UNIVERSITI TEKNOLOGI MARA

NUMERICAL SOLUTION OF TIME-DEPENDENT MICROPOLAR NANOFLUID FLOW OVER A LINEAR CURVED STRETCHING SURFACE USING BVP4C

NURUL IFFA KHAIRIAH BINTI AHAD PUTERI ZULAIKHA BINTI SHUKRI

Bachelor of Science (Hons.) Mathematics

ABSTRACT

This study focuses on the time-dependent flow of a micropolar nanofluid over a linear curved stretching surface, aiming to improve the numerical approach for solving heat transfer problems. Since the governing equations are nonlinear partial differential equations (PDEs), similarity transformations were applied to reduce them into a set of ordinary differential equations (ODEs), which are easier to handle. These ODEs were then solved using the BVP4C solver in MATLAB, which is known for its ability to handle boundary value problems accurately. The study explores the effects of several physical parameters such as micropolar, curvature, unsteadiness, Brownian motion, thermophoresis, stretching and thermal slip on the fluid's momentum, energy and concentration profiles. A dimensionless form of the equations was used, based on boundary layer assumptions, to simplify the modelling process. The results reveal that the momentum profile decreases with increasing micropolar parameter, while it increases with both curvature and unsteadiness parameters. For the energy profile, the temperature was found to decrease with increasing thermal slip and stretching parameters. Meanwhile, the concentration profile shows a decreasing trend with higher Brownian motion and curvature values. These findings highlight the effectiveness of BVP4C in solving nonlinear systems and provide valuable insight into how different physical parameters influence the flow, temperature, and concentration behaviour. A comparison with results from shooting method was also made to validate the accuracy of this approach. Overall, the findings contribute to a better understanding of micropolar nanofluid flow over curved surfaces and the use of numerical methods in fluid mechanics.

TABLE OF CONTENTS

		Page
SUP	ERVISOR'S APPROVAL	i
AUT	ii	
ABS	iii	
ACK	iv	
TAB	BLE OF CONTENTS	v
LIST	vii	
LIST OF FIGURES		viii
LIST	ix	
LIST	Γ OF ABBREVIATIONS	X
CHA	APTER ONE INTRODUCTION	1
1.1	Research Background	1
1.2	Problem Statement	5
1.3	Research Objectives	6
1.4	Research Question	7
1.5	Significance of Study	7
1.6	Scope and Limitation of Study	8
1.7	Definition of Terms	8
CHA	APTER TWO LITERATURE REVIEW	10
2.1	Introduction	10
2.2	Unsteady Micropolar Nanofluid Flow	10
2.3	Curved Stretching Surface	12
2.4	BVP4C Solver	13
CHA	APTER THREE RESEARCH METHODOLOGY	15
3.1	Introduction	15
3.2	Research Framework	15
3.3	Research Methodology	16

	3.3.1	Governing Equation of The Flow Problem	16		
	3.3.2	Reducing Governing Equation	18		
	3.3.3	Reduced Governing Equation	36		
	3.3.4	Solve ODEs by using BVP4C	38		
CHAI	PTER I	FOUR RESULTS AND DISCUSSIONS	41		
4.1	Introd	uction	41		
4.2	Valida	ation of BVP4C Method	41		
4.3	Preser	at Results	44		
4.4	Mome	entum Profile	46		
	4.4.1	Effects of Micropolar Parameter	46		
	4.4.2	Effects of Curvature Parameter	47		
	4.4.3	Effects of Unsteadiness Parameter	48		
4.5	Energ	y Profile	49		
	4.5.1	Effects of Thermal Slip Parameter	49		
	4.5.2	Effects of Stretching Parameter	50		
	4.5.3	Effects of Curvature Parameter	51		
4.6	Concentration Profile				
	4.6.1	Effects of Brownian Motion Parameter	53		
	4.6.2	Effects of Thermophoresis Parameter	54		
	4.6.3	Effects of Curvature Parameter	55		
CHAI	PTER I	FIVE CONCLUSION AND RECOMMENDATIONS	56		
5.1	Introd	uction	56		
5.2	Concl	usion	56		
5.3	Recon	nmendation	57		
			58		
REFE	REFERENCES				
A DDE	יאטנפטי		66		
AFFE	APPENDICES				

LIST OF TABLES

Tables	Title	Page
Table 1.1	Definition of Terms	8
Table 4.1	Result of $C_f Re_x^{1/2}$ for different values of k	42
Table 4.2	Result of $C_f Re_x^{1/2}$ when $K = 0.5$	42
Table 4.3	Result of $C_f Re_x^{1/2}$ when $K = 1.0$	43
Table 4.4	Results of $C_f Re_s^{-1/2}$, $C_m Re_s$, $N_{u_s} Re_s^{-1/2}$ and $Sh_s Re_s^{-1/2}$ for	44
	different values of K_0 when $n = 0.0$.	
Table 4.5	Results of $C_f Re_s^{-1/2}$, $C_m Re_s$, $N_{u_s} Re_s^{-1/2}$ and $Sh_s Re_s^{-1/2}$	45
	for different values of K_0 when $n = 0.5$.	