traditional medicine worldwide. This study investigated the anti-oxidative properties of methanolic leaves extract of *A.paniculata* (0.06 mg/ml, MIC) against *S.aureus* (ATCC 25923) (3.8×10^8 cfu/ml) by determining the ability of the extract to reduce toxicity of hydrogen peroxide (H_2O_2) against *S.aureus*. Effects of the extract on gene expressions were determined by RT-qPCR and corresponding activity assays of catalase (*katA*), superoxide dismutases (*sodA* and *sodM*), alkylhydroperoxide reductase C (*ahpC*) and lipase (*geh*) in *S.aureus* were also performed. For hydrogen peroxide (H_2O_2) sensitivity test, *S.aureus* cells (3.8×10^8 cfu/ml) were challenged separately with 7.5 mM H_2O_2 only, 7.5 mM H_2O_2 and methanolic leaves extract of *A.paniculata* (0.06 mg/ml) and methanolic leaves extract of *A.paniculata* (0.06 mg/ml) only. Cells challenged with H_2O_2 only showed 0% survival in 30 minutes whereas 25% cells survived after treatment with the extract and H_2O_2 . *S.aureus* cells that were treated with extract only had 43% survival in the same exposure period. Nitroblue tetrazolium (NBT) reduction assay was performed to determine intracellular and extracellular levels of O_2^- after treatment with the extract. Extract –treated *S.aureus* cells had significantly lower intra- and extracellular O_2^- levels with absorbance readings (A_{575nm}) of 0.340 and 0.524 respectively compared to untreated cells which were 0.516 and 0.928 respectively ($P<0.05$). Cells treated with the extract showed 3.3-fold increase of *katA* expression compared to untreated cells ($P<0.05$) with corresponding catalase activity of 1.828 U compared to untreated cells which was 1.248 U, ($P<0.05$). Similarly, *ahpC* expression was significantly increased by 61-fold in extract-treated cells, ($P<0.05$) with corresponding increase in AhpC activity of 0.018 U compared to untreated cells, 0.012 U, ($P<0.05$). Expressions of *sodA* and *sodM* genes in extract-treated cell were decreased at 0.8-fold and 0.7-fold respectively ($P<0.05$) with corresponding decrease in total SOD activity of 26.8 U in treated cells compared to untreated cells, 32.4 U ($P<0.05$). Expression of lipase (*geh*) was significantly decreased at 0.01-fold in extract-treated cells compared to untreated cells which was 1-fold, ($P<0.05$) with corresponding decrease in lipase activity at 31.58 U compared to untreated cells, 132.55 U, ($P<0.05$). Therefore, *A.paniculata* was suggested to possess anti-oxidative properties with respect to killing of *S.aureus*.

ACKNOWLEDGEMENT

Firstly, I wish to thank God for giving me the opportunity to embark on my Masters study and for completing this long and challenging journey successfully. My gratitude and thanks to my lovely supervisor Dr. Roslinah bt Mohamad Hussain, co-supervisor, Dr. Wan Mazlina bt Md. Saad. Thank you for the support, guidance, patience and ideas in assisting me with this project. My appreciation also goes to Institute of Research and Innovation UiTM (IRMI); Research Grant Scheme LESTARI : 600-IRMI/MYRA 5/3/LESTARI (16/2016). I also would like to express my gratitude to the staff of the Postgraduate Department, Puan Juliana and Puan Naziha and also to the staff of the Medical Laboratory Technology's Department, especially Puan Aziyana and Puan Sulhi for providing the facilities, knowledge and assistance.

My appreciation goes to my colleagues and friends for helping me with this project.

Finally, this thesis is dedicated to the loving father, Abd. Razak bin Abd. Rahman and my mother, for the vision and determination to educate me. Special thanks to my husband and siblings for their continuous support. This piece of victory is dedicated to all of you. Alhamdulillah.

TABLE OF CONTENTS

	Page
CONFIRMATION BY PANEL OF EXAMINERS	ii
AUTHOR'S DECLARATION	iii
ABSTRACT	iv
ACKNOWLEDGEMENT	v
TABLE OF CONTENTS	vi
LIST OF TABLES	xi
LIST OF FIGURES	xii
LIST OF PICTURES	xiii
LIST OF ABBREVIATIONS	xiv
CHAPTER ONE : INTRODUCTION	1
1.0 Introduction	1
1.1 Medicinal Plants	2
1.2 <i>Andrographis paniculata</i> (<i>A.paniculata</i>)	3
1.3 <i>Staphylococcus aureus</i> (<i>S.aureus</i>)	4
1.4 Real Time Quantitative PCR (RT-qPCR)	5
1.5 Problem Statement	6
1.6 Research Objective	7
1.7 Research Hypothesis	7
1.8 Limitations of the Study	8
1.9 Significance of the Study	8
CHAPTER TWO : LITERATURE REVIEW	9
2.1 <i>Andrographis paniculata</i>	9

CHAPTER ONE

INTRODUCTION

S.aureus is established as a pathogen that causes both community and hospital-acquired infections. Multidrug resistant strain such as methicillin-resistant *S.aureus* (MRSA) for example, is a persistent problem that causes life-threatening conditions such as sepsis, necrotizing pneumonitis and necrotizing fasciitis and accounts for a majority of skin diseases and soft tissue infections (Harding et al., 2014). Oxidative stress is a state of imbalance between the production and the removal of reactive oxygen species (ROS) that may cause harm to the cell. In order to combat ROS, *S.aureus* uses its defensive molecules including catalase (CAT), superoxide dismutase (SODs) and alkylhydroperoxide reductase C (AhpC) (Painter, Strange, Parkhill, Bamford, Armstrong-James & Edwards, 2015) and others. In my previous study, methanolic extract of *Andrographis paniculata* (*A.paniculata*) showed high antimicrobial activity against *Staphylococcus aureus* (ATCC 25923) with minimum inhibitory concentration (MIC) of 0.06mg/ml (Zayan, 2015, Bachelor Degree Dissertation). According to Al-alusi, Kadir, Ismail & Abdullah (2010), MIC of an agent in the range between 0.02 to 0.078 mg/ml is considered to have potential for development as an alternative treatment for bacterial infections. Hence, *A.paniculata* extract shows good potential for its development into an alternative antistaphylococcal agent as it showed an MIC of 0.06 mg/ml against *S.aureus*. In addition, *A.paniculata* inhibited expression of a putative protein of 76 kDa which corresponds to lipase, one of the virulence enzymes in *S.aureus* (Zayan, 2015, Bachelor Degree Dissertation). It is therefore of significant relevance to determine the mechanism on antimicrobial activity of *A.paniculata* against *S.aureus*. In this study, effects of methanolic leaves extract of *A.paniculata* were investigated focusing on the molecular analysis of its effects on gene expressions and activities on oxidative stress related enzymes and lipase in *S.aureus* (ATCC 25923).